
A Writing Assistent Using Language Models Derived From the Web

Sharon Tsai
d00yt@efd.lth.se

Abstract

In the field of Linguistic there exists
many powerful tools for measuring the
statistic characteristics of words and
sentences. These tools rely on a corpus
to which the data is compared. In or-
der to get good and meaningful results
from the tools available, a suitable cor-
pus is thus needed. As the corpus is the
key that ties the tools together, it is of
uttermost importance. For most appli-
cations, all though not all, a large cor-
pus is useful. This paper presents a solu-
tion to using the largest corpus known to
man, the Internet. It will show a proto-
type program using many different lin-
guistic tools on information gathered by
the premiere search engine Google.

1 Method

The basic mathematical tools needed for this work
is explained in this section. For a more in depth ex-
planation please see (Language Processing Com-
putational Linguistics, 2003).

1.1 N–Grams

N–Grams is simply a method of counting the fre-
quency of a sequence of N word in the corpus.
These frequencies can then be used to calculate
probabilities. Equation 1 shows the probability of
a single word occurring. It is naturally the fre-
quency of the word occurring in the corpus divided

by the amount of different words available in the
corpus.

P (w) =
C(w)

N
(1)

It is also possible to calculate probabilities of
a word following a given word. This is known as
the maximum likelihood estimate and is defined in
equation 2.

P (wi|wi−1) =
C(wi−1, wi)

C(wi−1)
(2)

The maximum likelihood estimate for a word
following two given words is defined in equa-
tion 3.

P (wi|wi−2, wi−1) =
C(wi−2, wi−1, wi)

C(wi−2, wi−1)
(3)

1.2 Mutual Information

Mutual Information is a tool for measuring the
strength of word associations. A high value is
an indication of two words occurring together but
with a total small frequency, such as technical
terms. For instance, such terms might be ”hyper-
threading processor” or ”keyhole surgery”. Mu-
tual Information is defined in equation 4

I(wi, wi+1) = log2

NC(wi, wi+1)
C(wi)C(wi+1)

(4)

1.3 T–Score

T–Score is a statistic tool which measures fre-
quently occurring grammatical combinations. A
high T–Score means that the two words occur of-
ten together, such as ”of the” and ”in the”. The



definition of T–Score is shown by equation 5

T (wi, wi+1) =
C(wi, wi+1) − 1

N C(wi)C(wi+1)√
C(wi, wi+1)

(5)

2 Implementation

2.1 Module Overview

The prototype program is implemented in Java.
For more information please see (J2SE 1.4.1
API Specification, 2003). It is made up by five
main classes: GUI, UserPane, SearchResultPane,
SearchHandler and HTMLWriter. See figure 1 for
the overview of the structure.

HTML
Writer

GUI

UserPane Search
ResultPane

Search
Handler

Figure 1: An overview of the architecture

2.2 User Interface

2.2.1 GUI

The GUI is a frame that contains a UserPane
and a SearchResultPane. A user can change view
by clicking on the respective tab that represent
UserPane and SearchResultPane.

2.2.2 UserPane

The UserPane consists of a button group, a text
field, a text area, two buttons, Send and Reset, and
a status label. The button group contains a list of
linguistic methods that a user can choose to an-
alyze the input sentence with. Only one method
can be chosen at the same time. These methods
that are included in the prototype program are N-
Gram, Mutual Information and T-Score. The text
field is where the user types in the sentence which

is to be analyzed. The final result is presented in
the text area below the text field. The status label
at the bottom updates the program status, search
progress and possible error messages. See fig-
ure 2, 3 and 4.

Figure 2: GUI: UserPane

Figure 3: GUI: UserPane during search

Figure 4: GUI: UserPane after executing search

2.2.3 SearchResultPane

The SearchResultPane consists of a web page
that is generated automatically in the end of every
search. See figure 5. The web page reloads auto-
matically after every new search and contains all
the statistical data gathered.



Figure 5: GUI: SearchResultPane

2.3 Implementation Detail

The data flow chart, figure 6, shows all seven
stages of the prototype program. See the corre-
sponding sections for further detail and informa-
tion on each stage.

Text Input Parsing

Google
Search

Calculate
Probability

Calculate
MutualInfo/

T-Score

Generate
HTML
Page

Represent
Result

Figure 6: Flow chart

2.3.1 Initiating GUI

During the program initiation, the total number
of words that exists on the Internet is estimated.
This is done by calculating the occurring percent-
age of words such as ”in,” ”on,” and ”of” in a
fixed size English corpus. This percentage is then
applied on the sum of the Google search results
of these words in order to estimate total number
of words. The percentage used in this program
is obtained through Jane Austin’s novel ”Emma.”
There are around 74.6 billion words on the Inter-

net and the number is growing everyday.

2.3.2 Text Input

This stage is the very beginning of the program
cycle. It is done simply by clicking on the Send
button or press ”ENTER” on keyboard after enter-
ing a sentence in the text field. At the moment, the
size of the sentence is limited at 50 tokens. The
sentence is then sent to the SearchHandler object.

2.3.3 Parsing

The SearchHandler first applies an error con-
trol on the incoming sentence. The main pur-
pose of the error control procedure is to filter out
the word ”the,” which causes overflow in the au-
tomated Google search. The SearchHandler also
checks if the sentence is empty. If any of these
two errors occurs, the program is terminated and
an appropriate error message displays at the status
label. The sentence is then parsed into unigrams,
bigrams and trigrams if no errors are found. All
N-Grams are stored in an array.

2.3.4 Google Search

The SearchHandler traverses the N-Gram array
and performs Google search on every N-Gram.
Google returns an estimated result back and it is
saved in the corresponding position in a separate
array for search results.

Google’s own API is used in this program be-
cause Google does not permit automated queries
without an API account. Communication is
performed via Simple Object Access Proto-
col(SOAP). For further information about Google
API see (Google API, 2003).

2.3.5 Calculate Probability

No matter which linguistic method is chosen to
analyze the input sentence, N-Gram probabilities
are always calculated according to formulas pre-
sented in section 1. The resulting N-Gram proba-
bilities are stored in a separate array in the corre-
sponding position.

2.3.6 Calculate Mutual Information/ T-Score

If the chosen linguistic method to analyze the
input sentence is Mutual Information or T-Score,
values for bigrams are calculated according to for-
mulas presented in section 1. These values are also
stored in a separate array.



2.3.7 Generate HTML Page

After all the necessary values are calculated, a
web page is generated by HTMLWriter object and
loaded into the SearchResultPane. It can also be
viewed by any web browser. The web page con-
tains the estimated total number of words on the
Internet, and a table of all N-Grams and their cor-
responding N-Gram probability and Information/
T-Score values, if any.

2.3.8 Represent Result

Depending on which linguistic method is cho-
sen, the corresponding result array is traversed.
Separate strategies are used to analyze results of
N-Gram, Mutual Information and T-Score. There
are two ways to represent unusual words, in or-
ange style and red style. The font of words
is slightly bigger than default, size sixteen, and
painted in orange. In red style, it is size twenty
font and painted in red.

For N-Gram, if any of the N-Gram probability
is less than 0.1%, it is marked in orange style. If
the N-Gram probability is less than 0.05%, it is
marked in red style.

The bigram that has the highest Mutual Infor-
mation value is marked in red style and the second
highest bigram is marked in orange style.

The marking strategy for T-Score is the opposite
for Mutual Information. The bigram that has the
lowest T-Score value is marked in red style and the
second lowest bigram is marked in orange style.

3 Experiments

3.1 Experiment I: ”I really like strawberry
beer”

3.1.1 Idea

The sentence, ”I really like strawberry beer,” is
used as reference sentence during the development
phase because the very rare occurrance/use of the
word combination ”strawberry” and ”beer.”

3.1.2 Search Results

As figure 7 clearly shows that all three methods
manage to detect the unusual word combination,
”strawberry beer.” This is the primary reason that
the Mutual Information marking strategy is chosen
to mark the highest and the second highest value.

Figure 7: Search results: The sentence is analyzed
by: a) N-Gram b) Mutual Information c) T-Score

3.1.3 Conclusion

In this example, the program demonstrates the
ability to detect strange or unusual word combina-
tions.

3.2 Experiment II: ”This project consists of
three parts, and it consists at working”

3.2.1 Idea

For most people, the most difficult part of learn-
ing a foreign language is prepositions. In this ex-
ample, the most common prepositions that occur
with the word ”consist” are ”of” and ”in,” accord-
ing to Oxford Advanced Learner’s Dictionary. The
goal is that the program should be able to spot and
mark the bigram, ”consists at” in red style, prefer-
ably, or in orange style because it is grammatically
incorrect.

3.2.2 Search Results

Figure 8 shows that linguistic methods N-Gram
and T-Score manages to marks the error bigram
in red style, however, Mutual Information fails to
produce correct results.

Figure 8: Search results: The sentence is analyzed
by: a) N-Gram b) Mutual Information c) T-Score



With a closer look on the numerical values of
the search result which presents in figure 9, the
Mutual Information value of the error bigram is
ranked the sixth highest or the fifth lowest of all
ten bigrams which places it in the middle. There-
fore, the error cannot be spotted by using Mu-
tual Information method with the current strategy,
whether by marking the bigram that has the high-
est or the lowest Mutual Information value.

Figure 9: Mutual Information values in SearchRe-
sultPane with additional rankings

3.2.3 Conclusion

This example demonstrates the program’s abil-
ity to spot possible incorrect prepositions in a sen-
tence. However, T-Score and N-Gram methods
produce better and more reliable results than Mu-
tual Information.

3.3 Experiment III: ”He catch that ball after
she drops it”

3.3.1 Idea

There is an obvious tense error in the sentence.
It should be ”He catches” instead of ”He catch.”
With the help of any of these three linguistic meth-
ods, hopefully the program is able to detect this
grammatic error.

3.3.2 Search Results

As figure 10 shows that all three methods man-
ages to spot and mark the error bigram in some
way. Again, T-Score produces the best results and
is still the most powerful linguistic method com-
pared to N-Gram and Mutual Information. Mutual

Information only marks ”catch” in orange style,
not in red. It also misleadingly marks the bigram
”drops it” in red style, which is grammatically cor-
rect.

Figure 10: Search results: The sentence is ana-
lyzed by: a) N-Gram b) Mutual Information c) T-
Score

3.3.3 Conclusion

The program also has the ability to analyze and
check the verb tense in a sentence. However, it can
only analyze a sentence at lexical and grammatic
level, not in semantic level as it does not try to
understand the meaning of the sentence.

4 Further work

There are a few further improvements that can be
done in the program. Breaking up the option N-
Gram into three different sub-options, unigram,
bigram and trigram and during the parsing stage,
the input sentence will only be parsed according
to the linguistic methods, e.g. only bigrams in T-
Score and bigram options and trigrams when the
trigram option is selected. This might decrease the
run time a little bit, but not very significantly.

If a user wishes to analyze the same sentence
with different methods in different search, the pro-
gram should be able to use the already existed
search results from the previous search and calcu-
late new values according to the selected method.
This will decreases the run time significantly, es-
pecially after the first initial search.

More sophisticated marking strategies can be
developed for all the methods instead of the ex-
isting straight-forward approach as in T-Score, the
lowest in red style, and in N-Gram, under 0.05%
marked in red style.



5 Conclusion

This paper has clearly showed that it is possible to
implement a language assistance using linguistic
methods without a fixed size corpus. The Inter-
net is without doubt the biggest corpus ever cre-
ated. The number of web pages on the Internet
increases everyday. However, the difference in
quality and the form and use of the language of
these home pages are substantially large. With-
out carefully analyzing and filtering out the un-
wanted information, the results may be mislead-
ing. The search results can very well represent
the most modern, normal-everyday-life, down-to-
earth form of a language.

It has been a great learning experience and chal-
lenge in both applying textbook formulas into real-
life uses and designing a user-friendly program. A
few mistakes has been made and corrected, but the
most important of all, is the satisfaction of enjoy-
ing the final fruit.

References

Pierre Nugues. 2003.Compendium, Language Pro-
cessing Computational Linguistics

Sun Microsystems. 2003.J2SE 1.4.1 API Specifica-
tion java.sun.com

Per Holm 2000Objektorienterad programmering och
Java

Oxford University Press 2003 Ox-
ford Advanced Learner’s Dictionary
www.oup.com/elt/global/products/oald/

Google 2003Google APIwww.google.com/apis


