
Language Detection based on Unigram Analysis and Decision Trees

Sofia Bastrup
LTH Lund, Sweden

dat00sob@ludat.lth.se

Christina Pöpper
ETH Zürich, Switzerland

poepperc@student.ethz.ch

Abstract

This document describes the process of
implementing a decision tree for language
detection. First, text profiles are computed
for each text in the training set and out of
this a decision tree is built. Finally evalua-
tion is made with query texts. To compare
the performance of different approaches,
a few variations of trees are implemented;
sets of 26 respectively 56 characters as
attributes are compared, furthermore a
’direct-child’-tree versus a ’neighbours’-
tree are implemented for comparison. The
’direct-child’ tree gave the greatest num-
ber of correct answers, in contrast to the
’neighbours’ tree that did not give any
incorrect answers (however many no re-
sults). Suggestions of enhancements of
performance is given. The authors con-
clude that the language detector gives
comparatively good results given that the
implementation only considers unigrams.

1 Introduction

The goal of this project was to write alanguage de-
tector, i.e. a system to identify the language of a
given text automatically - out of a predefined num-
ber of possible languages.

Applications of automatic language detection in-
volve language processing such as automatic re-
trieval of texts in the desired language (e.g. from the
world wide web) as well as studies of language use

(e.g. estimation of language frequencies in the inter-
net).

Several broad approaches exist to the problem of
language detection.

One obvious technique is to use a lexicon for
each possible language and compare the words in
the sample text with those in the lexica to find the
lexicon with the highest correlation. This involves
huge numbers of data to be managed and processed
as well as difficulties when dealing with highly in-
flected languages. On account of the drawbacks of
the lexicon method, grammatical words are used as
discriminant in [Gi2].

Another technique is to use the alphabet. But,
as stated in [Gi1], the alphabet is not very useful,
because accented characters are not as frequent as
needed and they often belong to several alphabets.
Thus, this clue does not really allow to discriminate
the right language.

A further approach is the use of n-gram analysis.
n-gramsare sequences of n letters. The basic idea
is to compute, from a training set, a profile for each
considered language based on the probability of let-
ter sequences. For a given text the language with the
nearest profile is selected.

On account of the drawbacks of the lexicon and
alphabet methods, we decided to implement the last
of the mentioned techniques:language detection by
n-gram analysis.

2 Decision Tree Approach

The process of language detection can – in our case
– be divided into three steps. In the first step, the fre-
quencies and probabilities of the letters (unigrams)

and combinations of letters (n-grams) of the training
set are computed. This gives a profile for each lan-
guage and has do be done only once. As the second
step, we decided to build up a decision tree out of
these profiles. Finally, the third step is to evaluate
the decision tree for a given text.

In our implementation we only consider uni-
grams (i.e. letters) so far.

2.1 Training set

The implemented language detection method de-
pends entirely on the quality of the training set. For
obtaining the training set we used the Europarl Cor-
pus of European Parliament Proceedings ([EPP]),
version 1, for the following ten languages:danish,
dutch, english, finnish, french, german, italian, por-
tuguese, spanish,and swedish, each consisting of
texts with 17-22 million words, corresponding to 60-
80 MB each.

2.2 Language/text profile

The profile for each text in the training set (corre-
sponding to a certain language) as well as the profile
for the query text is given by the probabilities of all
n-grams (in our implementation: unigrams). In or-
der to deal with these probabilities and to transform
the training set profiles into a decision tree, the prob-
abilities are converted into intervals. Eight intervals
were used corresponding to the probabilities of let-
ters:

inter- corresponding inter- corresponding
val probability val probability
0 0 - 0.001 4 0.09 - 0.12
1 0.001 - 0.03 5 0.12 - 0.15
2 0.03 - 0.06 6 0.15 - 0.18
3 0.06 - 0.09 7 > 0.18

Interval 0 is not only assigned to letters not oc-
curing at all, but also to letters occurring with a tiny
probability of smaller than 0.001 (0.1%) in order to
take loan words from different languages into ac-
count and prevent these from contaminating the pro-
file of a language.

After this step, a typical profile for a language
looks like this example for danish (containing only
the common character set, see also section 2.3.4):
[letter:interval]

a:2 b:1 c:1 d:2 e:6 f:1 g:2 h:1
i:3 j:1 k:2 l:2 m:2 n:3 o:2 p:1
q:0 r:4 s:2 t:3 u:1 v:1 w:0 x:0
y:1 z:0

2.3 The decision tree

2.3.1 General building and structure

A decision tree is used for making classifications.
The input for the tree is given by examples consist-
ing of values of the set of attributes. Each internal
node represents a test of the attribute value. The
branches of the node are labeled with the different
interval values. When reaching a leaf node the clas-
sification of the example is returned.

In our implementation of the decision tree the
examples are represented by texts of different lan-
guages - a set of training texts when building the tree
and a set of test texts to evaluate the tree. The clas-
sification attribute is the language of the text.

The attributes are the text profiles that are calcu-
lated out of every text in the training set. The values
of the attributes are the intervals which correspond
to the probabilities of the unigrams.

2.3.2 The implemented trees

Two different implementations are used in the lan-
guage detector. We call themdirect-child-treeand
neighbours-tree.

Direct-child-tree: For the direct-child-tree, the
idea is to take the profiles of the training texts and
assign each of them exactly one path through the
tree. In the final leaf, the language of the text is
stored. I.e. for every internal node, containing a let-
ter (the chosen attribute), the interval corresponding
to this letter in the training text gives the child were
we have to go on recursively.

In a first version of an implementation we only
had one example for each language in the training
set. This tree had a lot of leaves where no language
could be determined. This happened because the
query text has to have a profile much as same as the
training text to be detected (in a path where all the
attributes have to be used, the two profiles have to
be identical). To overcome this problem we split up
the training text into about 300 smaller text for each
language. Then a query text has a higher probability
of having a similar profile as one of the 300 training
text profiles.

Neighbours-tree: Besides the direct-child-tree
described in the previous paragraphs, we imple-
mented a second approach, theneighbours-tree. The
determining motive behind this approach is the fact
that the direct-child tree (in its first version) is strict
in respect to the profiles: the intervals of the n-grams
of a query text has to correspond to the profile of
a training text for this language. As described, the
more training texts for each language are used for
the direct-child-tree, the greater is the probability
that a similar profile exists. But the problem remain,
especially when the intervals are small and the prob-
abilities lie at the border of the intervals (e.g. lettera
may have probability 0.089 in the training text cor-
responding to interval 3, in the query text the proba-
bility may be 0.091 corresponding to interval 4, but
the languages may be easily identical).

In the neighbours-tree we compensate for this by
using only the profile of one text (of 60-80 MB size;
concatenation of all texts of the same language used
for the direct-child-tree) for each language and by
assigning the language to the child of the interval
as well as to both of the child’s neighbours. Thus,
texts varying only slightly in the intervals may be
recognized as the same language nevertheless.

In Figure 1, a typical node in a neighbours-tree is
depicted. Let’s say, the languages danish and finnish
are still possible and attributee is chosen. The inter-
val for e is 6 for danish and 4 for finnish. Then this
part of the tree will look like this figure. Only for
interval 5 both languages are still possible.

n.r.

n.r.

n.r.
finnish finnish

0

3

6

4
2 5

1

7

danish
finnish

danish

danish

e
finnish
danish

.....

Figure 1: Typical node with children in the neighbours-tree.

n.r. = no result. Letter e is chosen as attribute for this node.

The drawback of this approach are the many over-
lappings of letter intervals for the languages. The
tree gets very big, because for many branches a great

number of recursive steps has to be made. Because
of limited memory, we had to limit the height of the
tree to 8.

2.3.3 Choose attribute

When building a decision tree an appropriate at-
tribute has to be chosen in each internal node. The
method for choosing the attribute (we call it ’choose
attribute method’) is of importance concerning the
depth and effectiveness of the tree. A ”perfect” at-
tribute is one that splits the set of examples into new
sets in which all examples have the same classifica-
tion. Choosing the right attribute gives a compact
tree with a smaller search depth.

Two different choose attribute methods were im-
plemented.

In the ’direct-child’-tree, information theory is
used. The goal is to choose the attribute as simi-
lar as possible to the ”perfect” attribute. To choose
an attribute calculations of how much information is
gained are made for all the attributes. This is com-
pared to how much information there is currently.
When building the tree the information content is
calculated by counting how many examples there are
in the set of each classification of the goal attribute.
In case a node is reached when there are no more at-
tributes in the set to choose from, but there are still
examples not having the same classification, then a
majority value is determined. This means that the
language having the greatest number of examples in
the set is returned as the classification of the text.

When building the ‘neighbours’-tree there is only
one example for each language (see section 3.2).
Therefore, a simple choose attribute method is
enough. Among the examples it calculates the dif-
ference between the highest and the lowest value for
each attribute. The attribute with the largest differ-
ence is chosen.

2.3.4 Variation

Special characters: In our first approach we only
considered 26 characters of the alphabet, the letters
that all languages included in our research have in
common. To develop our program further we ex-
tended the set of attributes to 56 different unigrams
(containing letters such aŝa, è andó). This set now
includes all special characters that exist in the con-
sidered european languages.

3 Results

Our test set consists of 33 different texts in the
ten considered languages - at least three texts for
each language. The (mainly contemporary) test texts
were obtained from miscellaneous sources, from
newspaper articles to scientific reports and literature.
The sizes vary between about 270 and 67,600 words
(or from 1.7 to 430 KB). To our surprise, we could
not detect a correlation between the size of the text in
this range and the correctness of the result. We sup-
pose, that this correlation requires a greater number
of test.

In the following, the reporting of the results is
split up into the two implemented kinds of trees.

3.1 The ’direct-child-tree’

For the direct-child-tree each branch is labeled only
with one value of the attribute. This in comparison
with the ’neighbour-tree’, where each branch is as-
signed three adjacent values.

Our results are as follows (33 tests):

tree correct false no result
1 24 5 4
2 22 9 2
3 24 6 3
4 24 7 2

Four slightly different trees were implemented to
compare the results. The first two compared the
choose attribute methods. The method that uses
information theory (tree 1) only appeared to be
slightly better than the simple method (tree 2). This
improved method gave two more correct answers
and four fewer incorrect answers.

The second variation in the ’direct-child’ ap-
proach is the tree with 26 attributes respectively the
one where also the special characters are included
as attributes. Both trees use the information theory
when choosing attribute. Comparing those two trees
(tree 1 and 3) showed surprisingly not any big dif-
ference at all in performance of classification. They
both gave 24 correct answers. Furthermore the 56-
characters-tree actually gave one more incorrect an-
swer, which makes the 26-characters-tree the tree
that showed best performance in the research. Still
there was such small difference between those trees
that it is reasonable to assume that in a more exten-

sive research, those trees would yield the same per-
formance.

Tree 4 used 56 characters and the simple choose
attribute method.

All four trees determine a majority value when
there are no more attributes.

3.2 The ’neighbours-tree’

The recursion depth for our version of the
neighbours-tree is 8, bounded above by the size of
memory on the used computer with a limited student
account. Due to the height 8 of the tree (the maxi-
mal height is 26 or 56 respectively depending on the
number of considered characters), many branches do
not contain a result in the final leaf, as several lan-
guages are still possible, but can not be determined
any further. Hence, we got many ’no result’.

We tested the neighbours-tree for the 26 character
set and our first chose attribute method (a majority
language would make no sense here as there is only
one text for each language).

Our results are as follows (33 tests):

correct false no result
5 0 28

What strikes is the fact that there are no false an-
swers - either the result is correct or there is no result
at all.

More than likely, the number of ’no results’ would
decrease if the number of recursion steps could be
increased.

4 Enhancements and Alternatives

An obvious enhancement is to consider n-grams,
i.e. combinations of letters, and not only unigrams,
because n-grams potentially contain much more in-
formation about the language. Many languages have
bi- and trigrams that are representative for them,
such as the english ’th’ or the german ’sch’.

An alternative to the implemented decision tree
approach is to use avector approach. Thus, each
language would be assigned a vector with 26 or
more elements, depending on the number of char-
acters taken into account. The result of the lan-
guage detection will be the language whose vector
has the smallest distance to the vector of the given
text. The definition of distance depends on the cho-
sen method. We did not implement this approach

and thus can not compare the decision tree and vec-
tor approaches.

One more alternative turns up: Would the lan-
guage detector show any improvement in perfor-
mance if the value zero would represent no occur-
rences at all of a character in the text, instead of the
interval 0 - 0.001?

There is obviously a difference between the let-
ters that exist in a language only rarely (at few oc-
casions) and the letters that do not exist at all. As
for example the letters ä and ö in Swedish that do
not appear in any latin language. Those characters
can give a unique profile to the language they appear
in. Still, no big difference in performance was de-
tected between the 26- and 56-characters-trees. One
way to make a distinction between these trees would
be to represent only no occurrences with the value
zero. There comes though a risk with this approach.
The letters that exist only rarely in the language,
could in one specific text be assigned the value 0
because in this text there are no occurrences at all.
This is the reason why we chose to assign the value
zero to those letters with a probability of 0 - 0.001.
Anyway some emphasis on special characters would
with high probability yield better performance.

5 Conclusion

A surprise for us during the development of the lan-
guage detector was the fact that the enhancement
from the simple character set to special characters
did not yield the wished improvement. A reason for
this may be that the special characters are not treated
in any specific way.

Still far from a complete and satisfying program
we were nevertheless surprised by the comparatively
good results yielded by the very simply approach
with unigrams. We are confident that an extension
to two- and three-grams will improve the prediction
significantly.

Acknowledgements

The authors gratefully acknowledge the very useful
suggestions and help for this work by Pierre Nugues
and Richard Johansson.

References

[CT] William B. Cavnar & John M. Trenkle.N-Gram-
Based Text Categorization. Environmental Research
Institute of Michigan.

[EPP] Europarl Corpus of European Parliament Proceed-
ings. http://www.isi.edu/ koehn/europarl.

[Gi1] Emmanuel Giguet. Categorization according
to Language: A step toward combining Linguistic
Knowledge and Statistic Learning. Université de
Caen, France.

[Gi2] Emmanuel Giguet.Multilingual Sentence Catego-
rization according to Language. Université de Caen,
France.

[GN] Gregory Grefenstette & Julien Nioche.Estima-
tion of English and non-English Langage Use on the
WWW. Xerox Research Centre Europe, France.

