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GroupDetector

Jimmy Andersson Tommy Karlsson
Lunds universitet Lunds universitet
Jimmy77@telia.com tommy . karlsson.350@student. lu.se
1 Inledning

Som projektuppgift valde vi att géra ett program for att leta upp verb, substantiv,
adjektiv och prepositionsgrupper i texter.

Mjukvaran som utvecklats i vart projekt ska anvandas av CarSim-projektet som &r ett
system for att automatiskt konvertera skrivna beskrivningar av trafikolyckor till 3D-
animeringar. CarSim projektet utvecklas av LUCAS (Center for Applied Software
Research vid Lunds Universitet).

Andra  anvandningsomraden  ar  grammatikkontroll,  Oversattarstod ~ och
informationsextrahering.

2 Taggar

2.1 Granska-taggar

| en text taggad enligt granska-formatet atfoljs varje ord av en tagg som beskriver
vilken satsdel ordet tillhor. Exempel 2.1 visar en mening som &r taggad enligt
granska-formatet. For en forklaring av taggarnas betydelse, se bilaga 1.

Hans <ps.utr/neu.sin/plu.def> tidigare <jj.kom.utr/neu.sin/plu.ind/def.nom> grafik
<nn.utr.sin.ind.nom> har <vb.prs.akt> varit <vb.sup.akt> noggrant <ab.pos>
genomtéankt <pc.prf.utr.sin.ind.nom> och <kn> konstruerad <pc.prf.utr.sin.ind.nom>
lika <ab> malmedvetet <ab.pos> som <kn> den <dt.utr.sin.def> arkitektur
<nn.utr.sin.ind.nom> den <pn.utr.sin.def.sub/obj> skildrar <vb.prs.akt> .

Exempel 2.1

2.2 SUC1A-taggar

SUC1A-formatet har en nagot annorlunda utseende, jamfor med granska-formatet.
For varje ord finns information om satsdel, ordets grundform och ordningsnummer.
Exempel 2.2 visar en mening som ar taggad enligt SUC1A-formatet. F6r en forklaring
av taggarnas betydelse, se bilaga 1.

("<Nagonting>" <140>
(PN NEU SIN IND SUB/OBJ "nagonting"))
("<har>" <141>
(VB PRS AKT "ha"))
("<hant>" <142>
(VB SUP AKT "héanda™))
("<med>" <143>
(PP "med"))




("<hans>"  <144>

(PS UTR/NEU SIN/PLU DEF "hans"))
("<syn>" <145>

(NN UTR SIN IND NOM "syn"))
("<pa>" <146>

(PP "pa"))
("<staden>" <147>

(NN UTR SIN DEF NOM "stad"))
("<som>" <148>

(HP - - - "som"))
("<ocksa>"  <149>

(AB "ocksa"))
("<fatt>" <150>

(VB SUP AKT "f3"))
("<foljder>" <151>

(NN UTR PLU IND NOM “féljd"))

("<for>" <152>
(PP "for"))
("<hans>" <153>

(PS UTR/NEU SIN/PLU DEF "hans"))
("<grafik>"  <154>

(NN UTR SIN IND NOM "grafik™))
("<.>" <155>

(DL MAD "."))

Exempel 2.2

2.3 Vara taggar

Vara taggar beskriver olika grupper av ord i texten. Borjan pa en grupp markeras med
en tagg pa formen <XX> och avslutas med </XX>. Exempel 2.3 visar en mening som
ar taggad enligt vart format.

Taggarna ar féljande:

AG: adjektivgrupp
PG: prepositionsgrupp
NG: substantivgrupp
VG: verbgrupp

<AG> Omkullvalt </AG> <PG> i Osteuropa </PG> och illa ute <PG> i
Sovjetunionen </PG> <VG> dyker </VG> <NG> den f_d kuppmakaren </NG> och
<NG> fralsargestalten </NG> upp <PG> i 117 olika skepnader </PG> <VG> dar
</VG> <NG> granskogen </NG> <VG> susar </VVG> och <NG> sjon </NG> <VG>
ligger </VG> <AG> blank </AG> inte langt <PG> fran Jonkoping </PG> .

Exempel 2.3




3 Systemet

3.1 Struktur

Programmet ar uppdelat i 3 olika klasser, GroupDetector, TagRemover och

SUC1AFileReader.

e Klassen GroupDetector anvénds for att leta upp ordgrupper i en text.

e Klassen TagRemover anvands for att ta bort taggar i en text sa att texten blir

lattare att lasa.

e Klassen SUC1AFileReader anvands for att lasa in filer med SUC1A-formatet och

formatera om det till granska-formatet.

Main-klassen anvénds for att testa de olika systemen och de olika klasserna.

SUC1AFileReader
(friom groupdete ction)

+Hreadiinout £File) String
M

sucreader

Main

+mainfnowut args: Strinagl1) woid

groupcet

GroupD etector
(Triom groupdete ction)

JorintH el void

tagrem

TagRemover
(friom groupdete ction)

HremovesroupT agsiinout s String: String

+removelegledGroup Tag slinout = String String
+HremoveP artOfs peechTagse(inout = String) String

3.2 Reguljara uttryck

+HP TAGS:int= 0x000F

+P TAGS:int= 0x00F 0

+PP TAGS:int= 0x0F 00

+AP TAGS:int= 0xFOO00

+ALL TAGS:int= OxFFFF
S String

= String

3 String

—aclj prstring

== create ==+GroupDetecor():.GroupDetedor
+aglinout input: Stringtaghask:inty String
+aglinout £File taghasoint): String
+getdavaMP RegEx(: String
+getdavaVPRegE x(T String
+getdavaPPRegE x(T String
+getdava AP RegE «x(T String
+getOrdinaryP RegExD: String
+getOrdinaryy'PRegE @1 String
+getOrdinaryP PRegE @1 String
+getOrdinaryAPRegE @1 String

Figur 3.1 — Klassdiagram

o NP =[[([DET]+) [PRON]+] | [DET ADJ] | [([DET]+) (ADVPOS) (NUM)
(ADJP) (NUM) [NOUN]+] | [(DET) POSS_PRON (ADJP) [NOUN]+] ;
e VP =[[INT_REL_ADV] | [(INF) [VERB]+ (PART)] | [AUX NP [VERB]+

(PART)I]] ;

e PP =[[[PREP] | [PREP KONJPREP]] NP];
e AP=[([ADV]+) [ADJ]+];




4 Utvardering
For att utvédrdera projektet har vi beréknat varden for precision och recall enligt
féljande formler;

precision = antal korrekta / antal forsok
recall = antal korrekta / totalt antal

Vi fick foljande resultat:
Precision: 0.949152542372881
Recall: 0.96551724137931

Texten som vi anvande vid méatningen finns i bilaga 3.
Vi ar valdigt n6jda med resultatet. Det blev lite battre &n vi hade forvéntat oss men
man ska nog testa med stérre texter innan man kan dra alltfor stora slutsatser.

5 Referenser
Steven Abney, Chunk Stylebook, 1996
http://www.vinartus.net/spa/96i.pdf

Victoria Johansson, NP-detektion, 2000
http://www.nada.kth.se/theory/projects/granska/rapporter/vicuppsats.pdf

Beata Megyesi & Sara Rydin, Towards a Finite-State Parser for Swedish,
http://www.speech.kth.se/%7Ebea/final-megyesi-rydin.pdf



6 Bilaga 1 - Taggar i Granska & SUC

Category Code Category
AB Adverb
DL Delimiter (Punctuation)
DT Determiner
HA Interrogative/Relative Adverb
HD Interrogative/Relative Determiner
HP Interrogative/Relative Pronoun
HS Interrogative/Relative Possessive
IE Infinitive Marker
IN Interjection
3 Adjective
KN Conjunction
NN Noun
PC Participle
PL Particle
PM Proper Noun
PN Pronoun
PP Preposition
PS Possessive
RG Cardinal Number
RO Ordinal Number
SN Subjunction
uo Foreign Word
VB Verb

Feature Code Feature
UTR Common (Utrum) Gender
NEU Neutre Gender
MAS Masculine Gender
UTR/NEU Underspecified Gender
- Unspecified Gender
SIN Singular Number
PLU Plural Number
SIN/PLU Underspecified Number
- Unspecified Number
IND Indefinite Definiteness
DEF Definite Definiteness
IND/DEF Underspecified Definiteness
- Unspecified Definiteness
NOM Nominative Case
GEN Genitive Case
SMS Compound Case
- Unspecified Case
POS Positive Degree
KOM Comparative Degree
Suv Superlative Degree
SuUB Subject Pronoun Form
OBJ Object Pronoun Form
SUB/OBJ Underspecified Pronoun Form
PRS Present Verb Form
PRT Preterite Verb Form
INF Infinitive Verb Form
SUP Supinum Verb Form
IMP Imperative Verb Form
AKT Active Voice
SFO S-form Voice
KON Subjunctive Mood
PRF Perfect Perfect
AN Abbreviation Form



7 Bilaga 2 — Reguljara uttryck

NP

((DS]+) <dt*>]*>\s+)?((([\S]+) <pn[">]*>\s+)+))|(((1\S]+) <dt[*>]*>\s+)(([\S]+)
<(ADI(P\.pri))[">1*>\s+))|((I\S]+) <dt[*>]*>\s+)?(([\S]+)
<ab.pos[">]*>\s+)?((([\S]+) <r[">]*>\s+)+)?((((\S]+) <ab[">]*>\s+)+)?(((I\S]+)
<(ADI(p\.pr))[">1*>\s+)+))2((([\S]+) <r[*>]*>\s+)+)?(((1\S]+)
<((m)|(pm))[">]*>\s+)+))|(((INS]+) <dt[">]*>\s+)?(([\S]+) <ps[*>]*>\s+)(((([\S]+)
<ab["*>]*>\s+)+)?(((1\S]+) <(GDI(Pe\.pri))[*>]*>\s+)+))?(((I\S]+)
<((m)|(pm))[">]*>\s+)+)))+

VP

(((0ST+) <ha[*>]*>\s+))|((([\S]+) <ie[*>]*>\s+)?((([\S]+) <vb[">]*>\s+)+)(([\S]+)
<pe[*>]*>\s+)?)|(((1\S]+) <vb[*>]*>\s+)((((I\S]+) <dt[*>]*>\s+)?((([\S]+)
<pn[*>]*>\s+)+))|[((NS]+) <dt[*>]*s+)(([\S]+) <(()(pc\.pri))[*>]*>\s+))|((([\S]+)
<dt[">]*>\s+)?(([\S]+) <ab.pos[">]*>\s+)?(((1\S]+) <r[*>]*>\s+)+)?(((([\S]+)
<ab[">]*>\s+)+)?(((1\S]+) <(()|(pc\.pri)) [*>]*>\s+)+))?(((\S]+)
<I[>]*>\s+)+)?(((DS]+) <((nn)|(pm))[*>T*>\s+)+)|(((DS]+) <dt[*>]*>\s+)?(([\S]+)
<ps[*>]*>\s+)((((1\S]+) <ab[*>]*>\s+)+)?((([\S]+)
<(ADI(pc\.pri))[">1*>\s+)+))2(((NS]+) <((n)|(pm))[">]*>\s+)+)))+((([\S]+)
<VB[">]*>\s+)+)(([\S]+) <pc[">]*>\s+)?)

AP
((DS]+) <ab[*>]*>\s+)+)?(((I\S]+) <(G)l(pe\.pri))[*>]*>\s+)+))

PP
((((0\S]+) <pp[*>]*>\s+))[(((N\S]+) <pp[*>]*>\s+)(([\S]+) <kn[*>]*>\s+)(([\S]+)
<pp[">T*>\sH)(((NS]+) <dt[">*>\s+)2((NS]+) <pn[*>]*>\s+)H))I((IS]+)
<dt[">]*>\s+)((\S]+) <(G))I(pc\.pri))[*>]*>\s+))|((([NS]+) <dt[*>]*>\s+)?(([\S]+)
<ab.pos[*>]*>\s+)?((\S]+) <r[">]*>\s+)+)?((((I\S]+) <ab[*>]*>\s+)+)?(((I\S]+)
<(DI(pe\.pri)[*>]*>\s+)+))2(((INS]+) <r[*>]*>\s+)+)?((([\S]+)
<((nI(PM)[>TAAsH)II((NS]+) <At[*>T*>\s+)2((DNS]+) <ps[*>]*>\s+)(((NS]+)
<ab[">]*>\s+)+)?(((\S]+) <((i)I(pe\.pri))[*>]*>\s+)+))?(((I\S]+)
<((n)I(pm))[">]*>\s+)+)))+



8 Bilaga 3 — Test-text

Skillnaden mellan vart resultat och facit har markerats med fet stil.

Facit

<NG> Syfte </NG> och <NG> fr}gest{lIningar </NG> . Mer {n <NG> ett kvarts
sekel </NG> <VG> har passerat </VVG> sedan <NG> de f|rsta jugoslaverna </NG>
<VG> slog </VG> <NG> sig </NG> ner <PG> i Stockholm </PG> (1) .D}, <PG>
vid mitten </PG> <PG> av 60-talet </PG> , <VG> s}gs </VG> <NG>
arbetskraftsinvandringen </NG> mest som <NG> en tillf{llig l|sning </NG> <PG> p}
tillf{lliga problem </PG> ; efter <VG> att ha tj{nat </VG> ihop tillr{ckligt <VG>
skulle </VG> <NG> de flesta </NG> <VVG> flytta </VG> hem igen . S} <VG> var
</VG> <NG> det </ING> <VG> t{nkt </VG>, b}de <PG> fr}n svenskt </PG> och
<NG> jugoslaviskt myndighetsh}ll </NG> . Men <NG> verkligheten </NG> <VG>
blev </VG> <AG> en annan </AG> . Bara <NG> n}gra f} </ING> <VG> v{nde
</VG> hem igen . [ven om <NG> m}nga </NG> {nnu <VG> har </VG> <NG>
starka band </NG> <PG> till hemlandet </PG> och <NG> n}gra </NG> {nnu <VG>
n{r </VG> <NG> dr[mmen </NG> <PG> om }terv{ndandet </PG>, s} <VG> har
</VG> <NG> de flesta </NG> {nd} <VG> valt </VG> <VG> att bos{tta </VG>
<NG> sig </NG> <PG> i Stockholm </PG> f|r gott . <PG> Vid slutet </PG> <PG>
av 1980-talet </PG> <VG> bodde </VG> <NG> drygt 8000 jugoslaviska medborgare
</NG> <PG> i Stockholmstrakten </PG> . <NG> En stor del serber </NG>, men
d{rut|ver ocks} <NG> kroater </NG>, <NG> bosnier </NG> , <NG> slovener
</NG>, <NG> makedonier </NG>, <NG> montenegriner </NG> , <NG> ungrare
<ING>, <NG> vlacher </NG>, <NG> albaner </NG>, <NG> rusiner </NG> och
<NG> slovaker </NG>

Vart resultat

<NG> Syfte </NG> och <NG> fr}gest{lIningar </NG> . Mer {n <NG> ett kvarts
sekel </NG> <VG> har passerat </VVG> sedan <NG> de f|rsta jugoslaverna </NG>
<VG> slog </VG> <NG> sig </ING> ner <PG> i Stockholm </PG> (1) .D}, <PG>
vid mitten </PG> <PG> av 60-talet </PG> , <VG> s}gs </VG> <NG>
arbetskraftsinvandringen </NG> mest som <NG> en tillf{llig l|sning </NG> <PG> p}
tillf{lliga problem </PG> ; efter <VG> att ha tj{nat </VG> ihop tillr{ckligt <VG>
skulle </VG> <NG> de flesta </NG> <VG> flytta </VG> hem igen . S} <VG> var
</VG> <NG> det </NG> <VG> t{nkt </VG>, b}de fr}n <AG> svenskt </AG> och
<NG> jugoslaviskt myndighetsh}ll </NG> . Men <NG> verkligheten </NG> <VG>
blev </VG> <NG> en annan </NG> . Bara <NG> n}gra f} </NG> <VG> v{nde
</VG> hem igen . [ven om <NG> m}nga </NG> {nnu <VG> har </VG> <NG>
starka band </NG> <PG> till hemlandet </PG> och <NG> n}gra </NG> {nnu <VG>
n{r </VG> <NG> drjmmen </NG> <PG> om }terv{ndandet </PG>, s} <VG> har
</VG> <NG> de flesta </NG> {nd} <VG> valt </VG> <VG> att bos{tta </VG>
<NG> sig </NG> <PG> i Stockholm </PG> f|r <AG> gott </AG> . <PG> Vid slutet
</PG> <PG> av 1980-talet </PG> <VG> bodde </VG> <NG> drygt 8000
jugoslaviska medborgare </NG> <PG> i Stockholmstrakten </PG> . <NG> En stor
del serber </NG>, men d{rut|ver ocks} <NG> kroater </NG> , <NG> bosnier </NG>
, <NG> slovener </NG> , <NG> makedonier </NG> , <NG> montenegriner </NG>,
<NG> ungrare </NG> , <NG> vlacher </NG>, <NG> albaner </NG>, <NG> rusiner
</NG> och <NG> slovaker </NG>



9 Bilaga 4 - Kallkod
Har foljer kéllkoden i projektet.

GroupDetector

package groupdetection;
import java.io.*;

import java.util._.regex.*;
import java.util_*;

/**

* <p>Title: Noun and Verb group detector</p>

* <p>Description: This class supplies methods for adding NG and VG tags to
a part-of-speech tagged text.</p>

* <p>Copyright: Copyright (c) 2003</p>

* <p>Company: Lund University</p>

* @author Tommy Karlsson & Jimmy Andersson

* @version 1.0

*/

public class GroupDetector {

public static final int NP_TAGS = OxO00OF;
public static final int VP_TAGS = OxO00FO;
public static final int PP_TAGS = OxOF0O;
public static final int AP_TAGS = OxF000;
public static final int ALL_TAGS = OXFFFF;

private String np; // beskriver det regexp som anvands for att matcha
noun-phrase

private String vp; // beskriver det regexp som anvands for att matcha
verb-phrase

private String pp; // beskriver det regexp som anvdnds for att matcha
preposition-phrase

private String adjp; // beskriver det regexp som anvdnds for att matcha
adjective-phrase

/**
* Sets up the strings used to compile the regular expressions.
*/

public GroupDetector() {

// matchar ett ord

String anyword="(?:[\\S]+)";

// matchar ett adverb

String adverb="(?:"+anyword+" <ab[">]*>\\s+)";

// matchar ab.pos

String adverb_pos="(?:"+anyword+" <ab.pos[”>]*>\\s+)"';
// matchar ett interrogativit / relativt adverb

String inter_rel_adverb="(?:"+anyword+" <ha[~>]*>\\s+)";
// matchar ett adjektiv

String adjective="(?:"+anyword+" <?: (2311 (:pc\\.prH))[>]*>\\s+)";
// matchar en preposition

String prep=""(?:"+anyword+" <pp[~>]*>\\s+)";

// matchar en konjunktion

String konj="(?:"+anyword+" <kn[">]*>\\s+)";

// matchar en sekvens av pronomen

String pronouns="(?:(?:"+anyword+" <pn[~>]*>\\s+)+)";
// matchar ett possesivt pronomen

String posspron="(?:"+anyword+" <ps[~>]*>\\s+)"';

// matchar en determinant

String det="(?:"+anyword+" <dt[">]*>\\s+)"';

// matchar en sekvens av rakneord

String numerals=""(?:(?:"+anyword+" <r[”~>]*>\\s+)+)";



// matchar en sekvens av substantiv

String nouns=""(?:(?:"+anyword+" <(?:(2:nn) | Z2:pm)) [*>]*>\\s+)+)"";

// matchar en infinitiv-markor

String inf="(?:"+anyword+" <ie[”>]*>\\s+)";

// matchar en sekvens av verb

String verbs="(?:(?:"+anyword+" <vb[">]*>\\s+)+)";

// matchar participle

String participle="(?:"+anyword+" <pc[”>]*>\\s+)"';

// matchar aux

String aux="(?:"+anyword+" <vb[">]*>\\s+)";

// matchar en adj-phrase

adjp=""(?:(?:"+adverb+"+)?(?:"+adjective+'"+))";

// matchar en noun-phrase

np =
"(?:(?:"+det+"?"+pronouns+") | (?:"+det+adjective+") | (?:"+det+"?""+adverb_pos+"
?"+numerals+"?"+adjp+"?""+numerals+"?"+nouns+'") | (?:"+det+"?""+posspron+adjp+"?
"+nouns+"))+";

// matchar en verb-phrase

vp=""(?:"+inter_rel_adverb+") | (?:"+inf+"?"+verbs+participle+"?) | (?:"+aux+np+v
erbs+participle+"?)";
// matchar en prep-phrase
pp="(?:(?:"+prep+") | (?:"+prep+konj+prep+"))"+np;

// define NP [ [([DET]+) [PRON]+] | [DET ADJ] | [([DET]+) (ADVPOS) (NUM)
(ADJP) (NUM) [NOUN]+]1 | L(DET) POSS_PRON (ADJP) [NOUN]+] ;

// define VP [ [INT_REL_ADV] | [(INF) [VERB]+ (PART)] | [AUX NP [VERB]+
(PARTH]] ;

// define PP [ [[PREP] | [PREP KONJ PREP]] NP] ;

// define AP [ ([ADV]+) [ADJ]+] :

}

/**
* Detects noun- and verb-groups in a text, and add appropriate tags.
* All original tags and text are left untouched.
*
* @param s The text to be tagged.
* @param tagMask The mask of the tags to be added.
* @return The text with the specified tags.
*/
public String tag(String input, int tagMask) {
String taggedString=""";
Vector tag_vector=new Vector();

try {
Pattern p;
Matcher mj;
if((tagMask & NP_TAGS)==NP_TAGS) {
// kompilera np-regex och skapa en matcher
p = Pattern.compile(np);
m = p.matcher(input);
// applicera np-regex pa strangen och spara alla taggar pa np-
stacken
while (m.findQ)) {
tag_vector._.add(new GroupTag(GroupTag.NG_BEGIN, m.start()));
tag_vector.add(new GroupTag(GroupTag.NG_END, m.end()));

}

}
if((tagMask & VP_TAGS)==VP_TAGS) {
// kompilera vp-regex och skapa en matcher

p = Pattern.compile(vp);
m = p.matcher(input);

// applicera vp-regex pa strangen och spara alla taggar pa vp-
stacken

while (m.find(Q)) {

tag_vector._add(new GroupTag(GroupTag.VG_BEGIN, m.start()));



tag_vector._add(new GroupTag(GroupTag-VG_END, m.end()));

}
}
if((tagMask & PP_TAGS)==PP_TAGS) {
// kompilera pp-regex och skapa en matcher
p = Pattern.compile(pp);
m = p.matcher(input);
// applicera pp-regex pa strangen och spara alla taggar pa pp-
stacken
while (m.findQ)) {
tag_vector.add(new GroupTag(GroupTag.PP_BEGIN, m.start()));
tag_vector.add(new GroupTag(GroupTag.-PP_END, m.end()));

}

}
if((tagMask & AP_TAGS)==AP_TAGS) {
// kompilera adjp-regex och skapa en matcher
p = Pattern.compile(adjp);
m = p.matcher(input);
// applicera adjp-regex pa strangen och spara alla taggar pa pp-
stacken
while (m.findQ)) {
tag_vector._add(new GroupTag(GroupTag-ADJP_BEGIN, m.start()));
tag_vector.add(new GroupTag(GroupTag.ADJP_END, m.end()));
}
}

// joxa lite for att sortera taggarna
tag_vector._trimToSize();

Object[] tagv = tag_vector.toArray();
Arrays.sort(tagv);

List tag_list=Arrays.asList(tagv);

// lagg till taggarna i strangen, borja bakifran och arbeta mot
strangens boérjan.
GroupTag g;
for(int i=tag_list.size()-1;i>=0;i--) {
g=(GroupTag)tag_list._get(i);
input=input.substring(0,g.getPos()) + g +
input._substring(g.getPos());
}

taggedString = input;

}

catch(Exception e) {System.out.println(e.getMessage());
e.printStackTrace();}

return taggedString;

}

/**

* Adds support for tagging text stored in a Ffile.

* The idea is obviously to capture the file-reading inside this class.

* Any user of this method is responsible for supplying a file with
correctly formatted text.

* Note that the actual tagging is performed by a call to {@link
GroupDetector.tag(String) tag(String)}, hence

* this method should deliver exactly the same result as if you do the
file-reading yourself.

* Also note that this method has a limitation on file-size: files may not
be any larger than 2731-1 bytes.

*

* @param ¥ The file with the text to be tagged.
* @param tagMask The mask of the tags to be added.
* @return The text with the specified tags.
*/
public String tag(File f, int tagMask) {
// check if file is readable
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if(If.canRead()) {
System.out.printIn(’’'Can"t read file: "+f.getAbsolutePath());

return :

}

try {
// read the file

FileReader fr=new FileReader(f);
char[] cv=new char[(int)f.length(Q)];
fr.read(cv);

fr.close();

String s=new String(cv);

// do the tagging

return tag(s, tagMask);

}
catch(Exception e) { System.out.println(e.getMessage()); return "*;}
}

/**
* Get the java-formatted string describing the regexp used to match noun-
phrases.
return The actual string used to compile the regexp.
* @ret Th tual stri d t ile th
*/

public String getJavaNPRegEx() {
return np;

}

/**
* Get the java-formatted string describing the regexp used to match verb-
phrases.
* @return The actual string used to compile the regexp.
*/
public String getJavaVPRegEx() {
return vp;

}

/**
* Get the java-formatted string describing the regexp used to match
pronoun-phrases.
* @return The actual string used to compile the regexp.
*/
public String getJavaPPRegEx() {
return pp;

/**
* Get the java-formatted string describing the regexp used to match
adjective-phrases.
* @return The actual string used to compile the regexp.
*/
public String getJavaAPRegEx() {
return adjp;

}

/**
* Get a perl-like version of the regexp used to match noun-phrases.
* Note that the escape character is escaped.
* @return A perl-like-formatted version of the regexp.
*/
public String getOrdinaryNPRegeEx() {
return np.replaceAIT("\\?:",""");

}

/**
* Get a perl-like version of the regexp used to match verb-phrases.
* Note that the escape character is escaped.
* @return A perl-like-formatted version of the regexp.
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*/
public String getOrdlnaryVPRegEx() {
return vp.replaceALF("'\\?:",""");

}

/**
* Get a perl-like version of the regexp used to match pronoun-phrases.
* Note that the escape character is escaped.
* @return A perl-like-formatted version of the regexp.
*/
public String getOrdinaryPPRegEx() {
return pp.replaceALL(""\\?:","");

/**
* Get a perl-like version of the regexp used to match adjective-phrases.
* Note that the escape character is escaped.
* @return A perl-like-formatted version of the regexp.
*/
public String getOrdlnaryAPRegEx() {
return adjp.replaceAIT("\\?:",""");

}

/**
* Internal class used to represent a group-tag.
*/
private class GroupTag implements Comparable {
// tank pa att taggarnas nummer paverkar deras ordning nar de sorteras!
public static final int VG_BEGIN=1;
public static final int ADJP_BEGIN=2;
public static final int NG_BEGIN=3;
public static final int PP_BEGIN=4;
public static final int VG_END=5;
public static final int ADJP_END=6;
public static final int NG_END=7;
public static final int PP_END=8;

private int type;

private int pos;

public GroupTag(int t, int p) {
type=t;
pos=p;

public int compareTo(Object _tag) {
GroupTag tag=(GroupTag)_tag;
if(pos<tag.getPos()) { return -1; }
if(pos>tag.getPos()) { return 1; }
else {
if(this.isOpening() && tag.isClosing()) { return 1; }
else if(this.isClosing() && tag.isOpening()) { return -1; }
else if(this.isOpening() && tag.isOpening() && this.type <
tag.getType()) { return 1; }
else if(this.isOpening() && tag.isOpening() && this.type >
tag.getType()) { return -1; }
else if(this.isClosing() && tag.isClosing() && this.type <
tag.getType()) { return -1; }
else if(this.isClosing() && tag.isClosing() && this.type >
tag.getType()) { return 1; }
else return 0;

}

public int getPos() {return pos;}

private int getType() {return type;}

public boolean isOpening() { return (type==1 || type==2 || type==3 ||
type==4); }

public boolean isClosing() { return !'isOpening(Q); }

12



public String toString() {
switch (type) {
case VG_BEGIN :
return "'<VG> *';
case VG_END :
return "'</VG> '';
case NG_BEGIN :
return "'<NG> '';
case NG_END :
return "'</NG> "';
case PP_BEGIN :
return "<PG> '';
case PP_END :
return "'</PG> "';
case ADJP_BEGIN :
return "'<AG> '';
case ADJP_END :
return "'</AG> "';
default :
return "'';

SUC1AFileReader

package groupdetection;
import java.io.*;
import java.util.regex.*;

/**

<p>Title: Noun and Verb group detector</p>
<p>Description: </p>

<p>Copyright: Copyright (c) 2003</p>
<p>Company: Lund University</p>

@author Tommy Karlsson & Jimmy Andersson
@version 1.0

O ok % % %

*/
public class SUC1AFileReader {

/**

* Reads a Ffile on the SUC1lA-format and returns the text with part-of-
speech-tags on the Granska-format.

* All headers and other "non-sense' information is not present in the
resulting string. Also, all newlines are removed.

*

* @param T File-object refering to a file on the SUClA-format.
* @return A string with part-of-speech-tags on the Granska-format.
*/
public static String read(File ) {
String fs=""";
try {
FileReader fr=new FileReader(f);
char[] cv=new char[(int)f.length(Q];
fr.read(cv);
fr.close();
String s=new String(cv);
Pattern p;
Matcher m;
//remove all header/bogus lines
s=s.replaceAL1 (" Cm)MN\NO(\"<<_*?2$[\\n\\r]*",""");
//remove all newlines
s=s.replaceALL (" (M) [\\r\\n]+",""");
//a somewhat complex (at least hard to read) regexp, and unfortunately
not very efficient
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p=Pattern.compileC""\\(\"<C-*2)>\"["\\A*\\((I™"\"ID\\s");
m=p.matcher(s);
while(m.findQ)) {
fs+=m.group(1)+" ";
fs+="<"+m._group(2).replaceAl I (""\\s"," ") . toLowerCase()+"> "*;
}

}

catch(Exception e) {System.out.println(e.getMessage());
e.printStackTrace();}

return fs;

}
}

TagRemover

package groupdetection;
import java.util_regex.*;
import java.util._*;

/**
* <p>Title: Noun and Verb group detector</p>
* <p>Description: </p>
* <p>Copyright: Copyright (c) 2003</p>
* <p>Company: Lund University</p>
* @author Tommy Karlsson & Jimmy Andersson
* @version 1.0
*/

public class TagRemover {
/**
* Removes all group-tags from a string.
* @param s The string from which you want to remove the group tags.
* @return The supplied string with all group tags removed.
*/
public static String removeGroupTags(String s) {
return
s.replaceALIC"CM<(ING) | (UNCY T (VE) 1 (ZVE) | (PO)Y | (Z/PG) 1 (AG) | (VAG))>\\s*"", """ ;
}

/**
* Removes nestled group-tags from a string.
* Note that this method is not guaranteed to be correct.
*
* @param s The string from which you want to remove the nestled group
tags.
* @return The supplied string with all nestled group tags removed.
*/
public String removeNestledGroupTags(String s) {
Stack tag_stack = new Stack();
Pattern p=Pattern.compile(""<PG>[*<]*(<[/1?(?:(?:AG) | (?:NG))>)");
Matcher m=p.matcher(s);
while(m.findQ)) {
tag_stack.push(new TagPos(m.start(1)-1,m.end(1)));

3
while(tag_stack.isEmpty()) {
TagPos tp=(TagPos)tag_stack.pop();
s=s.substring(0,tp.getStart())+s.substring(tp.getEnd());
3
m=p.matcher(s);
while(m.findQ) {
tag_stack.push(new TagPos(m.start(1)-1,m.end(1)));

}
while(1tag_stack.isEmpty()) {

TagPos tp=(TagPos)tag_stack.pop();
s=s.substring(0, tp.getStart())+s.substring(tp.getEnd());
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m=p.matcher(s);
while(m.findQ) {
tag_stack.push(new TagPos(m.start(1)-1,m.end(1)));

by
while(Ttag_stack.isEmpty()) {
TagPos tp=(TagPos)tag_stack.pop();
s=s.substring(0, tp.getStart())+s.substring(tp.-getEnd());
}
m=p.matcher(s);
while(m.findQ) {
tag_stack.push(new TagPos(m.start(1)-1,m.end(1)));

}
while(tag_stack.isEmpty()) {
TagPos tp=(TagPos)tag_stack.pop();
s=s.substring(0, tp.getStart())+s.substring(tp.getEnd());

}
p=Pattern.compile("'<NG>["<]1*(<[/]1?AG>)");
m=p.matcher(s);
while(m.findQ)) {
tag_stack.push(new TagPos(m.start(1)-1,m.end(1)));

}

while(tag_stack.isEmpty()) {
TagPos tp=(TagPos)tag_stack.pop();
s=s.substring(0,tp.getStart())+s.substring(tp.getEnd());

m=p.matcher(s);
while(m.findQ) {
tag_stack.push(new TagPos(m.start(1)-1,m.end(1)));

}
while(tag_stack.isEmpty()) {
TagPos tp=(TagPos)tag_stack.pop();
s=s.substring(0,tp.getStart())+s.substring(tp.getEnd());
}

return s;

}

/**
* Removes all part-of-speech tags from a string.
* Note that this method is based on the fact that all part-of-speech-tags
are all lowercase.
*
* @param s The string from which you want to remove the part-of-speech-
tags.
* @return The supplied string with all part-of-speech-tags removed.
*/
public static String removePartOfSpeechTags(String s) {
return s.replaceAl1("(?m)\\s<[a-z\\.\\-/&&[MANPVG]]*?>",""");

}

private class TagPos {
int start;
int end;
public TagPos(int s, int e) {
start=s;
end=e;

public int getStart() {return start;}
public int getEnd() {return end;}

}
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Ett granssnitt med Naturligt sprak till en TV programs-databas

Mikael Hallin
Department of Computer Science
Lund University
mikaelhallin@msn.com

Abstract

This report describes how we im-
plemented a TV guide application
that is controlled by natural lan-
guage. The application is using sim-
ple strings for its input and output.
The idea around the language pro-
cessing part is to make it simple to
implement. We are using keywords
to parse the questions and the an-
swers are then generated by tem-
plates.

1 Inledning

Denna rapport beskriver hur man kan ap-
plicera ett anvandargranssnitt med naturligt
sprak for att soka i en databas med in-
formation om TV-program. Projektet de-
lades upp i tre logiska moduler, vilka ar
helt oberoende av varandra. De tre mod-
ulerna ar en TV-programs-databas (TVDB),
en sprakbehandlingsmotor och ett GUIL. Datan
for TVDBn hamtas fran olika webbplatser,
beroende pa vilket land som TV-programmen
visas i. Sprakbehandlingsmotorn ar skriven
i Java och har i sin tur egna sma databaser
med nyckelord. Slutligen skrevs ett enkelt
GUI i Swing. Kommunikationen mellan de
olika modulerna sker till stor del med en egen-
definierad kommandostrang och programlist-
ningar. Till och fran slutanvindaren bestar
kommunikationen av naturligt sprak blandat
med programlistningar.
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2  Metoder

Vi borjade med att identifiera nigra nyck-
elfragor som vi ville att programmet skulle
kunna besvara. Exempel pa fragor som vi ty-
ckte var viktiga ar ”Nar borjar Simpsons?”,
”Gar Seinfeld idag?” och ” Gar det nagra filmer
ikvall?”. Dessa fragor ar ganska enkla, men
det skulle visa sig senare att den strategin vi
valt ar valdigt modular och klarar aven mer
komplicerade fragor som ”Gar det nagon fot-
boll den har veckan pa TV37”.

For att enkelt fa tag pa information om
TV-program anvinder vi oss att ett befintligt
projekt som heter XMLTV. XMLTYV tillhan-
dahaller diverse verktyg som ar nyttiga for att
hantera TV-tablaer. Projektet tillhandahaller
aven en hel del skript som kan ladda ner TV-
tablaer via internet pa ett tio-tal olika sprak.

Eftersom programmet bygger pa att man
ska efterlikna en konversation med datorn,
ville vi fa GUIt att paminna om van-
liga populara instant messaging klienter som
t.ex. MSN Messenger och ICQ. Program-
mets huvudsakliga komponent ar darfér en
stor textyta dar konversationen hamnar, med
vaxlande farger for anvindarens och datorns
fraser. Nedanfor denna yta finns ett falt dar
anvandaren kan skriva in sin fraga och en
knapp for att ”skicka”, d.v.s. starta behan-
dlingen av det anvandaren har sagt.

3 Implementation

Vi bestamde oss for att implementera projek-
tet 1 Java, eftersom det gar snabbt att jobba



TVDB

S

Figure 1: Datans vig fran internet till vart
program.

“a

XML

med och har ett omfattande klassbibliotek.
De delar vi hade storst nytta av var paketen
rorande reguljara uttryck, XML parsning och
Swing for att bygga GUIt.

Far att fa tag pa data som vi kunde anvinda
for att testa programmet anvande vi XMLTVs
nerladdnings-skript. Vi anvander oss av deras
svenska skript som hamtar sin data ifran Da-
gensTV.

3.1 Databasen

Eftersom vi anviander den mellanlagrade
XML-datan far vi den stora fordelen att vart
program bara behover forsta ett TV-tabla for-
mat. Detta innebar i sin tur att vi bara
behover skriva en parser som laser in datan.
For att lasa in datan i minnet anvands Javas
inbyggda SAX parser.

Datan lagras i en XML-fil, enligt en speciell
mall, en s.k. Document Type Definition
(DTD), som é&r specificerad av XMLTV-
projektet. Mallen ar ganska utforlig och kan
forutom titel och beskrivning dven innehélla
information om vem som har regiserat och
vilka skadespelare som ar med i filmen.

3.1.1 Sokning

Databasen vi arbetar med innehaller pro-
gramlistningar fran cirka 15 kanaler en vecka
fram i tiden. Detta motsvarar ungefar 3.000-
4.000 poster i databasen, vilket far anses som
en relativt liten databas. Vi tyckter darfor
inte att det ar nodvandigt att implementera
nagra avancerade algoritmer fOor indexering
och sokning. Programmet som implementer-

ades soker dérfor sekvensiellt och gar igenom
samtliga poster vid varje sokning.

Ett ”TV-dygn” ar inte som ett vanligt dygn
som slutar klockan 12 pa natten. Tekniskt sett
gar ett program som borjar klockan 0:00 pa
natten pa en annan veckodag, men vi ser det
ofta som att programmet gar sent pa kvéallen.
Vi blev darfor tvungna att manipulera datum
och klocka for att klara av sokningar pa da-
gar. Vi omdefinierade darfér dygnet att ga
mellan 04:00 - 04:00. P& s& vis hamnade pro-
gram som borjar efter klockan 12 pa natten
pa "ratt” dag. Forutom sokningar pa abso-
luta klockslag vill man aven gora sokningar
pa mer abstrakta tidpunkter som t.ex. kvall
eller eftermiddag. Uttrycket kvall definierades
darfor till ett intervall mellan 18:00-22:00.

3.1.2 Kategorier

Databasen vi fick tag pa inneholl inte nagon
information om vilka kategorier som program-
men tillhérde. Vi blev darfér tvungna att
sjalva skriva ett antal enkla regler for kat-
egorisering av programmen. For att gora
detta tittade vi i programmets beskrivn-
ing. I beskrivningen star det ofta saker som
” Amerikanskt action-drama fran 19917. Vi
gjorde darfor regler som flaggade programmen
som filmer om den hir meningen innehéll ord
som komedi, thriller, action osv. Program
som inneholl ishockey eller NHL, hamnade i
hockey-kategorin.

Man kan sedan sotka efter program kate-
gorivis, till exempel all fotboll som sands.
Vara kategorier har dven visst stod for hier-
arkier. Tanken ar att man ska kunna soka
efter sport och sedan fa upp alla sportrelat-
erade program. Vi hann dock inte bli klara
med detta steg, utan nojde oss med en platt
struktur.

3.2 Sprakbehandling

Var plan med programmet ar att det skulle
klara av att bade forstd och svara med
naturligt sprak. For att klara det pd den
korta tid vi hade for projektet, valde vi att
gora en si enkel parsning som mojligt for
texttolkningen. Vi valde darfor en slags ny-
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ckelordssokning och bryr oss inte sd mycket
om grammatiken i meningarna. For utmat-
ning gjorde vi fardiga mallar for svar pa de
olika typer av fragor som programmet stodjer.
Mallarna fylls i med det som hittas i TVDB.
Internt i programmet sa kommunicerar de
olika modulerna med varandra med hjalp av
programlistningar och en egendefinierad kom-
mandostrang, kallad Commandstring. Kom-
mandostrangen ar uppbyggd av informationen
som parsas fran fragan.

3.2.1 Nyckelord

For att fa ut vad det egentligen fragas efter
sa hade vi idéen att man skulle leta efter ny-
ckelord i meningen. Nyckelordet kan aven
vara en kort fras. Nyckelorden delas upp i
olika grupper beroende pa deras betydelse. De
grupper vi har ar

e Friageord. Den hir gruppen innehéller ord
som oftast brukar finnas med i en fraga.

e Skadespelare. Har finns alla skadespelare,
kan aven anvinda smeknamn som nyckel.

e Kanaler. Alla kanalerna som finns med i
TVDB.

e Dagar. Allt som har med dagar att gora,
bade namn och bendmningar som ”idag”.

e Programtyper. Olika typer av program,
som film och dokumentar.

e Tider. Klockslag och tidsbenamningar.
T.ex ”eftermiddag” och ”ikvall”.

e Titlar. Alla titlar som finns i TVDB.

Varje grupp av nyckelord lagras i en egen fil,
dar varje nyckelord kopplas till ett standardis-
erat ord eller ett namn som skall anvandas in-
ternt i programmet. Genom att ha standaris-
erade ord sa kommer det vara likadant internt
oberoende av vilket sprak som anvéands for in-
matning. Filstrukturen ar gjord sd att det
skall vara enkelt att stojda flera olika sprak,
t.ex. for de svenska tidsorden

database/se/times.data
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och sahar kan de forsta raderna i filen se ut

klockan (\d+:\d+) = #1
(\d+:\d+) = #1

ikv&dll = evening

i kvall = evening
kvall = evening

Det till vanster om likhetstecknet ar nyck-
elorden och det till hoger ar de standardiser-
Sjavla nyckelordet
kan adven vara ett regulirtuttryck. Att vi la
till den funktionalliteten var for att vi skulle
kunna skapa nyckelord som matchar mot vissa
monster. Monstermatching kommer till nytta
pa ord som har en viss betydelse, men som kan
se olika ut fran fall till fall som t.ex. klock-
slag. Det till hoger kan dven referera till en
regulartuttrycksgrupp. Det gors genom att
skriva # f0ljt av gruppnummert. Pa det viset
kan man fa med saker i standardordet som har
matchats i inmatningsstrangen.

Efterhand som man letar nyckelord tar man
bort alla traffar fran inmatningsstrangen. Att
vi gor det ar for att det inte skall bli tva traffar
pa samma stalle. S& ordningen man valjer pa
nyckelorden har stor betydelse. Forst ordnin-
gen pa nyckelordsgrupperna och sedan kan det
aven ha betydelse pa ordningen av nycklarna
inom grupperna. For grupper valde vi att
ha de forst som representera namn, for att i
t.ex. filmtitlar var det latt hant att de titlarna
kunde innehalla ord som dagar och frageord.
Om man da rékat ta bort en del av en ti-
tel skulle man aldrig kunna hitta vilken film
frigan gillde.

Efter all parsning har man fatt ihop en
mangd standardord och namn, som man satter
in i Commandstringen.

ade orden eller namnen.

3.2.2 Commandstring

For att forenkla for sokmotorn till TVDB
och for att fa nagon typ av standard som inte
skulle vara sa beroende pa sprak och formu-
lering av fragor, skapade vi Commandstring.
Commandstringen ar uppdelad i olika seg-
ment, dar varje segment i princip representerar
en nyckelordsgrupp. Alla segmenten behover
inte vara ifyllda for att TVDB-sokmotorn skall



kunna forsta vad den skall leta efter. Sjilva
Commandstringen ser ut pa foljande satt

command | time |day | channel | progtype|
titlel|actors

De flesta falt &ar mer eller mindre
sjalvforklarande, s command ar den enda
som kommer att beskrivas i detalj. Command
ar det segemnt som talar om vad det ar for
typ av fraga. Oftast s4 bestimms command
genom en matchning av ett frageord, men
ibland sa bestdms det beroende pa vilka
andra segment som ar ifyllda eller inte. De
commands som finns ar

asktime. Fragar vilken tid nagot gar.

e askwho. Fragar vilka som ar skadespelare
eller vardar for en produktion.

e asktitle. Fragar titel pa en produktion.

e nonsense. Om inte nagot vettigt kom-
mando kunde hittas.

Négra exempel pa hur en Commandstring
kan se ut

Gar det ndgon komedi klockan 20:30
idag?
asktitle|20:30/today| | comedyl| |

Vilken tid gér seinfeld imorgon?
asktime| |tomorrow| | | seinfeld|

3.2.3 Mallar

For att generera svar till anvandaren pa ett
enkelt satt valde vi att skapa ett mallsystem.
P& det viset skulle det inte kravas nagon kom-
plicerad kod for att skapa svar i formen av
naturligt sprak. Genom att dela upp mallarna
i grupper, beroende pa vad det ar for typ av
fraga man skall generera svar till, ar det latt
att hiimta ritt mall. Aven mallarna ligger i
filer, dar filerna har samma logiska filstruktur
som nyckelorden. Inom varje mallgrupp finns
det tre huvudsakliga varianter av mallar. De
tre varianterna ar om man hittar manga pro-
gram, ett program eller inga program. Men

Mar hirjar simpsansy
simpsons gar pa faljande tidar
15:40 T2 Simpsons
0205 TW2 Simpsons

L || EEHHg

Figure 2: Screenshot av GUIt.

dar kan ocksa finnas flera mallar f6r varje hu-
vudvariant, som ser lite olika ut. Det for att
man skall kunna fa lite olika formuleringar pa
samma svar, bara for att fa programmet att
verka mer levande.

Alla mallarna borjar med en bokstav som
talar om vilken huvudvariant som den tillhor.
p for manga program, s for ett program och
n for inget program. Sjalva mallen ar bara
en vanlig mening dar man stoppat in lite
markorer pa stillen dar man vill att det skall
stoppas in fragespecifika ord. T.ex.

s #title gar #time pa #channel
Vilket t.ex. kan producera svaret
seinfeld gar 23:40 pa ZTV
till anvandaren.

3.3 Anvindargranssnitt

Anvéindargranssnittet ar enkelt och intuitivt
uppbyggt. Figur 2 visar ett screenshot av hur
det ser ut nar man kor programmet. I menyn
kan man dndra sprak pa bade in- och utmat-
ning. Viimplementerade stod for bade svenska
och engelska for att visa hur flexibelt systemet
ar.
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4  Resultat

Prototypen vi fick fram var funktionell och
anvandbar. Den klara av att parsa de
testfraigor vi skapade i borjan av projek-
tet och till var glidje sa klarar den aven
av mer komplicerade fragor utan vi behévde
gora nagot utover vad vi gjorde for att klara
testfragorna. Programmet klarar av att svara
tillfredsstallande pa de flesta fragorna, men i
enstaka fall kan svaren ibland bli lite felaktiga.

Vi hann dven implementera sa att program-
met klarar av flera sprak, dndringen for att
gora det var inte stor. I princip var det att
lagga till en meny och &ndra lite i filstrukturen
for att fa plats for filer pa flera sprak.

5 Slutsatser

Valet vi gjorde med att ha nyckelord och
databaser var lyckat. Det var enkelt att imple-
mentera och det ar enkelt att lagga till nya ny-
ckelord. Oftast nar vi skulle utoka stod for nya
fragor s& var det bara att dndra i databasen.
Det kunde bli ganska avancerade forandringar
bara genom att andra i databasen, vilket var
bekvamt da man slapp kompilera om hela
tiden.

Mallarna var ocksa ett lyckat drag, &ven om
vi inte hann testa ut dem ordentligt pa grund
av tidsbrist, sa fick vi de att fungera bra.
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results. These stages are explained in detail in
Abstract this article.

We are going to make a program able to The program will deal with texts in two
extract information from sportive texts.  languages: English and Spanish. The user has to
We will focus on football texts and the tell to the program what language to use to ana-
program will extract the winner and loser  lyze the text because it will not try to identify the
teams, as well as the final score and the language. The default language is set to English,
location where the match has been in case the user fails to choose the language of
played. the article to be analyzed

The program will deal with texts in two
languages: english and spanish. The user 2 Program Implementation
has to tell to the program what language ] _ o
to use to analize the text because it will  The project has been made using a design in lay-
not try to identify the language. ers. It has 5 layers (see figure X): tokenizer, sen-
tence splitter, phrase analyzer, pattern searcher
and table analyzer. We will make an small over-
1 Introduction view of all the stages now, and they will be ex-
plained in more detail later. Each layer generates
This system consists on an informationan intermediate representation of the analyzed
extraction program that extracts relevant infortext. The tokenizer returns an array with the to-
mation from football related articles. Relevantkenized text, the sentence splitter splits the token-
information is considered to be the name of thézed text in sentences, which are just an array of
participating teams, the resulting score of theokenized words. The phrase analyzer is called
match played and the location of the match. Ifor each sentence found, and returns an instance
other words, the program basically analyses thef a class Phrase for each one. The pattern
contents of the article and returns relevant inforsearcher gets the entire Phrase objects and search
mation about the match. for sportive patterns that can provide information
about a football match. If a sentence contains
In order to analyse the article the pro-relevant information, it is stored in a class called
gram follows some stages of development. AlMatch, which contains winner, loser, score and
each stage the text is analyse in a different wayocation. Of course, most of those fields will be
trying to obtain the correct result at the endfilled in empty because a sentence usually doesn't
There are five stages of development, tokenizingontain all that information. For each sentence
the text, splitting each sentence, analysing eaahith useful information the pattern searcher will
of these sentences, search for relevant patterrgeate a new Match object with that information.
look for important results, and finally display theFinally, the pattern searcher returns a table with
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all those Match objects, and the table analyzer The methodnextSentencef)ses a loop to
will try to merge some of those "matches" in or-go through the input array and firstly checks if
der to get all the possible information (score, loeach character equaled a sentence delimiter (“.”,
cation, etc.) and to return the real match. w7 or ) and considered all char-
acters between the two delimiters a sentence by
adding the sentence to our list (LinkedList) and
2.1 The Tokenizer incrementing thestartindexuntil it is greater than
_ _ . the index of the delimiter so we can move on and
_ The first step on processing the text ijng the next sentence. The process then repeats
tokenizing it. The program uses Java’s tokenizing | the end of the input is reached and thus all

mechanism for achieving this task easily. Theentences are split or separated. Each LinkedList
class StringTokenizerreturns each token that is nextSentencés converted to an array and re-

found in the text. This particular program alsoned. The list that is returned, and which is

(;oni|ders ‘the‘.fol‘lc.)yvi‘r\\rgl]’ C‘T?r?c’:tt?r’s %S ‘t)c,)kens: V'supposed to contain one sentence of the text, is
1 - b L ] = b 11 Cl 1 1 1 9 1 1 -

o _ _ . furthered analyzed by tHéhraseAnalyzeclass.
Tokenizing the text makes it easier for analysing
each word and each sentence in the later stages3 Phrase Analizer
This is a very simple step that it is very easily
performed with the help of Java classes. The phrase analyzer is called for each
sentence in the text, so it doesn't have any knowl-
At this stage the program already considedge about the sentences before. We would have
ers the difference in language. We found that iiked to have a good phrase analyzer, but it had
was useful to recognize the accented letters at tlgcreased too much the complexity of this layer
beginning of the text and transformed them into @and besides, it's not the main objective of this
not accented letter. In Spanish all the vowels caproject. So we decided to use a simple approach
be accented (4, é, i, 6, U) and this can bring conte a full phrase analyzer. For each language
plications at later stages. In general, if there is éEnglish and Spanish) we keep a list of verbs,
word in the text, which contains an accented lefprepositions and conjunctions. The idea is to be
ter, this letter gets transform to its non-accenterbading the sentence until find one of those, that

equivalent. we have called, bounding words. Each group of
. words between two of those bounding words is a
2.2 Sentence Splitter group in the sentence (the subject, the verb, the

object or any prepositional sentence). The algo-

The constructor for this class takes Wojihm s the following: we consider the type of a
parameters, the input (String[]) and a Boolealq,n depending on the first word of the group.

value indicating the language of the input textynat we find until the first bounding word, is

either English or Spanish. always considered to be the subject of the sen-
The class has two major methoderelsSen- ance Once we find a bounding word, if it is a

tence which returns a Boolean value indicatingery word, this will be the verb of the sentence.
whether or not there are any sentences left in thg his case, we start reading the words after it.
input text, andnextSentencevhich returns the \yhile the word is a verb word. we attach that
next sentence in the input array. The programorq to the verb of the sentence. This way we
uses a variabletartindexto indicate the index yeal with sentences with a composed verb. If the
position where each sentence starts. This indexsyq is a preposition, we consider it a preposi-
incremented with each step of the process angnal phrase, and if it's not a preposition, we

was critical to both of the methods. consider it as the object of the sentence. A con-
The methodherels_Sentences)mpIy returns true junction is only used to separate groups.
if the length of the input was greater than the start

Index, i.e. thestartindexhas not reached the endhc we find more than one verb or direct object

of the input array and therefo're there is still aBnIy the first one is used. The other ones are ig-
least one more sentence to split. nored.
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2.4 Pattern Search
So, if we analyze the next sentence:
After the phrase is analysed and divided

10 November 2003 Blackburn Roversinto subject, verb, object, and prepositions the

FC ended a run of five consecutive program searches for relevant patterns on each of
Premiership defeats with a nervy 2-1these fields. To do this the program uses a super
win against Everton FC at class PatternSearch and two subclasses that ex-
Ewood Park tonight. tend it PatternSearchEnglish and PatternSearch-
Spanish in order to deal with the difference in
we get: language. These subclasses basically consist of a
- Subject:10 November 2003 list of words or sentences that are likely to appear
Blackburn Rovers FC ended a in the different fields, we call thenpatterns
un There are patterns related to relevant verbs, to
- Verb: win relevant words, to locations, to prepositions, and

- Object: [NULL]

: . to scores. For example, some relevant patterns
- PP: of five consecutive Pre- P P

concerning the name of a team were coded in

miership ) :
with a nerv y 2 - 1 java as an array of patterns elements (i.e. an array
against Everton FC of type Pattern):

at Ewood Park tonight
Pattern[] wordPatternSpa = {

Pattern.compile( "[A-Z\w*" ),
Pattern.compile( "[A-Z\w* [A-Z]

endedis not in the verb list so it's not considered [A-Z][A-Z]*" ),

a verb.

This information is stored in a Phrase}

object, which has the following structure: where the first element of the array will identify
all words starting with Capital letter, the second
element will identify all words starting with capi-
tal letter followed by a space and at least two

public class Phrase{
public Group subject;
public Group verb;

public Group object: capital letters (or initials), therefore it will recog-
public Group[] pp; nize words like ‘Barcelona FC’ or ‘Barcelona
FFC'.
} At this stage the program takes a big step

in determining the winner and the loser of a
match, as well as the score and the location. To
determine the winner and loser it considers five
o types of verbs that can be relevant to a football

class Group{

public static final int NOUN
public static final int VERB
public static final int PREP

o

public static final int ADVERB = 3: article, verbs about winning and losing in the ac-
public static final int CONJUN = 4; tive form, about winning and loosing in the pas-
sive form, and about drawing. In general,
public int groupClass; depending on the type of verb, either the sentence
public String[] data; before or after it is considered to contain the

name of either the winner or the looser. For ex-
ample, if the phrase being analyzed at the mo-
ment contains a winning verb in the passive (e.g.
has been wonform then the program assumes
Hhat it is likely to find the name of the winner
YZ&fter the verb. In the other hand, if the phrase has
a winning verb in the active form (e.dri-
umphedl then the program considers the winner

The phrase object will represent the an
lyzed phrase, and that's what the phrase anal
gives to the pattern searcher.
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to be found before the verb and therefore the user

after the verb. This doesn’t mean that the final All the results found by thePattern-
output of the program depends on finding one o%earch class are considered possible results.
these verbs and concluding we can find the apFhese results are stores in a list bfatches
propriate winner and looser, because there awhich is analyzed at the next stage of the devel-
many phrases to be analysed and the results of albment process of the program.

of them will be compared at a later stage.

To determine the location of the match 2.5 Table Analyzer

the program considers sentences or groups con- . .
taining only two prepositions related to location he pattern searcher yields a table that contains

‘at” and’in’ (in Spanish there is only one IC)re'oo_many Match objects. As we already know, each

sition 'en’. Reading over some corpus we foundvlatCh object represent a match, or part of the

that it is only after this two words that the Ioca_lnformatgon of a T?;Ch' Tthi objective of th'st
tion of the match is mentioned in an article. Wéayer IS to merge all the maitches, So we can get a

can encounter sentences Fse match was won match with all the information given in the text.
by Barcelona in Camp Nowhere it is very sim- The reason for this is because, as we analyze sen-

ple to detect the location. In the other hand affnce per sentence, each Match object created

article might have the sentendée match was only contains the information about the match
won by Barcelona in Septembéor this reason that appears in that sentence. But in most of the

we decided to have a list of words that the Iorog:ases, the information of a match is given in mul-

gram might misinterpret as important, we calletiIpIe 'sA\enten(t:es. '|:3°.r examplet you ga[lthsay the
this list the unwanted patterns and it include eam Awon team b In one sentence but the score

names of months, days of the week, capitalize‘aan be in another one. For this reason, the table

prepositions, etc. and it helps the program to gé'}nalyzer W”.I merge a_II th_e matches together, _in
rid of words that are not likely to appear in theaII the possible combinations. Two matches will

final result. A text can also contain the sentencBe m_erged only if there is not contradiction when
The team won the game at the beautiful city of'eraing them.

Bristol and again by taking only the relevant pat-
terns the program gets rid of the unwantie
beautiful city ofto conclude that the relevant lo-
cation isBristol.

The table analyzer works in 2 steps.
First it gets all the team names it finds on all the
matches. Second, it merges the matches consider-
ing the team names found.

The process of determining the scores is

slightly different. First the program tokenizes When the pattern searcher creates a

- tch object, it doesn't take care about the team
each of the groups in the phrase to look for a pat’' & ’ ;
group P P names. It only knows that the subject or the ob-

tern of the formNumber Union Numbemwhere .
Numberis any integer andJnion is a word or Ject O.f the sentence may refer to a team name,

character that appears between the two numb

which is commonly use to display a result, sucff/nen we geltl t\(/jv?Trrr:atches:[ flg(r:eé(amp:e Onf W'ﬂ]
as ', o', ‘against, ‘by’, ‘. If a pattern of this a winner calle e grea arcelona team

type is found, then the program considers thes%mJI another one with a winner "The Barcelona

two numbers to be a possible score. However, t gam’, we must tell the syste.m that those tWO,
numbers found can happen to be only a part ams refer to the same team: Barcelona. That's

result or the result of another match. We found 4'¢ objective of the first step in the table analyzer
big difficulty in finding the correct final score ayer. Once we have all the team names that ap-

when the text presents more than one on thef&ar I the text, it is easier to know when two
Number Union Numbepatterns. For this reason matches can be merged using the real team name

we implemented the program so that it assumeasnOI not all the expression.
that the pattern with the highest integer numbers

is indeed the final score of the match. The method we have used to get the

team names is quite intuitive: we look for team
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patterns in all the winner and loser field of all thereduced by approximately 30%, which is a big

Match objects. There are not many teams’ patlecrease in performance.

terns, but the problem is that it's very difficult to

distinguish team names from football players. Error handling was not developed in de-

For example FC Barcelona is a team, but Javidgailed, however we assure that the program never

Saviola is a football player, and both will be con-terminates abruptly for any reason. If the input is

sidered as team names. not correct and the language is selected badly the

program might display merely garbage (we said

Once we have the team names, thearlier that the program is not concern with

program starts to merge all the possible matcheshecking the language of the input text), but it

Two matches will be merged if no contradictionwill not create exceptions, freeze or terminate.

appears when merging them. Contradictions adestead, the user is given a chance to clear the

the winner and the loser would be the same teartext area and try analyzing the text again.

different score or location, or different winner or

loser. For example if a match with a winner Bar- _ _

celona and a match with a winner Madrid cannof  Conclusions, Observations and Future

be merged. But a match with the winner null and  Improvements

the loser Madrid and another match with the ) )
winner Barcelona and the loser null can bdfom developing this program we found many

merged. The resulting match will have winnephteresting facts and difficulties about processing

Barcelona and loser Madrid. This resulting matcfgnguages with machine instructions. We also

will be added to the list of matches. so it can b&€alized about the differences and similarities in
used to be merged again. ’ processing two distinct languages, but fortunately

we found it easy to separate the implementation

When we have merged all the matches2f the two.
we need to select the match the text is talking )
about. For that reason, each match object is aug- There are many things that could have
mented with a counter. When the pattern search&pProved in the program. The following is a list

creates a match, if the fields winner and loser aref Some important observations and future im-
both null, the counter is 1, if either the winner orProvements that we were aware of, but because

the loser is not null, the counter is 2, and if botdack of time couldn’t be implemented in this ver-

winner and loser are not null, the counter is 350N
When two matches are merged, the counter of the
resulting match will be the addition of the two 1 A better phrase analyzer. A bad one ac-

original counters. At the end, we return the match cumulates too much garbage for the
with the higher counter. TableAnalyzerto analyze. Statistically

the names of the teams the match talks
about are more likely to appear more

3 Measures of Performance times in the text, therefore the counter
should be enough to get the correct name
We were confident that the precision and recall of the teams, but in the real life it's not
of the program in general were fairly good. We s0. This could definitely be improved by
tested the system with approximately 30 Internet removing the garbage generated due to
articles narrating football matches and we esti- the bad phrase analyzer.
mated a recall and precision between approxi- 2. Optimally the analyzed text only talks
mately 40% and 60%. In the case when one about one match, however texts relating
article mentioned more that one match this per- multiple matches can also be analyzed.
centage of recall and precision dropped consid- The match with more references made on
erably. Also, when the text was extremely large, the text should be the final result, al-
the displayed result was usually not the correct though the program will not always re-
one, and therefore precision and recall also were turn this as the correct result. In general
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the program performs much better if thesince the accuracy and precision were beyond our
article only talks about one football, bothexpectations
precision and recall are higher in this
case. References
3. An improvement in the user interface is
the liberty for the user to choose a text
file located in his machine, instead ofPierre Nugues,2003. Assignment #2: Information

having to copy/paste the article into the EXxtraction. _

text field. http://www.cs.Ith.se/Education/Courses/EDA171/c
4. The order of the patterns in the array of w2.html

patterns could be sorted in a way that thé&ierre Nugues2003.Corpus Processing Tools

most likely pattern appears in the ﬁ_rStErik Lindvall and Johan NilssorExtracting informa-
index of the array, the second most im- " tjon from Sport Articles in Swedish using Pattern
portant in the second index and so on. In RecognitionLund University

this way the performance of the system
will improve since it doesn’t have to go

through many elements of the array. In
other words, we could have carried out a
statistical study to find out the likelihood

of occurrence of each of the patterns. In
this way we can place the most likely oc-
curring patterns at the beginning of the
array of patterns so that the program
doesn’t have to go through the whole ar-
ray.

5. Java was a useful tool in the develop-
ment of the program, since it has build in
classes that are very useful for language
processing, such as string and stream to-
kenizer and a Pearl like pattern function-
ality.

6. The differences in the language were
handled by having subclasses for each
language that extended a superclass with
the majority of the functionality. The
subclasses included mostly the relevant
vocabulary that can be found in the two
different languages.

7. The handling of errors was not done with
too much care. Handling all exceptions
and possible technical errors could make
the system more robust and trustful.
However, we made sure that the program
never crashes, as mention above.

Like every software development proc-
ess, there are still some things that we could have
done better, but because lack of time, tools and
some knowledge we were not able to implement
it as good as we would like to. However we were
very satisfied with the final result of the system
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Abstract

This document describes the process of
implementing a decision tree for language
detection. First, text profiles are computed
for each text in the training set and out of
this a decision tree is built. Finally evalua-
tion is made with query texts. To compare
the performance of different approaches,
a few variations of trees are implemented;
sets of 26 respectively 56 characters as
attributes are compared, furthermore a
'direct-child’-tree versus a ’'neighbours’-
tree are implemented for comparison. The
'direct-child’ tree gave the greatest num-
ber of correct answers, in contrast to the
'neighbours’ tree that did not give any
incorrect answers (however many no re-
sults). Suggestions of enhancements of
performance is given. The authors con-
clude that the language detector gives
comparatively good results given that the
implementation only considers unigrams.

Christina Popper
ETH Zurich, Switzerland
poepper c@t udent . et hz. ch

(e.g. estimation of language frequencies in the inter-
net).

Several broad approaches exist to the problem of
language detection.

One obvious technique is to use a lexicon for
each possible language and compare the words in
the sample text with those in the lexica to find the
lexicon with the highest correlation. This involves
huge numbers of data to be managed and processed
as well as difficulties when dealing with highly in-
flected languages. On account of the drawbacks of
the lexicon method, grammatical words are used as
discriminant in [Gi2].

Another technique is to use the alphabet. But,
as stated in [Gil], the alphabet is not very useful,
because accented characters are not as frequent as
needed and they often belong to several alphabets.
Thus, this clue does not really allow to discriminate
the right language.

A further approach is the use of n-gram analysis.
n-gramsare sequences of n letters. The basic idea
is to compute, from a training set, a profile for each
considered language based on the probability of let-
ter sequences. For a given text the language with the
nearest profile is selected.

1 Introduction On account of the drawbacks of the lexicon and

The goal of this project was to writelanguage de- alphabet methods, we decided to implement the last

tector, i.e. a system to identify the language of Pf the mentioned techniquekanguage detection by

given text automatically - out of a predefined num/-9ram analysis

ber of posgble Ianguages._ .. 2 Decision Tree Approach

Applications of automatic language detection in-
volve language processing such as automatic ré&he process of language detection can — in our case
trieval of texts in the desired language (e.g. from the be divided into three steps. In the first step, the fre-
world wide web) as well as studies of language usguencies and probabilities of the letters (unigrams)
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and combinations of letters (n-grams) of the training | @2 bl c¢1 d2 e6 f1 g2 hil
set are computed. This gives a profile for each lan- | 13 ;1 k2 2 m2 n3 02 pl

guage and has do be done only once. Asthe second 9:0 r4 s2 t3 uwl v:i1 w0 x(

step, we decided to build up a decision tree out of | y:1 z:0

these profiles. Finally, the third step is to evaluate

the decision tree for a given text. 2
In our implementation we only consider uni-2-3.1 General building and structure

grams (i.e. letters) so far. A decision tree is used for making classifications.

The input for the tree is given by examples consist-

ing of values of the set of attributes. Each internal

The implemented language detection method OIg_ode represents a test of the attrib_ute valut_e. The
pends entirely on the quality of the training set. FOPranches of the node are Ia_beled with the different
obtaining the training set we used the Europarl Corln;[_ervz_il vaI;Jehs. When Ireqchmg a Izaf node the clas-
pus of European Parliament Proceedings ([EPPﬁ,I |cat|on9 t eexampe Is returned. .

version 1, for the following ten languagedanish, In our implementation of the decision tree the

dutch, english, finnish, french, german, italian, por_examples are represented by texts of different lan-

tuguese, spanishand swedish each consisting of 94ag€s - a set of training texts when building the tree
texts with 17-22 million words, corresponding to g0-2nd a set of test texts to evaluate the tree. The clas-

80 MB each. sification attribute is the language of the text.

The attributes are the text profiles that are calcu-
lated out of every text in the training set. The values
of the attributes are the intervals which correspond
The profile for each text in the training set (corretg the probabilities of the unigrams.
sponding to a certain language) as well as the profile
for the query text is given by the probabilities of all2.3.2 The implemented trees
n-grams (in our implementation: unigrams). In or- Two differentimplementations are used in the lan-
der to deal with these probabilities and to transfornguage detector. We call thedirect-child-treeand
the training set profiles into a decision tree, the prolaeighbours-tree
abilities are converted into intervals. Eight intervals Direct-child-tree: For the direct-child-tree, the
were used corresponding to the probabilities of letdea is to take the profiles of the training texts and

.3 The decision tree

2.1 Training set

2.2 Languagef/text profile

ters: assign each of them exactly one path through the
inter- corresponding inter-  corresponding tree. dIn the]c final Iea_f, the Ilangcl;age of Fhfe textI is
val probability val probability stored. l.e. for every interna node, containing a _et-

ter (the chosen attribute), the interval corresponding

0 0-0.001 4 0.09-0.12 his | i th . . he child
1 0.001-0.03 |5 0.12-0.15 to thls et:er in the tramlr]g fext gives the child were
2 0.03-0.06 |6 0.15-0.18 we a"‘}f 0goon rec‘]frs“’"t Y- | _ |
3 0.06 - 0.09 7 - 0.18 In a first version of an implementation we only

had one example for each language in the training

Interval O is not only assigned to letters not ocset. This tree had a lot of leaves where no language

curing at all, but also to letters occurring with a tinycould be determined. This happened because the
probability of smaller than 0.001 (0.1%) in order toquery text has to have a profile much as same as the
take loan words from different languages into actraining text to be detected (in a path where all the
count and prevent these from contaminating the prettributes have to be used, the two profiles have to
file of a language. be identical). To overcome this problem we split up

After this step, a typical profile for a languagethe training text into about 300 smaller text for each
looks like this example for danish (containing onlylanguage. Then a query text has a higher probability
the common character set, see also section 2.3.4f.having a similar profile as one of the 300 training
[letter:interval] text profiles.
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Neighbours-tree Besides the direct-child-tree number of recursive steps has to be made. Because
described in the previous paragraphs, we implef limited memory, we had to limit the height of the
mented a second approach, tieéghbours-treeThe tree to 8.
determining motive behind this approach is the fact
that the direct-child tree (in its first version) is strict?-
in respect to the profiles: the intervals of the n-grams When building a decision tree an appropriate at-
of a query text has to correspond to the profile ofribute has to be chosen in each internal node. The
a training text for this language. As described, thenethod for choosing the attribute (we call it ‘'choose
more training texts for each language are used f@ttribute method’) is of importance concerning the
the direct-child-tree, the greater is the probabilitydepth and effectiveness of the tree. A "perfect” at-
that a similar profile exists. But the problem remainiribute is one that splits the set of examples into new
especially when the intervals are small and the protsets in which all examples have the same classifica-
abilities lie at the border of the intervals (e.g. lether tion. Choosing the right attribute gives a compact
may have probability 0.089 in the training text cor-tree with a smaller search depth.
responding to interval 3, in the query text the proba- Two different choose attribute methods were im-
bility may be 0.091 corresponding to interval 4, buplemented.
the languages may be easily identical). In the ‘'direct-child’-tree, information theory is

In the neighbours-tree we compensate for this bysed. The goal is to choose the attribute as simi-
using only the profile of one text (of 60-80 MB size;lar as possible to the "perfect” attribute. To choose
concatenation of all texts of the same language useah attribute calculations of how much information is
for the direct-child-tree) for each language and bgained are made for all the attributes. This is com-
assigning the language to the child of the intervgbared to how much information there is currently.
as well as to both of the child’s neighbours. ThusWhen building the tree the information content is
texts varying only slightly in the intervals may becalculated by counting how many examples there are
recognized as the same language nevertheless. in the set of each classification of the goal attribute.

In Figure 1, a typical node in a neighbours-tree i$n case a node is reached when there are no more at-
depicted. Let’s say, the languages danish and finnighibutes in the set to choose from, but there are still
are still possible and attributeis chosen. The inter- examples not having the same classification, then a
val for eis 6 for danish and 4 for finnish. Then thismajority value is determined. This means that the
part of the tree will look like this figure. Only for language having the greatest number of examples in
interval 5 both languages are still possible. the set is returned as the classification of the text.

When building the ‘neighbours’-tree there is only
‘ one example for each language (see section 3.2).
gsg::ﬂ Theref;)re, a simEIe choosle attritiutei mett;]odd ifs
0 e 7 enough. Among the examples it calculates the dif-
”-r-/l/ \* danist ference between the highest and the lowest value for
. 2 \ 5 danish each attribute. The attribute with the largest differ-
ence is chosen.
"' finnish finnish giggﬁ o
///‘\\\\ 2.3.4 Variation
Special characters In our first approach we only
considered 26 characters of the alphabet, the letters
Figure 1:Typical node with children in the neighbours-tree.that all languages included in our research have in
n.r. = no result. Letter e is chosen as attribute for thisnode common. To develop our program further we ex-
tended the set of attributes to 56 different unigrams

The drawback of this approach are the many ovefeontaining letters such ds ¢ andé). This set now

lappings of letter intervals for the languages. Théincludes all special characters that exist in the con-

tree gets very big, because for many branches a gresidered european languages.

3.3 Choose attribute
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3 Results sive research, those trees would yield the same per-
formance.

Our test set consists of 33 different texts in the Trae 4 used 56 characters and the simple choose
ten considered languages - at least three texts fgfiinute method.

each language. The (mainly contemporary) testtexts aj tour trees determine a majority value when

were obtained from miscellaneous sources, frorfhere are no more attributes.

newspaper articles to scientific reports and literature.

The sizes vary between about 270 and 67,600 wor@s2 The 'neighbours-tree’

(or from 1.7 to 430 KB). To our surprise, we couldtpa  recursion depth for our version of the

nqtdetectacorrelation between the size of theteXtWeighbours-tree is 8, bounded above by the size of

this range an_d the corr_ectness_of the result. We SURiemory on the used computer with a limited student

pose, that this correlation requires a greater nNUMbgE.,unt. Due to the height 8 of the tree (the maxi-

of test. . _ ~ mal height is 26 or 56 respectively depending on the
In the following, the reporting of the results is nymper of considered characters), many branches do

split up into the two implemented kinds of trees. ot contain a result in the final leaf, as several lan-

guages are still possible, but can not be determined

any further. Hence, we got many 'no result’.

For the direct-child-tree each branch is labeled only We tested the neighbours-tree for the 26 character

with one value of the attribute. This in comparisorset and our first chose attribute method (a majority

with the 'neighbour-tree’, where each branch is adanguage would make no sense here as there is only

3.1 The 'direct-child-tree’

signed three adjacent values. one text for each language).
Our results are as follows (33 tests): Our results are as follows (33 tests):
tree | correct| false | no result correct| false | no result
1 24 5 4 5 | 0 | 28
2 22 9 2 What strikes is the fact that there are no false an-
3 24 6 3 swers - either the result is correct or there is no result
4 24 7 2 at all.

Four slightly different trees were implemented to More than likely, the number of 'no results’ would
compare the results. The first two compared th_gecrease if the number of recursion steps could be
choose attribute methods. The method that usdcreased.
information theory (tree 1) only appeared to bei1
slightly better than the simple method (tree 2). This
improved method gave two more correct answer&n obvious enhancement is to consider n-grams,
and four fewer incorrect answers. i.e. combinations of letters, and not only unigrams,

The second variation in the 'direct-child’ ap-because n-grams potentially contain much more in-
proach is the tree with 26 attributes respectively thiBormation about the language. Many languages have
one where also the special characters are includbgét and trigrams that are representative for them,
as attributes. Both trees use the information theorsuch as the englishii’ or the german sch.
when choosing attribute. Comparing those two trees An alternative to the implemented decision tree
(tree 1 and 3) showed surprisingly not any big difapproach is to use @ector approach Thus, each
ference at all in performance of classification. Theyanguage would be assigned a vector with 26 or
both gave 24 correct answers. Furthermore the 5&ore elements, depending on the number of char-
characters-tree actually gave one more incorrect aaeters taken into account. The result of the lan-
swer, which makes the 26-characters-tree the tregiage detection will be the language whose vector
that showed best performance in the research. Stilas the smallest distance to the vector of the given
there was such small difference between those tretsxt. The definition of distance depends on the cho-
that it is reasonable to assume that in a more extesen method. We did not implement this approach

Enhancements and Alternatives
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and thus can not compare the decision tree and velReferences
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be to represent only no occurrences with the value

zero. There comes though a risk with this approach.

The letters that exist only rarely in the language,

could in one specific text be assigned the value 0

because in this text there are no occurrences at all.

This is the reason why we chose to assign the value

zero to those letters with a probability of 0 - 0.001.

Anyway some emphasis on special characters would

with high probability yield better performance.

5 Conclusion

A surprise for us during the development of the lan-
guage detector was the fact that the enhancement
from the simple character set to special characters
did not yield the wished improvement. A reason for
this may be that the special characters are not treated
in any specific way.

Still far from a complete and satisfying program
we were nevertheless surprised by the comparatively
good results yielded by the very simply approach
with unigrams. We are confident that an extension
to two- and three-grams will improve the prediction
significantly.
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Why use buttons when natural language dialogue makes
interaction easier: the Winamp Project

André Hellstr ém, Nabil Benhadj, & Johan Windmark
Lund University, 2003

Abstract

This project was intended to show the
possibility of using natural language
dialogue with standard software in a
typical PC environment. The prototype
system integrates spoken language with
the Winamp media player. As a result
of this Winamp will be totaly
controlled by spoken English.

1 Introduction

The am of the project is to create a spoken
agent to control Winamp. Winamp is a leading
media player that is easy to manipulate and
control, making it well fit for the purpose. The
interaction between the user and the agent is
through voice recognition and speech
feedback. The system should be easy to
understand, even for afirst time user. Another
goa is to make the system robust enough so
that it responds correctly with a high
probability.

2 System overview

The system code is implemented in C++ using
Microsoft Speech SDK (SAPI 5.1). The
tutorial coffee0 that came with the SDK was
the starting point of the project and was
expanded to contain the state machine
described below. Microsoft Speech can work
in two modes: dictation mode and command
mode. In the dictation mode, whole sentences

are parsed. In dictation mode, the possible
utterances are predefined in a grammar and
each utterance is matched to a specific rule.
The grammar for the rules is defined in an
XML-file.

3 Implementation

The system code is implemented in C++ using
Microsoft Speech SDK (SAPI 5.1). The
tutorial coffee0 that came with the SDK was
the starting point of the project and was
expanded to contain the state machine
described below. Microsoft Speech can work
in two modes: dictation mode and command
mode. In the dictation mode, whole sentences
are parsed. In dictation mode, the possible
utterances are predefined in a grammar and
each utterance is matched to a specific rule.
The grammar for the rules is defined in an
XML-file.

4 State-machine

Theflow of the systemis:

1. Theuser gives acommand to the system.

2. The system gives feedback on the
command

3. Possibly gives acommand to Winamp.

4. Gobacktol

To constrain the number of different
commands available to the user at a given
time, a state machineis used.



Begin

%
Z-
2,
T
%92«
o
stop() (
List Playing
) play(*) L
remowve, list(artist) play(..), list(artist), remowve()
Figure 1

The state machine uses following concepts:

States, i.e. Begin, Playing

Transitions, i.e. Begin->Playing
Actions, i.e. play(Artist)

Rules, i.e. Rule7 triggered by "*
Madonna’

Play

Let's start by looking at the message handling
code, suppose we're in state Begin and have
received a message from rule?.

messageHandl er(message)
switch(STATE)
case Begin:
switch(message)
case RULEL
transitionBeginPlayingl(message);
case RULEY:
transitionBeginPlaying2(message);
case RULES:
case RULE2:
transitionXZ1(message);
default:

"Error: Unhandled rule!”
case Playing:
switch(message)...
case RULET:
transitionY'Y (message);
default:
"Error: Unknown state!”

Depending on the state, different transitions
can be caled for the same rule, that is, the
same rule can trigger different transitions. Also
note that different rules can call the same
transitions, within the same state. Let’s look at
the transition code:

transitionX'Y 2(message):

end_X()

visual and/or audio feedback code()
action_play(message.argument1)
begin_Y()

First a stop code is caled for the state X. It
will turn off all rules. Then some feedback is
given to the user and the appropriate action is



called. Finaly the start code for Y is called. It
will turn on al the Y-rules, the same rules that
can be caught in the message handler under
state Y, and set the current state to Y. In this
case action play(...) means load a Madonna
playlist and start playing it, as a command to
Winamp.

To summarize: The active rules depend on the
current state. When a rule is triggered by the
speech recognition system, it's triggering a
transition. The transition calls the appropriate
action and changes the state, thereby changing
the set of activerules.

5 Grammar and rules

The speech recognition system divides the
input into phrases, where each phrase is
surrounded by silence. Consider the case that a
playlist is loaded and the user wants to hear a
specific song. The rule to catch this looks like
this:

<RULE ID="VID_PlayNumber"
TOPLEVEL="ACTIVE">
<O>
<L>
<P>could you</P>
<P>will you</P>
<P>| want to</P>
<P>the song | want to hear</P>

<P>| need to</P>
</L>
</O>
<O>please</O>
<O>
<L>
<P>Play</P>
<P>Start</P>
<P>Hear</P>
</L>
</O>
<O>
<L>
<P>song</P>
<P>piece</P>
<P>track</P>

<P>tune</P>

</L>
</O>
<RULEREF REFID="VID_Number"/>
</RULE>

The most important words for this rule is the
number, last in the grammar. VID_Number,
here defines one of the numbers 1 to 10 and is
the sub rule that actually activates the
VID_PlayNumber rule. The rest of the rule is
only alist of optional padding so that the rule
is triggered not only by an utterance like
“Number one” but also by “Could you please
play track number one’. The example pretty
well catches the structure of all rules.

6 Futurepossibilities

Some interesting and important details of
improvement would be to make the program
more stable and increase flexibility. Below are
a couple of suggestions of how this could be
accomplished.

An easy way of making to program more
dynamic is to provide an easy tool for
automatically adding new artists and songs to
the play list. One way of doing this is by
having a parser read al music files in the
designated catalogue and then adds whatever
artist/song is missing in the XML-file each
time the program is executed. Some system
parameters would then have to be added into a
text file for the program to read at start up.

Further improvement on the voice recognition
would be preferable to increase stability of the
speech-to-text input. A first and an easy way of
enhancing the voice recognition input in the
interface would be by providing a high quality
microphone or possibly a headset.

Other possibilities would be to make a system
that works as a speech user interface for
programs in genera. The only change required
would be to change the grammar file (XML-
file).



7 Evaluation

The system was tested continuously during
development. After each test, the grammar and
state machine was atered to enhance
performance. The problems encountered were
that user commands were not recognised or
that rules were triggered without proper
reason. In the final state of the project, a user
knowing the system architecture can go
through all actions with very few incorrect
system responses. The problem with rules
triggered without the correct corresponding
user input still remains.

8 Conclusion

The Winamp project offers a good suggestion
of the possibility’ sin speech recognition today.
Use of natural language dialogue interfaces to
standard software is far from perfect. The
project did however show that the technical
part of voice recognition has come far and will
probably be good enough for serious generd
usage in a couple of years. There are however
gtill the complexity of linguistics, natural
language dialogue, to solve in order to use
speech control in a natural way. Combinations
of words and sentences are close to endless
which makes natural dialogue extremely
multifaceted. The idea of limiting the field of
possible recognition, as in the Winamp project,
has however showed that that natural dialogue
ispossiblein very restricted domains.
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9 Appendix

A scenario: using the different features of
the program

When program starts it outputs (speech output)
the following:

Welcome Pierre. This is the Winamp speech
control. The jukebox contains, Madonna,
Sing, Prince, Red hot Chilipeppers and David
Gray. You can choose to list or to play one of
these artists. Have a niceftry...

The interaction continues with the following
dialogue:



Command to system Answer from system Action
Help Choose to play a song by an artist or | No action
chc_)ose to list available songs by
artist
List Madonna Loading list, Madonna list <displays | List(Madonna)
(speech) all songs>
Play number two Playing Play(2)
Stop Sop playing Stop()
Play next Next song Play(next)
Play previous Previous song Play(prev)
Help Choose to play next son, previous
song, clear list or stop playing
Pause Pause Pause()
Pause Pause Play()
Stop Sop playing Stop()
Eraselist Clear list Clearlist()
List artist The artists are <displays (speech) | No action
all artists>
Could you find anything by Prince Loading list, Prince list <displaysall | List(Prince)
songs>
Play playing Play()
Eraselist Erasing list Clearlist()
| want to hear a song by David Gray Playing, playing David Gray Play(David Gray)
Stop Sop Stop
Eraselist Clearing list Clearlist()




A Classification System Applied to Music Reviews

Carl-Emil Lagerstedt
Department of Computer Science

Lund University
datOlcal@ludat.lth.se

Abstract

This paper describes a system for classifi-
cation of music reviews. The system uses a
clustering algorithm to build a tree out of a
corpus of reviews. Reviews are clustered
together based on the similarity of their
contents, thereby providing a way to make
suggestions of similar artists. Our results
show that this approach has potential and
should be further explored.

Introduction

Staying updated in the world of music is not an
easy task. New artists and genres emerges every-
day and the most obvious way of learning about
new artists is by reading articles and reviews. This
can be quite time consuming, and therefore we
wanted a way to classify reviews to support the
selection of the interesting ones.

This paper describes such a system for classifi-
cation based on mutual information.

The classification algorithm computes the inter-
section of two documents and returns a fractional
value between 0 and 1, called document similarity.
The closer the value is to 1, the more the docu-
ments resemble each other. A tree is then built
based on the document similarities.

2 Purpose

The purpose of this paper is to describe a
method for automatically making recommenda-
tions, based on the content of reviews. We believe
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that such a system could be useful in many cases,
such as in online shopping. A site could keep a
large database of reviews and use them to make
suggestions to customers. The benefits of this sys-
tem is to reduce manual labour.

There is also the possibility that the system will
be able to visualize hitherto unknown or unex-
pected connections between artists, that might not
be visible while using traditional keyword-based
indexing.

3 Background

Often there is a need to find and show informa-
tion that is related to a certain topic, for instance,
many shopping sites on the Internet have some
way of showing recommendations to the customer
based on the item currently viewed. This can make
it easier for the customer to find interesting ob-
jects, and might increase sales.

The methods for producing this information are
often primitive, and are often based on the shop-
ping habits/recommendations of previous custom-
ers/visitors. Many times this approach is adequate,
but the method has obvious drawbacks. Informa-
tion about previous customers might not be enough
or even applicable to this customer. For instance,
while browsing crime fiction, a customer is proba-
bly not interested in the fact that someone else has
bought a cookbook together with the crime novel.

There are also methods that are based on manual
labour, where someone has to enter keywords by
hand.

This is a method that works quite well, but it can
demand a lot of manpower, and due to it’s nature is
error prone.



We will explore three websites that all have
some kind of recommendation system. We do not
claim to have exact knowledge about the systems
that these sites use. This is just our impression of
how the systems work.

3.1 The All Music Guide'

The All Music Guide (AMG) is an online re-
source of artist biographies and record reviews.
They have almost 250,000 reviews in their data-
base.

In the biography for an artist, AMG presents a
list of similar artists. This list is compiled from
data manually entered by AMG’s editors and visi-
tors to the site.

3.2 Amazon.com>

Amazon.com makes recommendations based on
what other buyers of an item has bought. The sys-
tem seems to be based entirely on the sales statis-
tics, and thus the system does not make intelligent
suggestions. Our research shows that this system
works quite well, with two exceptions. The first is
that one might get only suggestions of the same
author. The second is that if an item has not been
bought by anyone, no suggestion is made, since
there is no sales statistics for that item.

3.3 The Internet Movie Database’

The Internet Movie Database describes their
recommendation system like this:

“With over 384,000 titles on the IMDb it isn't

feasible to handpick Recommendations for every
film. That's why we came up with a complex
formula to suggest titles that fit along with the
selected film and, most importantly, let our
trusted user base steer those selections. The
formula uses factors such as user votes, genre,
title, keywords, and, most importantly, user rec-
ommendations themselves to generate an auto-
matic response.”’

! http://www.allmusic.com
? http://www.amazon.com
? http://www.imdb.com
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3.4 Background Summary

Even though all the described sites have many
reviews, none of the systems makes use of linguis-
tic methods for producing recommendations. In
fact, we have failed to find any such system.

4 The Music Reviews

Based on the observation that reviews often ref-
erences other artists, we draw the conclusion that
this would be useful in the classification process.
For example, in a review of the album Gold by
Ryan Adams, the reviewer mentions that “...the
album is an impressive exploration of territory
previously covered by Bob Dylan, Neil Young and
other greats before him”. It does not seem far-
fetched that a Ryan Adams fan might also enjoy
Bob Dylan and Neil Young.

It also seems likely that if artist 4 has received
reviews that are similar to those of artist B, then
their work might also be similar.

The corpus of reviews was collected from sev-
eral online resources, as well as OCR-ed from print
magazines. The corpus consists of a few hundred
reviews, selected by us. The reviews cover popular
music from the 1960s up until the present date.
Therefore our personal preferences may have in-
fluenced the selection.

5 Classification Algorithm Overview

We use a clustering algorithm based on inter-
section. Each document is considered to be a set of
words and the intersection of two documents rep-
resents how similar they are.

Each document is considered a node. Each node
is compared to every other node and the pair with
the greatest similarity is selected out. A new node
is created with the two selected nodes as its chil-
dren and reinserted into the set of all nodes, con-
taining all the words from the two nodes.

This is repeated until there is only one node left.
In the resulting tree, nodes that are close should
have similar content.



5.1 Document Similarity

The union of two documents is the base for the
document similarity.

A fractional number between 0 and 1 is returned
by the following equation:

§=1|Dy U Do| / (IDi] +|D2)),

where D; and D, are the documents and S is the
document similarity. A high document similarity
indicates that the two documents have similar
content. The document similarity is used only on
the lowest level of the tree. When compound nodes
are compared, the set of words in each node’s chil-
dren are computed recursively.

5.2 Algorithm Efficiency

Since, in every iteration, each node has to be
compared to every other node, the algorithm has a
time complexity of O(n’), where # is the number of
nodes. Some of the computation could be elimi-
nated by using dynamic programming. Even
though the algorithm is slow, it is not a major im-
pediment, since the tree needs to be built only
once. The only time the tree must be rebuilt is
when additional reviews are added to the database.

6 Prototype Implementation

Our prototype is coded entirely in Java and
makes heavy use of hash tables to store document
content. We use a stop list to remove common
words that provides little or no information. This
reduces the number of comparisons in the algo-
rithm. As a consequence, the algorithm runs faster,
and also more accurate. The reviews are stored as
plain text files. Output is visualized using Graph-
Viz from AT&T Labs-Research®. GraphViz pro-
duces a visual graph that can be zoomed and
panned to study the results. The running time for
building a tree with 240 reviews is about 60 min-
utes on a 2.0 GHz Pentium 4.

http://www.research.att.com/sw/tools/graphviz/
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7 Results

Our initial idea, that we could group similar re-
views together, proved to work pretty well. Based
on observations of our implementation, we esti-
mate that about 60-70% of the reviews are clus-
tered correctly.

We saw that one important factor was the qual-
ity of the corpus. If a review is too short, it doesn’t
contain very much factual information, and is
therefore not very usable in the clustering effort.

One other objective would be to produce a more
balanced tree. This way we could easily cut the
tree at an arbitrary level, to produce clusters. With
the current implementation, the tree can become
very unbalanced.

Similar artists do get clustered together. Effi-
ciency is, however, hard to measure, since different
people might have different views on how the art-
ists should be grouped. An example of a succesful
(in our opinion) grouping, is that of Ryan Adams
and Bob Dylan getting grouped together. An ex-
ample of an obviuos grouping is that Bob Dylan
reviews gets grouped with other Bob Dylan re-
views.

However, some reviews get clustered in at a
completly wrong place in the tree. For example,
Velvet Underground has, in our tests, been clus-
tered with Abba as its closest neighbour, which, in
our opinion, feels totally wrong. There should be
better matches for both these bands. We believe
that this bad matching has two reasons. First, in
our implementation, all documents are eventually
put in the tree, regardless of whether they have any
similarity to an other document. Second, we have a
pretty limited corpus. A solution to the first prob-
lem is to have a threshold value for the document
similarity. This would eliminate the insertion of
irrelevant nodes.

8 Conclusion

We are satisfied with our results, even though
they might not seem very impressive. Our proposi-
tion seems to hold, that is, an automated clustering
of reviews is a useful idea.

More work needs to be done, but we are confi-
dent that, given enough time and effort, this could
also turn out to be a useful application.



9 Future Directions

We would like to implement the vector space
model, to compare the efficiency and the results of
the algorithms.

When a review has very little in common with
other review, there is no point in inserting it in the
tree. As previously mentioned, a threshold value
for the document similarity could be used to re-
move those reviews.

The use of an inverted index (where rare words
are weighted up) should be explored.

The ability to detect bold and italicised words
might provide additional clues as to what words in
the review are important.

A name extraction feature would further en-
hance the similarity values, since artist names
commonly are used as references when writing a
review.

To reduce the running time of the algorithm, dy-
namic programming should be utilized to reduce
the number of comparisons that need to be made.

To speed-up the application, distributed data
processing could be used. It would be interesting to
test the algorithm on a distributed system, using a
large corpus, such as The All Music Guide.
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Finite state clause segmentation

AndersBerglund
Lund Technica Highschool
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Abstract

This report describes an attempt to per-
form clause segmentation in Swedish
using a method published by Eva Ejer-
hed in (Andras, 1999) pp. 140-151.

1 Credits

The method I used is basically the method devel-
oped and published by Eva Ejerhed, the grammar
I use is hers entirely and this very project wouldn’t
have been possible without her paper.

2 Introduction

Ejerhed’s idea was to use a finite state automaton
that triggers on certain patterns of word tags and
inserts clause boundaries. The automaton is easy
to specify and easy to implement, the algorithm
isn’t too computationally intensive and the results
good, Ejerhed reports a degree of correctness of
96% with the method applied to manually tagged
text.

3 Basic Overview

The finite state automaton in my implementation
takes a tagged text as input, metaclassifies the tags
(the automaton has a metatag “FIN” meaning a fi-
nite verb, all words classified as verbs being in a
finite form gets metaclassified as “FIN”) as a first
step, then runs the rules given in the automaton us-
ing simple pattern matching (the automaton rules
can be found in the appendix).
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The metatags are quite few, around 10, and they
do not overlap. As they are that few, a simple solu-
tion is giving each an integer value of its own and
using those integers in the computations, making
it possible to avoid string compares in the second
step.

In the second step my pattern matcher simply
runs “are the next n tags (tag x tag y tag z )? then
tag c after tag x”” in a long loop with different pat-
terns of different length, advancing the automaton
one step after each iteration of the loop.

4 Resaults

Eva Ejerhed remarks in her paper that there are
many open questions concerning the definition of
the clause units to have as targets for clause seg-
mentation. One aspect she notes is whether a
clause should have at most or exactly one finite
verb per clause.

Eva Ejerhed chooses to have at most on finite
verb per clause, and this leads to a clause seg-
mentation that looks sometimes looks odd. An
example of sentence from the aaOl text from
the SUC1A-corpus tagged with clause delimiters
given by the state machine (quite thoroughly de-
bugged, it does follow the rules):

<C1A> Don Kerr , en av de
politiska tdnkarna pa det ansedda
analysinstitutet 11SS , <C1C> ar
inte pafallande optimistisk
<C2Bg> nar han talar om saken .

The <C1C>-clause segmentation is strange



(<C1C> means a cl ause segmentation marker
that was produced by rule 1C). In my book the
entire sentence is a single clause (at least the part
before the <C2Bg>-tag (the entire part before the
<C2Bg> constitutes the subject of the phrase)),
the automaton “overrecognizes” when it encoun-
ters something that fits rule 1C. A solution might
be having a “flag” in the automaton that keeps
track of whether the preceding stretch of words
starting with the last DL MID-tag contained any
verb, if not, then rule 1C shouldn’t be applied.
This flag would be set to false at every encounter
of a delimiter and set to true when encountering a
verb.

Such a change would mean a change of focus
to having exactly one finite verb per clause. Eva
Ejerhed reports very few overrecognized clauses,
using a manually annotated corpus (which the
SUC1A-corpus is) she finds zero overrecognized
clauses. The Swedish construct above, what in
(at least) Swedish grammatic terminology for Ger-
man is called an apposition 1, is quite common,
and | think it has been overrecognized in this case.

This is directly at odds with Ejerhed’s results
(she: zero overrecognizations, |I: common con-
struct overrecognized), but I’m reluctant to take a
stand and | choose to leave the question of who is
right as an exercise to the reader.

5 Conclusion

The complaint above apart, the method works very
nicely for most cases, is easy to implement (and
debug!) and not very computationally expensive.
The performance attained with such simple func-
tionality is quite impressive.
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LAn example of an apposition: Berlin, the German cap-
ital, is big. The string the German capital is an attribute to
the preceding noun Berlin, an attribute without a verb written
between commeas. Asthereisno verb it isnot a clause of its
own, and it should be treated as were it an adjective on the
top-level.

Appendix: The automaton rules from Ejer-
hed (Andras, 1999) pp. 140-151

Clause segmentation rules

1 PUNCTUCATION

lal) <h>XX -> <h><c>XX

la2) <p>XX -> <p><c>XX

1b) DL-MAD XX -> DL-MAD <c> XX,
where XX #s not end tag

1c) DL-MID FIN -> DL-MID <c> FIN
1d) DL-MID XX FIN -> DL-MID <c>
XX FIN, where XX=PN, NN, PM or AB

2 COMPLEMENTIZERS

2as) XX KN SN -> XX <c> KN SN
2ag) XX SN -> XX <c> SN

2bs) XX KN HX -> XX <c> KN HX
2bg) XX HX -> XX <c> HX

3 KN + FINITE VERB

3s) XX KN FIN -> <c> XX KN FIN,
where XX is a closed class of
finite forms of the verbs be, go,
stand, sit

3g) XX KN FIN -> XX <c> KN FIN

4 KN + XX + FINITE VERB, where

XX=PN, NN, PM or AB

4s) YY KN XX FIN -> <c> YY KN XX
FIN, if YY=XX

4g) YY KN XX FIN -> YY <c> KN XX
FIN, if YYI=XX

5 SEQUENCES OF FINITE VERBS

5a) CASE: 0 WORDS BETWEEN FINITE
VERBS

FIN FIN -> FIN <c> FIN

5b) CASE: 1 WORD BETWEEN FINITE
VERBS

FIN XX FIN -> FIN XX <c> FIN

5¢c) CASE: 2 WORDS BETWEEN FINITE
VERBS

5cs) FIN YY XX FIN -> FIN YY <c>
XX FIN, where XX=PN, NN or PM
5cg) FIn YY XX FIN -> FIN YY XX
<c> FIN
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ABBREVIATIONS

<h> = head

<p> = paragraph

</h> = end head

</p> = end paragraph

DL MAD = major delmiter (.7?1)

DL MID minor delimiter (,-:)

FIN = Ffinite verb; VB PRS AKT, VB
PRS SFO, AB PRT AKT, VB PRT SFO,
VB SUP AKT, VB SUP SFO, VB IMP
AKT

PN = PN ... SUB, PN ... SUB/0BJ
(subject forms of pronouns)

NN = NN ... NOM (nhouns)

PM = PM NOM (proper nouns)

AB = AB, AB POS, AB KOM, AB SUV
(adverbs)

KN = conjunction

SN = subjunction

HX = HA, HD ..., HP ..., HS

--- (Wh: adverbs, determiners,
pronouns, possesives)

43



Sats-segmenteringdr svenska

Andreas Brandt
University of Lund
datOlanb@Iludat.lth.se

Abstract metodens(Ejerhed, 1990), avskiljare intr -
oberoende. Utan a&rtom, den algoritmiska
In this report | describe a method metodens avskiljare sammanfallenstén alltid
for segmenting POS-tagged swedish  med régon av de andra. Detta visar att metoden
discourse into clauses. verkar fungera.

| have implemented this method for
two different tag-sets, and evaluated the
results. Indata till sats-segmenterarear €én POS-taggad
text, med taggar enligt SUC

Texten gis igenom och varje bigram, trigram
eller 4-gram, kontrolleras mot en u@iiing av
Att dela upp en text i satsear’inte ragot regler(Ejerehed, 1996)(se Appendix). Reglerna
som man ofta har som sluahi en applikation, talar om var en sats-av@msare skaatas in.
men ofta har man stor aamdning av det a°
man belbver analysera semantiken i en text.4 Implementation
| stallet for att analysera meningar, som ofta
har flera semantiska betydelsesy det Httare
att analysera segment som vair fSig har en
innebord. Anvéndningsomadlenaar framst andra
lingvistiska applikationer, asom t.ex. talsyntes, 4.1 SUC
rostigenkinning, textanalys, maskimérsittning Det finns t& olika format @ SUC, jag valde
och kunskapsinsamling. Daer inkt att Carsith SUC1A. Det kan se utssfdr:
ska anahda denna metodof” att extrahera
information ur text, och konvertera det till scener.

3 Metod

1 Introduktion

Implementeringen skedde i Java, med dess paket
for regulgira uttrycR. Implementationen etler
b&de SUC'’s och Gransk&'sagg-uppaitning.

("<Vi>" <86>

Styrkan hos dendr'metoderar att deraf robust (PN UTR PLU DEF SUB "vi")
eftersom den inte laver rdgon generering av ('<sitter>" <87> _
parse-tad och liknande, utan bara en genang® . ., (VB PRS AKT "sitta’))
("<h ar> <88>
av texten. (AB "h ar")
("<i>"  <89>
2 Bakgrund (PP i)
("<solen>" <90>
En sats definierasan utifran hur vi uppfattar en il (NN B;1R> SIN DEF NOM "sol")
upplast text. | studier utiida av (E. Strangert, (<till (SN "tills")
1993) an@nder man akustisk information, i form ("<det>" <92>
av tysta intervall och tonfall, och perceptuellt , (PN NEU SIN DEF SUB/OBJ "det))

- " ar>" <93
uppfattade pauserof att placera sats-avskiljare. (< ar” <93

Det visar sig att alla dessas, samt den algoritmiska Stockholm Uma’Corpus
Sjava.util.regex.*

http://www.df.Ith.se/ richardj/carsim/ 4En POS-taggare av Johan Carlberger
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(VB PRS AKT "vara")) med 98 funna satser. Jag hittade tre fall som

("<dags>" <94> i " i
(NN UTR - - - “dags") tgggats ffel_, vilket ge_r .ungali samma S|ﬁr°a. "Att
("<>" <95> finna feldr inte helt trivialt, &@ man oftastdr gora
(DL MAD ".")) en mer eller mindre subjektiv bedining.

Vi plockar ut varje symbol(token), tagg och 5.1 Feltaggning
lemma och stoppar in i varsin array. Resultate
blir att symbol[n] har tagg[n] och lemmaln].
Darefter blir det mycket enkelt att kontrollera
bi-gram, tri-gram och 4-gram. Vi haavén en
array av samma storlek som devriga, med \</|°> (PN UTR PLU DEF SUB)
sats-avgainsare. Finner vi att det enligt reglernatr affas (VB PRS SFO)
ska vara en sats-avauSare p°position n, a° </c>
sdtter c[n] = sant. @iefter har man all edvandig

tEnligt specialfallet i regel 4(se Appendix) ska en
brytning ske far:

. . <c>
information. dar (AB)

och (KN)

o . sen (AB)
Exempel @ utdata: tar (VB PRS AKT)

Vi (PN UTR PLU DEF SUB)
<c> Den kallas allm  ant stenbit , </c> 0ss (PN UTR PLU DEF OBJ)
<c> men det ar bara hannarna </c> hit (AB)
<c> som heter s a </c> till (PP)

4.2 Granska
Jag haraven implenterat en segmenteram f
Granska. Granska har en annan gtpsig av Har borde en brytning skett:

taggar, menagott som alla advandiga kategorier
finns med. Det saknas taggar fparagrafer och
overskrifter, men dessa spelar en underordnad rolkc>

En text taggad med Granska kan seaihé’: Om (SN)
vi (PN UTR PLU DEF SUB)
inte AB

Vi pn.utr.plu.def.sub vi ses ((VE% INF SFO)

sitter  vb.prs.akt sitta sa (AB) <o

har ab har ses (VB INF SFO)

! pp Vi (PN UTR PLU DEF SUB)

solen  nn.utr.sin.def.nom sol om (PP)

tills sn t!||S _ tre (RG NOM)

det pn.neu.sin.def.sub/obj det manader (NN UTR PLU IND NOM)

ar vb.prs.akt.kop vara har (AB)

dags nn.utr - dags ) (DL MAD)

. mad </c>

5 Utvardering 5.2 Gransfall

Sats-segmenteringen fungeramianansert bra, gy ganska vanligt diekommande fall av ett

och ménga av feltaggningarna tycks kunna @t  exsamt felaf réir higlpverbet “ha” &rekommer.

kringa med exempelvis specialfall. - En del fel - an man tycka att ingen satsbrytningen skulle
beror ocka pa hur textenai POS-taggad, inte o ckett.

bara fel-taggning, utan océsvilken policy som
anénts.

| (Ejerehed, 1996) uppges att metoden ger 96%.c> Jag har </c>
korekt taggning p°SUC. Detta ligger nog ganska <c> f att pengar </c>
nara sanningen, jag har kontrollerat ett textstycke
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6 Forslag

Eftersom SUC har en reltaivt fattig upgsiing

av taggar, kan managérligen hitta fler regler
Exempelvis fattas
taggning br olika former av hgllpverb i SUC. Med
t.ex. Granskas mer nyansrika taggaidét kanske
mojligt att skriva regler 6 vissa fall som inte kan

med en giire uppsttning.

fangas upp annars.

7 Slutsats

Sats-segmentering med sats-argrdre isllet for
metoder som ararider sig av astlade satser(sats,
bi-sats), ar en metod somar’ bdde enkel att
implementera och effektiv att aamda.

Det verkar aven finnas bra wojligheter att
forbattra metoden om man har nyansrikare taggar

som i Granska.
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Appendix

A Stycket som utv@rderades

<c> Jag vet inte . </c>

<c> Du far sova hos mig , </c>

<c> sa Lena s a tyst </c>

<c> att bara Torvald h orde det . </c>
<c> Men det kan inte bli som f orra
gangen . </c>

<c> Jag lovade Matt . </c>

<c> Jag f orst ar , </c>

<c> sa Torvald . </c>

<c> Min ryggs ack st ar dar inne under
flipperspelet , </c>

<c> sa Gunnar . </c>

<c> Hur full jag an ar </c>
<c> maste jag och Rosita i v
<c> Det ordnar sig , </c>

<c> sa Torvald . </c>

c> Nar kommer Rosita hit . </c>
<c> Jag vet inte , </c>

<c> sa Gunnar . </c>

<c> Men hon kommer . </c>
<c> Hon maste ju ha </c>
<c> f orst att att snuten h
--<c> Jag har </c>

<c> suttit hos snuten i natt , </c>

<c> sa han sen f orklarande till alla </c>
--<c> som eventuellt inte hade </c>

<c> hort det . </c>

ag .</c>

oll mig kvar

sin Morgan utanf ©or Monaco . </c>
<c> Torvald , </c>

<c> sa han . </c>

Kan vi aka en sv ang . </c>

Jag maste snacka med dig . </c>

</c>

ogonblicket stannade Bill Marshall

Torvald visste inte mycket om bilar men

en gr bn Morgan éar en gr on Morgan </c>

<c> och ser ut som en bil . </c>

E. Ejerhed. 1990. A swedish clause grammar ancc> Torvald reste sig . </c>
its implementation.The 7th Nordic Conference on <c> Vi ses p & Gaudeamus , </c>

Computational Linguistics
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<c> sa han . </c>

<c> Vid lunch . </c>

<c> Om jag inte kommer s a </c>

<c> ta mina pengar , Gunnar , </c>

<c> och gor r att f or oss </c>

<c> och bjud p & lunch . </c>

<c> Men jag kommer . </c>

<c> Annars ar jag p a Select

klockan fyra . </c>

<c> Sen fick han en id & . </c>

<c> Han gick fram och </c>

<c> snackade med Bill Marshall </c>

<c> och kom sen tillbaka . </c>

<c> Han sa till Gunnar : </c>

<c> Bill k ©or dig och Rosita Zoraffie

till stationen . </c>

<c> Han héamtar er h &ar halv sex . </c>
<c> Om vi inte ses , Gunnar , </c>

<c> vilket vi g or , </c>
<c> men om Vi inte ses s
<c> skriver jag till dig . </c>
<c> Om ragra manader ar det jobb i

a </c>



Schweiz p a tretusen
meters h 0jd ©Over Sion
<c> Vi anm éaler oss dit .
--<c> Vi tr affas </c>
<c> dar och sen tar vi oss hit till
Monaco igen f or en manadsfylla </c>
<c> och sen sticker vi hem . </c>
<c> Halsa nu alla . </c>

<c> ROr inga kalabriska flickor .
<c> Krama om Peppino och
den doéva killen . </c>
<c> Jag avundas dig lite .
<c> Behall pengar </c>
<c> sa ni atminstone kommer lite
soder om Neapel . </c>

. <lc>
</c>

</c>

</c>

<c> Det som ar kvar </c>

<c> kan du ge till Bibi . </c>

<c> Okey , </c>

<c> sa Gunnar . </c>

<c> Om Vi inte ses s a ses vi om

tre m anader h ar . </c>

<c> Jag ska forska i schweizjobbet . </c>

<c> Torvald klev in i Bill Marshalls </c>

<c> Morgan och Bill sa : </c>

<c> Vi sticker till ett st alle </c>

<c> dar vi f ar vara i fred . </c>

<c> Vad tror du om Kkallt vitt vin , </c>

<c> sa Torvald . </c>

<c> Det tror jag p a , </c>

<c> sa BIll . </c>

<c> Kbor till Saint-Sulpice , </c>

<c> sa Torvald . </c>

<c> Jag ska visa dig ett nytt st alle </c>
<c> dar vi f ar vara i fred . </c>

<c> Dig har jag </c>

<c> oOnskat tr affa </c>

<c> sen livet upph  orde f or nan dag sen .</c>
<c> | | ordags . </c>

<c> De for iv &g </c>

<c> och Bill parkerade bilen i n arheten

av den rostfria baren </c>

<c> och sen gick de in d ar . </c>

<c> De nibttes av en glad och pigg Jerry </c>
<c> som omedelbart presenterade sig

for Bill Marshall </c>

<c> och h dmtade en flaska av sitt vin .</c>
<¢c> Han hamtade tv & glas och en askkopp .</c>
<c> Han slog i glasen </c>

<c> och sen | &t han dem vara i fred . </c>
<c> Har du letat efter mig , </c>

<c> sa Bill . </c>

<c> Ja , </c>

<c> sa Torvald . </c>

B

B.1 Regler(Ejerehed, 1996)
1 PUNCTUATION

la

<h> XX => <h> <c> XX

<p> XX => <p> <c> XX

1b

DL MAD XX => DL MAD <c> XX,
where XX is not end tag

1c

DL MID FIN => DL MID <c> FIN
1d

DL MID XX FIN => DL MID <c> XX FIN,
where XX= PN, NN, PM or AB

2 COMPLEMENTIZERS

2a

special:

XX KN SN => XX <c¢> KN SN
general:

XX SN => XX <c> SN

2b

special:

XX KN HX => XX <c> KN HX
XX HX HX => XX <c> HX HX
general:

XX HX => XX <c> HX

3 KN+FINITE VERB

special:

XX KN FIN => <c> XX KN FIN,
where XX is a closed class of
finite forms of the verbs
“vara”’, “g a’, “st
general:

XX KN FIN => XX <c> KN FIN$

a”, sitta”

4 KN+XX+FINITE VERB,
where XX=PN, NN, PM or AB

special:

YY KN XX FIN => <c> YY KN XX FIN,
if YY=XX

general:

YY KN XX FIN => YY <c> KN XX FIN,
if YY<=XX

5 SEQUENCES OF FINITE VERBS

5a CASE: 0 WORDS BETWEEN FINITE VERBS
FIN FIN => FIN <c> FIN

5b CASE: 1 WORD BETWEEN FINITE VERBS
FIN XX FIN => FIN XX <c> FIN
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5¢c CASE: 2 WORDS BETWEEN FINITE VERBS
special:

FIN YY XX FIN => FIN YY <c> XX FIN,
where XX=PN, NN, or PM

general:

FIN YY XX FIN => FIN YY XX <c> FIN

B.2 Taggar(Ejerehed, 1996)

<h>
head

<p>
paragraph

<<<<kk09>>>>
block

</h>
end head

</p>
end paragraph

<<<</kkQ9>>>>
end block

DL MAD
major delimiter (. ? ! )

DL MID
minor delimiter ( , :)

FIN

VB PRS AKT, VB PRS SFO,
VB PRT AKT, VB PRT SFO,
VB SUP AKT, VB SUP SFO,
VB IMP AKT

PN
PN ... SUB, PN ... SUB/OBJ
(subject forms of pronouns)

NN
NN ... NOM

PM
PM NOM

AB
AB, AB POS, AB KOM, AB SUV
(adverbs)

KN
conjunction

SN
subjunction

HX

HA, HD..., HP..., HS...
(Wh: adverbs, determiners,
pronouns, possessives)
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Name Extraction in Car Accident Reports for Swedish

Lisa Persson
Department of Computer Science
Lund University

nossrepasil@hotmail .com

Abstract

This report is part of the work included in
a course of computer linguistics. Our task
was to implement a program in Java to
tag a corpus of descriptions of car acci-
dents in Swedish. The words we should
tag were geographical places, primarily
names. To do this we first tag words that
should not be included in the final result,
just to be able to exclude them. Such
things are brands of cars, counties, coun-
tries and proper names. Later we go on to
tag locations, streets, roads, highways,
cities and squares.

To evaluate the program we calculate re-
call and precision values, comparing a
small manually tagged corpus with the
same corpus tagged by the program.

1 Inledning

Syftet med den hér rapporten dr att beskriva en
metod att mérka upp olika typer av namngivna
platser i en korpus. Den korpus som anvinds
bestér av en samling nyhetsnotiser om bilolyckor.
Fér uppmirkningen anvinds ENAMEX-taggar'.
De typer av platser som taggas ir: orter, platser,
torg, gator och végar.

Programmet &r tidnkt att anvdndas inom
projektet CarSim?, ett text-till-
scenomvandlingsprogram for

! Andrei Mikheev, Marc Moens and Claire Grover. 1999.
2 Per Andersson, 2003.
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trafikolycksrapporter ("text-to-scene conversion
system for traffic accident reports"). CarSim
anvinds for att ldsa in en text pa svenska som
beskriver en bilolycka pa naturligt sprék och
sedan extrahera sd pass mycket information om
hiandelseforloppet att det gér att gora en grafisk
simulering.

2 Taggningsregler

Programmet skall tagga sex olika typer av
platser. Nedan fOljer en beskrivning av dessa
taggar och deras definitioner.

21 CITY

CITY-taggar anvinds for uppmirkning av
namngivna stider, byar och stadsdelar. Exempel
pa fraser som skall mérkas med CITY-taggar ar
”Stockholm”, ”Vistra Frolunda” och
”Limhamn”. For att fi mirkas upp med en CITY-
tagg maste ortsnamnet sta for sig sjdlv och inte
vara en del av ett ord, t.ex. taggas inte
”Stockholmsomridet”. Ortsnamnet fér inte heller
vara en del av en annan tagg. I frasen "Malmo
Allménna sjukhus” ingér ortsnamnet “Malmo”
men denna fras definieras som en plats och skall
markas upp med en LOCATION-tagg. Daremot
taggas ortsnamn med en CITY-tagg i alla ovriga
fall, &ven om det inte 4r orten i sig som avses,
t.ex.:

” ... hon spelade 1 <ENAMEX
TYPE="CITY”’>Umea</ENAMEX>
I . K . 77

2.2 LOCATION



LOCATION-taggar anvéands for uppméirkning av
namngivna platser. Undantaget 4r torg som
taggas med SQUARE-taggar. Exempel pa platser
som skall mérkas med LOCATION-taggar ér:
“Eneby kyrka”, ”Universitetssjukhuset Mas” och
”Globen”. Grundregeln for att en fras skall fa
mirkas med en LOCATION-tagg ar att alla
ingdende ord i frasen &r en del av platsens
egennamn. De ord som endast beskriver vilken
typ av plats det ror sig om skall ej ingé i taggen,
nagra exempel:

T ] ]
universitetssjukhuset
<ENAMEX

TYPE="LOCAT ION’>MAS</ENAMEX>

7o .. till <ENAMEX
TYPE="LOCATION”>Universitets
sjukhuset MAS</ENAMEX> _..7

”_... vid domkyrkan 1 ...~

7. .. vid <ENAMEX
TYPE="LOCATION”’>Domkyrkan</E
NAMEX> i ...~

... Torbi <ENAMEX
TYPE="LOCATION”">S6runda
ridskola</ENAMEX> ...~

I det forsta och tredje exemplet &r
“universitetssjukhuset” resp. “domkyrkan” en
beskrivning av vilken typ av plats som avses och
skall ddrmed ej taggas. I det andra och fjérde
exemplet &dr  “Universitetssjukhuset”  resp.
“"Domkyrkan” en del av platsernas namn och
skall darfor taggas. I dessa fall kan man sluta sig
till detta beroende pa om orden bdrjar péd stor
eller liten bokstav. I det sista exemplet borjar
“ridskola” p& liten bokstav. men av
sammanhanget kan man sluta sig till att ordet ar
en del av ett platsnamn.

2.3 SQUARE

SQUARE-taggar anvénds for uppmérkning av
namngivna torg. Samma regler som for
LOCATION-taggar om att endast de ord som é&r
en del av egennamnet skall ingd i taggen géller.

Exempel pd torg: ”“Gustav Adolfs
”Stortorget” och ”Olof Palmes plats”.

torg”,

24 STREET

STREET-taggar anviands for att mérka upp
namngivna stadsgator. Exempel pa gatunamn
som skall mirkas med STREET-taggar &r: ”von
Rosens vdg” och ”’Storgatan”.

2.5 ROAD

ROAD-taggar anvénds for att méirka upp
namngivna landsvégar, riksvéigar, ldnsvidgar och
storre genomfartsleder. Exempel pé vidgnamn
som skall mérkas med ROAD-taggar ar: ”lansvig
225” och riksvig 677.

26 HIGHWAY

HIGHWAY-taggar anvidnds for att mérka upp
namngivna motorvdgar och  europavégar.
Exempel p& vidgnamn som skall mérkas med
HIGHWAY-taggar ar: “Europavdg 4” och ”E
227,

3 Metoder

Vid taggningen av korpusen har en mingd
metoder anvénts. Dels har databaser med
namngivna platser anvénts och dels ett antal
regler. Den kanske mest grundlidggande regeln
for fraser som skall mérkas med CITY-,
LOCATION- eller SQUARE-taggarna ar att de
nistan alltid inleds med ett ord med en inledande
stor bokstav. Denna iaktagelse underlittar
taggningsarbetet — en majoritet av alla korpusens
ord inleds med liten bokstav och kan darfor
uteslutas. Men detta medfor dven svarigheter,
samtliga meningar inleds av ord som borjar pé
stor bokstav. Det finns &ven en méngd andra
typer av ord som inleds med stor bokstav, som
egennamn, ladnder, landskap, sjoar, bilmodeller
m.fl. En 16sning pé detta problem som visade sig
vara fruktbart var inférandet av det vi valt att
kalla hjalptaggar.

3.1 Hjalptaggar

Det finns fraser i korpusen som taggas men dér
taggningen inte syns i slutresultatet. De taggar
som anvinds till detta kallar vi med ett
samlingsnamn for hjilptaggar. Hjéilptaggarna ar
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precis som Gvriga taggar ENAMEX-taggar’. Tre
olika hjélptaggar anvinds, REMOVE, AREA och
NAME.

Det viktigaste skélet att anvdnda hjélptaggar ar
att forhindra att de fraser som mérks med
hjilptaggar inte blir felmérkta med négon av de
“riktiga” taggarna. Precis som for taggarna
CITY, LOCATION och SQUARE inleds de
fraser som taggas med hjélptaggar oftast av ord
som inleds med stor bokstav. Det dr dessa taggar
som riskerar att mdrkas fel utan hjélptaggarna.

Hjélptaggarna anviands under exekveringen pé
samma sétt som de andra taggarna men raderas
frén resultattexten i slutet av exekveringen.

Det finns flera skél att lata hjélptaggarna vara
av ENAMEX-typ samt ha olika namn trots att de
skall tas bort. Framforallt med NAME-taggama,
som taggar personnamn, uppnaddes bra resultat.
Genom att de foljer ENAMEX-konventionen for
personnamn kan man darfor lata dessa taggar
vara kvar i texten om man i framtiden skulle ha
behov for detta.

Internt, for programmet, ar det en stor hjélp att
de olika hjélptaggarna har olika namn. Regler for
bade hjdlptaggar och Ovriga taggar utnyttjar
ibland de intilliggande taggarna. Det intraffar
dven att taggtypen behover dndras frén t.ex. en
hjélptagg till en annan tagg genom att taggen star
i en viss kontext i korpusen. Har foljer de regler
som géller for hjilptaggarna:

3.1.1 NAME

Hjalptaggen NAME anvinds vid uppmérkning av
personnamn. Endast namn pa personer och inte
t.ex. foretags- eller organisationsnamn taggas
med NAME-taggar. Aven hir giller att det
endast dr sjdlva namnet som taggas och inte
syftningar pa personen. Dock taggas smeknamn,
t.ex. ”Jan "Blondie" Hammarl6f” med NAME-
taggar. Titlar ingar i NAME taggen om de borjar
pa stor bokstav, t.ex. "Drottning Silvia”.

3.1.2 AREA

Hjalptaggen AREA anvénds vid uppmérkning av
fysiskt utspridda landomrédden samt “ospecifika”
platser. T.ex. taggas lander, sjoar, storre Oar, ldn
och landskap med AREA-taggar. Till

3 Andrei Mikheev, Marc Moens and Claire Grover. 1999.
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”ospecifika” platser riknas t.ex. “Sydsverige”,
”Borasomradet” och ”Norrtéljetrakten”.

3.1.3 REMOVE

Hjéilptaggen REMOVE anvidnds for en méngd
olika kategorier av ord. Gemensamt for dessa ar
att de inleds med stor bokstav och inte anvénds
for uppmaérkning av andra typer av taggar genom

kontextregler.
En del i  bilolycksartiklar  vanligt
forekommande forkortningarna taggas med

REMOVE-taggar. De dr inte sd ménga men
vanligt forekommande, t.ex. ”SOS”, ”SJ”, ”"TT”
m.fl. En del &ndelseregler anvidnds ocksa,
exempelvis taggas ord med dndelserna ”polisen”,
”bladet”, “verket”, ”borna” m.fl. med REMOVE-
taggar. Exempel ar:  ”JonkOpingsborna”,
”Viagverket”, ”Sportbladet” och
“Kalmarpolisen”. Aven fraser som inleds med
”Radio” eller "Nyhetsbyran” taggas, t.ex. "Radio
Gavleborg” och "nyhetsbyran NTB”.

En databas pa i Sverige vanligt forekommande
bil-/motorcykel- mirken/modeller anvéinds for att
tagga bilar och motorcyklar. I en korpus som
handlar om bilolyckor dr det naturligtvis vanligt
med bilar.

3.2 Stor bokstav

En grundforutsittning for Ovriga regler dr att
frasen som skall taggas inleds med stor bokstav.
Detta &r underforstatt i den fortsatta texten vid
beskrivning av taggningsregler. Enda generella
undantaget dr for ROAD-taggar dir fraserna ofta
borjar pa liten bokstav, t.ex. 1 ”ldnsvig 209” och
”vag 108”. 1 den korpus vi anvinde vid
uttestandet av programmet hittades endast ett
exempel, for Gvriga taggar, pa att en taggad fras
inleddes med liten bokstav. Vi kunde tagga detta
undantag, “von Rosens vdg”, korrekt genom att
”von” fanns i var databas &ver Sveriges 1000
vanligaste efternamn’. Tillsammans med “af” var
detta den enda posten i1 databaserna som inleddes
med liten bokstav.

Aven hjilptaggarna inleds med stor bokstav;
ett viktigt skdl for inforandet av dessa var att
utesluta dessa fraser som inleds med stor bokstav
och som ej skulle taggas. Ett problem som
aterstér ar alla ord som inleder meningar. Det kan

4 Robert Larsson.



tyckas vara ett stort problem att avgéra om dessa
ord skall taggas eller inte. Ldsningen pé
problemet var att undvika det — i de flesta fall
skall ord i borjan av meningar inte taggas. Vi
gjorde iaktagelsen att bara i undantagsfall inleds
en mening av ett ortsnamn, platsnamn eller
vidgnamn och denna defensiva strategi gav ett
overraskande bra resultat.

Ett par undantag finns dock. I databaserna
finns ”sékra” namn som inte kan forvixlas med
andra ord. Dock fick en ort som ”Bara” uteslutas
fran ortsnamnsdatabasen da detta ar ett ord som
ibland inleder meningar.

3.3 Databaser

Programmet  anvénder  databaser = med
sammanlagt ca. 2500 poster. Med databaser avses
har listor med namngivna entiteter. Databaserna
ar indelade 1 kategorier efter vilken typ av tagg
de anvénds till. Programmet anvinder foljande
databaser:

e 896 fornamn

e 760 efternamn

e 148 bil-/motorcykel- méirken/modeller’
e 6 forkortningar

e 433 svenska ortsnamn

e 191 linder’

¢ 9 svenska landskap

e 4 svenska sjoar

Under utvecklingen av programmet krymte de
ursprungliga databaserna for fornamn, efternamn
och svenska ortsnamn. Ursprunglingen anvéndes
listor med Sveriges 1000 vanligaste for- resp.
efternamn’ samt en lista med 1575 svenska
ortsnamn®. Reduceringen av databaserna kunde
ske tack vare anviandningen av dndelseregler.

3.4 Andelseregler

Susning.nu 2003, Teknikens Virld. 2002.
Wikipedia. 2003.
Robert Larsson.
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Det forsta som gjordes 1 programmet i
programutvecklingens inledningsskede var att
tagga ortsnamn med CITY-taggar med hjilp av
en databas. I detta skede var resultatet e¢j
tillfredstéllande. I var testkorpus fanns ett antal
mindre orter som ej fanns med i databasen och
dirmed inte blev taggade. Iaktagelsen att manga
ortsnamn hade gemensamma &ndelser gjordes,
t.ex. ar: “borg”, “ryd”, “hamn”, “holm” och
”16v” vanliga ortsnamnséndelser. En regel for att
mérka ord som bdrjade pa stor bokstav och
avslutades med négon av dessa dndelser infordes.
Resultatet blev att fler ortsnamn marktes korrekt,
men dven att ett stort antal ord som ej var
ortsnamn felmérktes med CITY-taggar. Det
konstaterades att en stor andel av de ord som
feltaggades var i form av personnamn. Vi insag
darfor att det fanns ett behov att dven tagga
personnamn i uteslutningssyfte.

I programmet implementeras dndelseregler for
person- och ortsnamn genom 161 dndelser for
ortsnamn och fem &ndelser for -efternamn.
Metoden for att fi fram vilka dndelser som var
lampliga och vilka som ej var ldmpliga var “trial
and error’-baserad. En utprovning skedde,
dndelse for dndelse, pa testkorpusen och de
dndelser som medforde feltaggningar lades ej in i
listan.

For SQUARE, STREET, ROAD och
LOCATION implementeras dndelseregler genom
att fraser som avslutas med vissa nyckelord
taggas. Nagra exempel pa detta &r: “torg” eller
”plats” for SQUARE, ”gata” eller “vig” for
STREET, ”led” for ROAD och ”sjukhus”,
“kyrka”, “hamn”, “’skola” m.fl. for LOCATION.
Fraserna taggas dven om é&ndeleorden ar i
bestimd artikel. Mest anvéinds ordéndelser for
LOCATION, det finns 26 olika ordédndelser for
LOCATION. Andelserna kan vara fristiende ord
eller avsluta ett ord, t.ex. taggas bade ”Danderyds
sjukhus” och “Drottning Silvias barnsjukhus”
som LOCATION. I det sista exemplet andvénds
ordutvidgning for att hitta hela frasen.

Aven for hjilptaggarna REMOVE och AREA
anviands dndelseregler. For REMOVE anvénds
t.ex. ”borna”, “tidningen”, “verket” m.fl. For
AREA anvinds “omradet”, “sverige”, “trakten”,
”lan” och ”land” for dndelseregler. En majoritet
av Sveriges landskap, landsdelar (Gdtaland,
Svealand och Norrland) samt négra ldnder kunde
taggas med dndelsen ’land”.
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3.5 Ordutvigdning

En metod som anvidnds i stor omfattning &r
ordutvidgning. Metoden innebdr att om en fras
dér ett antal intilliggande ord alla borjar pa stor
bokstav och ett av de ingdende orden skall
taggas, t.ex. for att det ligger i en databas, sa
taggas hela frasen. I exemplet med “Drottning
Silvias barnsjukhus” hittas forst “Silvia” i
databasen varpa ordutvidgning sker och frasen
”Drottning Silvia” taggas med NAME-tagg. I det
hir fallet kommer vid ett senare tillfdlle &nnu en
ordutvidgning och ett taggtypsbyte att ske sa att
hela frasen taggas som LOCATION.

3.6 Taggtypsbyte

I exemplet med “Drottning Silvias barnsjukhus”
taggas frasen genom en annan ofta anvind
metod, taggtypsbyte. 1 det hér fallet hittas en
dndelsen “sjukhus” vilket innebér att frasen skall
taggas med LOCATION. Sedan finns en regel
som kontrollerar om intilliggande fras ar i form
av en NAME-tagg och i sé fall dndras denna tagg
till LOCATION. Denna form av taggtypsbyte da
en orddndelse ligger efter ett personnamn
forekommer ocksd ofta for gatunamn och torg,
t.ex. “Per Albin Hanssons vdg” och Gustav
Adolfs torg”.

En annan form av taggtypsbyte sker utan
ordutvidgning sé att taggen endast byter namn.
Detta sker di den taggade frasen forkommer i ett
visst sammanhang, i en viss kontext, i meningen.

3.7 Kontextregler

De regler som hitills beskrivits har varit
syntaktiska, reglerna har anvédnt sig av de
ingdende ordens uppbyggnad utan att ta hdnsyn
till 1 vilket sammanhang frasen forekommer i
meningen. Den typ av regler som istillet utnyttjar
detta kallas for kontextregler.

I frasen ... utfarten pad vigen Norra Asum-
Girds Kopinge.” kommer “Norra Asum-Girds
Kopinge” forst att taggas som CITY genom en
kombination av éndelseregler och ordutvidgning.
I sitt sammanhang i meningen kan man dock se
att det ror sig om en védg och inte en stad. Nu
kommer en kontextregel som utfor ett
taggtypsbyte pad CITY-taggar som foljer péa
nyckelordet “vdgen” att genomforas. Nagra
exempel pa kontextregler som anvénds:
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e Ord som foljer pa ”staden” eller ’fororten”
taggas som CITY: 71 Parisférorten
Créteil”, ”norr om turiststaden Flores”.
Hir taggas “Créteil” och “Flores” med
CITY-taggar.

e Dir nagon fors till Xxx eller transporteras i
nagonting till Xxx och liknande
konstruktioner anvidnds i en regel. I den
hir kontexten syftar Xxx pé en plats och
mérks upp med LOCATION-taggar:
“transportera honom till
Universitetssjukhuse MAS”, "fordes i
ambulans till USO". I de hir fallen tagna
fran var testkorpus marks
“Universitetssjukhuse MAS” och “USO”
med LOCATION-taggar. P& grund av
felstavning kunde inte tidigare
syntaxregler méarka upp det forsta
exemplet korrekt och sjukhuset “USO”
kunde inte heller finnas utan hjilp av
denna kontextregel.

e Fraser med ordsekvenser dir orden borjar
pa stor bokstav som foljer pd ord som
”séger”, “berdttar”, “menade” o.s.v. taggas
med hjélptaggen NAME: ”... sade Signe
Lenstad ...”. Héar taggas Signe Lenstad”

med NAME-tagg.

3.8 Taggsammanslagning

I vissa sammanhang forekommer tva taggar av
samma typ intill varandra som egentligen tillhor
samma entitet. T.ex. slas de tvA LOCATION-
taggarna

<ENAMEX
TYPE="LOCATION">Universitets
sjukhuset</ENAMEX> <ENAMEX
TYPE=""LOCATION"">Mas</ENAMEX>

ihop till en LOCATION-tagg
<ENAMEX
TYPE="LOCATION">Universitets
sjukhuset Mas</ENAMEX>

3.9 Genererade databaser

Da alla ndmnda regler implementerats pé texten
och hjilptaggarna tagits bort genereras en databas



for LOCATION och CITY. Detta gar till sé att
den taggade texten géds igenom och samtliga
fraser som taggats med LOCATION- eller CITY-
taggar ldggs in i en databas. Direfter sker en
slutlig taggning av texten med fraserna i den
genererade databasen. Alla otaggade forekomster
av dessa fraser taggas.

4 Implementering

Java var det naturliga spréket att anvidnda vid
utvecklingen da CarSim-projektet’ dr javabaserat.
Java har &dven ett regexpaket inbyggt vilket
anvéndes flitigt i programmet.

Programmet dr uppbyggt sé att texten marks
upp sekventiellt med de olika taggarna. Sedan tas
hjélptaggarna bort och en sista taggning sker med
hjilp av den genererade databasen. Det visade sig
att ordningsfojden i vilken de olika fraserna
taggades var viktig.

4.1 Taggordning

I programmet sker taggning och G&vriga
operationer i foljande ordning: REMOVE —
NAME — AREA — LOCATION — SQUARE
— ROAD — HIGHWAY — STREET — CITY
— LOCATION igen — STREET igen —
Borttagning av REMOVE-, NAME- och AREA-
taggar — generering av databas. Hiar ges nagra
exempel for att motivera denna ordningsfoljd:

e REMOVE — NAME

REMOVE-taggar implementeras  fore
NAME-taggar for att undvika att t.ex. en
fras som “Peter Anderssons Volvo” taggas
som NAME. [ nuldget taggas frasen
korrekt, “Peter Anderssons” som NAME
och “Volvo” med hjélptaggen REMOVE
(som tas bort i slutresultatet). Skulle
ordningsfoljden vara den omvinda skulle
hela frasen taggas som NAME p.g.a.
utvigdningsregeln for NAME-taggarna.

e REMOVE — STREET, SQUARE och
LOCATION

REMOVE-taggar implementeras  fore
STREET-, SQUARE- och LOCATION
taggar for att kunna anvinda regler for

o Per Andersson, 2003.
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utvigdning och taggtypsbyte da nyckelord
foljer pA NAME-taggar i fraser som t.ex.
”von Rosens vdg” och ”Drottning Silvias
barnsjukhus”.

NAME — CITY

Huvudanledningen till att hjélptaggen
NAME infordes var att #dndelser pa
otsnamn ofta var desamma som #ndelser
for personnamn. Exempel som ”Olle
Stenholm” — ”Laholm” dr vanliga. Skulle
ordningen vara den omvinda skulle inte
dndelseregler  for  ortsnamn  kunna
anvindas 1 lika stor omfattning och
resultatet skulle bli simre. Aven om man
skulle vilja att ha kvar NAME-taggarna i
slutresultatet 4r denna ordning den bésta.
Andelseregler ir inte lika kritiska for att fi
bra resultat for personnamnstaggning som
for ortsnamnstaggning.

LOCATION — CITY

Det intraffar mer frekvent att ett ortsnamn
ar en del av en namngiven plats, &n
tviartom. Skulle taggordningen vara den
omvinda skulle tex. frasen “Malmo
Allminna sjukhus” besta av tva taggar,
”Malmd” skulle taggas som CITY och
”Allménna sjukhus” som LOCATION.
Med anvindning av ordutvigdning taggas
nu hela frasen korrekt som LOCATION.

LOCATION — CITY — LOCATION
igen

LOCATION-taggning  sker 1  tva
omgangar. | den andra omgangen
implementeras ett par kontextregler samt
sammanslagning av intilliggande
LOCATION-taggar. Det &r intuitivt inte
alldeles sjdlvklart varfor denna ordning &r
den bédsta men testresultaten pa vart
testkorpus blev bédst med denna ordning.
Som  exempel implementeras  hér
kontextregeln att ord med stor bokstav som
foljer pa frasen i hojd med ” taggas som
LOCATION. D& en annan taggordning
testades blev resultatet simre med denna
regel och fler ord taggades felaktigt med
CITY-taggar.



e Borttagning av REMOVE-, NAME- och
AREA-taggar — generering av databas

Det visade sig att hjélptaggarna i en del
fall anvéndes felaktigt. Genom att géra den
sista taggningen utifrdin den genererade
databasen  efter  borttagningen  av
hjélptaggarna kunde dessa feltaggningar i
manga fall repareras.

4.2 Svarigheter

Det finns ett antal anledningar till att ett
platsuppmérkningsprogram aldrig kan bli 100%-
igt. For det forsta kan aldrig alla fraser hittas med
hjdlp av syntaxregler d& stavningen ej ar
regelbunden, det finns undantag fran nistan alla
“regler”.

Att anvinda stora databaser dr en hjilp men
det dr omgjligt att fd dem tillrackligt stora och
heltickande. 1 vissa fall &r delar av dem
oanvindbara dd det finns ett antal ord som har
flera betydelser. Under projektet kom vi t.ex. i
kontakt med en databas med ortsnamn dér orter
som ”Asa”, “Dorotea”, “Maria” och “Bara”
forekom.

Det finns ett antal kontextregler som ger mer
eller mindre bra resultat. I ménga regler ar det
enda man kan 4 ut att det ror sig om négon form
av entitet. I den mycket vanliga konstruktionen
”mellan Xxx och Yyy” kan de bada objekten vara
t.ex. bilar, stdder, platser, lander eller landskap.
Aven for regeln i hdjd med Xxx” giller detta,
men i det hir fallet visade sig att en méarkning
med LOCATION forbattrade métresultatet under
forutsittningen att regeln applicerades i slutet av
programexekveringen. Det finns en méngd
hypotetiska kontextregler ddr man ibland far
forbéttrade mitvarden och ibland inte. Det dr ofta
omogjligt att forutséga resultatet innan man testat
pa sin testkorpus. Vad som ocksd kan vara
vanskligt med dessa regler ar att de kan forsdmra
resultatet efter en modifiering av databaserna
eller inforande av nya regler trots att regeln
forbéttrade resultatet tidigare.

5 Utvardering

5.1 Testvarden
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Vokabuldret som anvédnds i utvirderingen é&r
hidmtad fran texten “Named Entity Recognition
without Gazetteers”'. Vi utgar fran en otaggad
text.

e Answer file = Texten, maskinellt taggad
av vart program.

o Key file = Texten, manuellt taggad. Denna
text utgor definitionen pa korrekt taggning.

e Recall = Antalet korrekta taggar i Answer
file dividerat med det totala antalet taggar i
Key file.

e Precision = Antalet korrekta taggar i
Answer file dividerat med det totala antalet
taggar i Answer file.

Utvdrderingen gdrs genom att rdkna ut
precision- / recallvirden. Vi jamfor var program-
taggade korpus (Answer file) med en korpus som
vi taggat for hand (Key file).

Den otaggade texten vi utgar ifran bestar av tio
texter pa svenska fran tidningsartiklar om
trafikolyckor och bestir av drygt 2000 ord.
Urvalet av texterna skedde pa mafa fran en storre
korpus. Ingen av utprovningen av programmets
regler har gjorts pa denna text.

For utvédrderingen anvéinde vi ett perlscript
som anger hur manga ordgrupper som blev
uppmirkta, hur ménga ordgrupper som skulle
uppmairkas, hur manga ordgrupper som blev
korrekt ~ uppmérkta  samt  recall-  och
precisionvirden. Nedan foljer resultatet av en
testkdrning av programmet pé testkorpusen.

Antal ordgrupper som blev
uppmarkta: 60

Antal ordgrupper som skulle
uppmarkas: 66

Antal ordgrupper som blev
korrekt uppméarkta: 58
Precision: 0.966666666666667
Recall: 0.878787878787879

Virdena i testen far anses vara bra med tanke pa
projektets ringa omfing. T.ex. taggade vart
program frasen:

10 Andrei Mikheev, Marc Moens and Claire Grover. 1999.



”<ENAMEX
TYPE=""CITY">Vanneberga</ENAM
EX> angar”

vilket skulle taggas som

”<ENAMEX
TYPE=""LOCATION"">Vanneberga
angar</ENAMEX>"

Anledningen till feltaggningen var att dndelsen
”dngar” inte fanns med i listan 6ver LOCATION-
dndelser (dér t.ex. ’skola”, ”sjukhus” etc. finns).

I texten “Named Entity Recognition without
Gazetteers”'' som handlar om taggning av texter
pad liknande sétt som hér presenteras en del
testresultat. Det dr intressant att se vilka virden
ett program i nérheten av “state of the art” pa
omraden fir. De testade sitt program pa ett
testkorpus med en databas pad 4900 platsnamn
och 30000 personnamn. Dock skiljer sig det
testet fran vart pa ett antal punkter:

e Texterna var pa engelska.

e Texterna var mycket mer allménna.
Texterna som vart program ar optimerade
for, bilolycksartiklar, & mycket smalare.
Man inser att var uppgift darfor var littare.

e Texterna var inte anpassade efter namnen i
ett visst land. Det blir uppenbarligen
mycket ldttare om man, som i vart fall, till
overvigande del bara behdver ta hinsyn
till svenska namn.

e Reglerna for taggning var inte identiska.
Det som verkar mest likt var deras
taggning av platsnamn. De presenterar
separata virden for de olika taggtyperna.

I deras test fick de precision- / recallvirden pa 94
/ 95 péa platsnamn. De gjorde dven ett test pa
personnamn och fick da nagot hogre varden. De
gjorde sedan om testet utan databaser och fick 59
/ 46 pé platsnamn och 95 / 90 pa personnamn. D&
de istdllet anvinda betydligt mindre, men noga
uttestade, databaser fick de viarden omkring 90 /
90 pad platsnamn. Vad giller omfang pé
databaserna var de i detta fall mest lika véra.

1 Andrei Mikheev, Marc Moens and Claire Grover. 1999.

Det skulle vara intressant att gora ett liknande
test av vart program med begrinsningar i
databasernas omfang. Tyvirr &r véra databaser
hart integrerade i programmet s& detta it sig inte
goras pa ett enkelt sdtt. Vi gjorde dock ett par
andra tester fOr att utvdrdera vilken effekt
atgirderna hade pa resultatet.

I det forsta testet tog vi bort den genererade
databasen for CITY- och LOCATION-taggarna
och fick f6ljande testresultat:

Antal ordgrupper som blev
uppmarkta: 58

Antal ordgrupper som skulle
uppmarkas: 66

Antal ordgrupper som blev
korrektuppmarkta: 56
Precision: 0.96551724137931
Recall: 0.848484848484849

Har ar den enda skillnaden att tva forekomster av
staden ”Norje” i texten inte kunde hittas. D& en
forekomst hittades av programmet klarade det i
originalutforande av att tagga de Ovriga tva
forekomsterna med hjélp av den genererade
databasen, vilket alltsa inte gjordes har.

I nista test inaktiverade vi samtliga
hjélptaggar, REMOVE, NAME och AREA, fran
programmet och erholl foljande resultat:

Antal ordgrupper som blev
uppmarkta: 67

Antal ordgrupper som skulle
uppmarkas: 66

Antal ordgrupper som blev
korrektuppmarkta: 25
Precision: 0.373134328358209
Recall: 0.378787878787879

Hér sjunker virdena rejélt, programmet blir i det
nidrmaste oanvandbart utan hjilptaggarna. Hér
visas ett par exempel pa feltaggningar som
uppkom:

“Signe
<ENAMEXTYPE=""CITY">Lenstad</
ENAMEX>, 83 ar,”

‘“‘sager
<ENAMEXTYPE=""CITY"">Jan</ENAM
EX> <ENAMEX TYPE="CITY">0Olov
Kallstrom</ENAMEX>,”
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“husvagnssemester pa
<ENAMEXTYPE=""LOCATION">0Oland
</ENAMEX>""

“‘vagstracka i
<ENAMEXTYPE=""CITY">Blekinge<
/ENAMEX> .~

5.2 Modjliga forbattringar

Haér beskrivs nagra metoder som eventuellt kunde
medféra Dbéttre testresultat men som p.g.a.
tidsbrist ej har implementerats eller testats.

I texten “Named Entity Recognition without
Gazetteers”'? finns ett forslag pa hur man pa ett
battre sétt hanterar ord som inleder en mening.
For varje ord som inleder en mening, och alltsa
inleds med en stor bokstav, kontrolleras om ordet
dven forekommer inne i texten men med en liten
bokstav i borjan av ordet. Finns ordet dér ar det
sannolikt att ordet inte a4r en plats som skall
mérkas upp. | annat fall appliceras de vanliga
reglerna pa ordet. Man kan utveckla denna idé
och inféra en ordlista med s& manga av
implementeringssprakets ord som mojligt som
inte dr av de sokta typerna och géra motsvarande
kontroll.

En idé vi funderat pa &r inforandet av globala
genererade databaser. Dessa skulle fungera pa
samma sitt som de genererade databaser vi
anvander oss av for tillfillet fast de skulle sparas
undan mellan varje programexekvering. Pa detta
sitt skulle programmets databaser hela tiden
vixa. Utan att ha testat idén ansdg vi att det
kunde finnas problem med denna metod. Vid
varje programkorning genereras nya felaktiga
eller dubbeltydiga ord och med tiden skulle
databasen innehéllas stora mingder felaktiga
poster. For att metoden skall vara bra krivs
antagligen att databaserna justeras manuellt
mellan programkorningarna.

Vad som naturligtvis skulle forbattra vardena
for programmet skulle vara att modifiera
databaserna med fler / ”béttre” ord och prova ut
fler kontext- / syntaxregler. Det finns hela tiden
fler smé& forbdttringar man kan gdra pé
programmet, bara man har tillrackligt med tid. En
forutsattning for detta ar dock att man har
tillrackligt stora traningskorpus.
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Att bestamma satsdelar pa ord ar inte helt trivialt

Beslutstradsinduktion for probabilistisk taggning

Johan Enell
johan@enell.nu

Sammanfattning

| detta projekt har vi granskat och imple-
menterat en taggnings metod som ar en ut-
veckling av probabilistisk taggning.
Skillnaden fran den probabilistiska taggni-
gen ar att transitions-sannolikheten upp-
skattas med hjalp av ett beslutstrad.
Fordelen med detta ar att man kan fa en
hog precision fran en liten mangd exempel
data. Ett problem som vi upptackte var att
skapandet av tradet tog valdigt Iang tid. Av
den anledningen utvecklade vi &ven ett an-
nat satt att skapa tradet pa som avsevart
forbattrade den tidsatgangen. Enligt arti-
keln som vi fick algoritmen fran var preci-
sionen hogre an det konventionella
metoderna. Vi har inte kunnat testa om det-
ta stammer och vi har inte heller kunnat
testa om varan metod fungerar eftersom det
inte funnits tid att implementera de delarna
av programmet.

Inledning

Fredrik Larsson
dat98fla@ludat.lth.se

det svart for dessa metoder att uppskatta sma san-
nolikheter.

| den algoritm som vi har jobbar med anvands
ett beslutstrad for att uppskatta transitons-
sannolikheten.

2 Probabilistisk taggning

TreeTagger algoritmen grundar sig pa den valkan-
da och vanligt forekommande ngram tagger-
algoritmen. Bada tva modellerar sannolikheten av
en taggad sekvens av ord rekursivt med formein:

p(ww, ...w ,tt,...t ):=
plta[tr ot ) 0w, ) (1)
p(ww, ... w, . tt, ...t )

Denna metod skilier sig pa hur transitons-
sannolikheten,p(tn|tn_2,tn_l), uppskattas. For det

mesta anvander ngram-taggers en formel som ba-
serar sig pa "maximum likelihood estimation
(MLE)” principen:

) F(tnz —l’tn)

F tn 2’ n—l) (2)

p(t |tn 27 n-1

eftersom dess betydelse kan vara ambivalent bero-
ende pé vilket sammanhang det befinner sig i. F&F (tn_z,tn_l,tn) ar antalet forekomster av trigram-

att klara av detta brukar man titta pa det samma
hang som ordet befinner sig i for att lista ut ordets

ratta satsdel.
Det finns manga olika metoder for att [0sa detta Ett stort problem med denna uppskattning ar att
problem pa olika sétt. Vissa anvander négot forrmanga frekvenser dr sd sma s& den sannolikhet
av regelsystem andra anvander probabilistiska menan far fram inte ar tillrackligt trovardig. Det blir
toder. Aven neurala-natverk anvéands for att l6sgpeciellt svart i de fall d& frekvensen ar noll och

problemet.

Om man tittar

et t_ .t

t, i korpuset och F(tn_z,tn_l) ar

n-27 n-1?

antalet forekomster av bigrammet ,,t ;.

narmare pa denan kan inte avgdra om motsvarande trigram &r

probabilistiska metoderna s& ser man att allgyntaktiskt korrekt eller om det bara &r valdigt
anvander négon form av markovmodell. Eftersoravanligt. En annan viktig punkt &r att en robust
det blir en stor méngd parametrar nar man skagger ska kunna klara indata som inte &r helt
bestamma satsdelar (speciellt nar man anvandgfammatiskt korrekt. Annars kan det inkorrekta
trigrams) blir det svart for dessa metoder att
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[ tag; = ADJ? ]

no yes
tag; = NN? ] [ tag, = DET? ]
no yes
[ tag, = ADJ? ] NN: 70%

ADJ:  10%

Figur 1: Ett pahittat exempel pa hur ett beslutstrad kan se ut.

leda till att hela uttryck blir tilldelade noll i sanno- )
likhet, oberoende av sekvensen av taggar. Dettal Skapa ett beslutstrad

skall undvikas.
Darfér modifieras formeln ovan si att noll-Beslutstradet som byggs fran en traningsmangd av

sannolikheterna ersatts med ett litet tal och seddfigram anvander en modifierad version av ID3-
normaliserar man om sannolikheterna s& att surfigoritmen. | varje rekursionsteg skapas ett test

man blir 1. Valet av det tal som skall anvindas &°M delar méangden av trigram tva delmangder.
vasentligt for kvalitén p& resultatet. Delmangderna véljs sa att skillnaden i sannolik-

hetsdistributionen for den tredje taggen blir sa stor

som mojligt. Testet undersoker en av de tva fram-

3 TreeTagger forliggande taggarna och kontrollerar om det &r
identiskt med en tag t i en mangd av taggar. Testet

TreeTagger anvander sig, till skillnad fran ngranser ut pa féljande satt:

tagger, av ett binart beslutstrad for att uppskatta

transitions-sannolikheter. Figur 1 visar ett exempel tag, =t

pa hur ett sadant trad ser ut. Sannolikheten for ett .

givet trigram fas genom att folja dess vag genom ! D{],Z} (3)

tradet tills man kommer till ett I6v. Om vi t.ex. tit- taT

tar pa sannolikheten for att ett substantiv kommer

efter en determinant som i sin tur kommer efter ewiar T a&r en mangd av taggar.

adjektiv p(NN| DET, ADJ) maste vi forst svara pa Vid varje rekursionsteg jamfors alla méjliga test

frdgan i roten; Ar taggen pa posmon -1 ett adjekech det test som ger mest information tilldelas till

tiv? | detta fall ar svaret ja, sa da gar vi vidare tillnuvarande nod. Sedan utvidgas trader rekursivt pa

nasta nod via ja-vagen. Dar svarar vi pa fragan omte tvad delmangderna som skapats utav testet. De

taggen pa plats -2 &ar en determinant. Aven detta &¢d som skapas laggs till som ja- och nej- trad pa

sant s& da kommer vi ner i ett I6v. Dar kan vi se afttlen nuvarande noden.

sannolikheten for detta trigram ar 70%. Det varde som anvands for att jamféra testerna,

g, ar den mangd information som fas av den tredje

taggen nar testet ar utfort. Att maximera informa-

tionen ar ekvivalent med att minimera genomsnit-

tet av den information| g0 SOM kravs for att den
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tredje taggen gar att identifiera efter att resultatélar man tanker efter hur tradets form kommer att

av test g ar kant. kunna tankas vara inser man att det i princip alltid
kommer att se likadant ut, och att man inte kan

.= -plc. C)Z p(tlc. )iog, pltic,)- gora s& mycket &t det. Med vansterbarn som nej

T @) (ja), hogerbarn som ja (nej) och att tva ja ger I6v

resulterar alltid i ett trad som kommer luta starkt at

p(C_|C)§ p(t|C_)I092 p(t|C_) vanster (hdger), med ett stérre antal noder. Vid ett

fullt utvecklat trdd med alla trigram-kombinationer

Dar C &r de trigram som finns i exempelméngdé‘ommer det nedersta Iovet av hégerdelen av tradet

for den aktuella noderC, ar de trigram dar test q Sgﬁitlelgrjgsl epna(ggbvraz;i jupet av det nedersta Iovet |

lyckas ochC, ar de trigram da testet misslyckas. S TS
p(C+|C) ar sannolikheten att testet q lyckas, mot-
svarande ft’)rp(C_|C). Slutligen &r p(t|C+) san- hi2
nolikheten for den tredje taggen om test q lyckas
och p(t|C_) om det misslyckas. Dessa sannolikhe-
ter uppskattas med MLE: - h
f(c.) | \
C,IC)= R 5
p(c.[c) 0 (5) \ .
f(c A - dy
p(C_ C) = M (6) h - hijd 3
f (C) Figur 2: En enkel skiss av hur tradet
f(t,C, kommer att se ut.
lie. )= ”
* Tvart emot vad namnet antyder ar inte FastTree
p(t|C ): f(t,C_) ) snabbare &n nagot annat pa att anvandas. Namnet

forsoker istéllet saga att den skapar trad betydligt
shabbare an ID3.
3y . . o . Tanken med FastTree ar enkel och metoden li-
Dar f(C) ar antalet trigram i traningsmangden, ;s - Eftersom tradet alltid, i princip, kommer ha
for den aktuella nodenf (C+) ar antalet trigram samma form saknar balansering vikt vid skapandet
dar testet lyckas, motsvarande forf (C_). av tradet och minskar darmed berakningarna.

f ) . FastTree bygger istéllet helt pa férekomster av
(t,C.) ar antalet trigram som Kiarade testet oCRinigram och bigram. Det vanligaste unigrammet

dar tredje taggen ar. Den rekursiva expansionenvyiljs som rot i tradet, det nést vanligaste som vans-
av tradet stannar om nasta test genererar en dgdrbarn och s vidare. Hogerbarnet &r den vanligas-
mangd av trigram som ar mindre an ett forutbete taggen med foraldern som féregéende tagg,
stamt  troskelvarde, n( f(C+)< n  eller d.v.s. detvanligaste bigrammet med foraldern som
f(C_)< n). Sedan uppskattas sannolikhetelrld_,rSta tagg i bigrammet. Dess via_i_nster_bgrn ar den
nast vanligaste taggen med den forra foraldern som
p(t|C) for den tredje taggen fran de trigram sonfsregdende tagg. Ett andra hdgersteg resulterar i ett
kommit till denna nod och vardet sparas i I6vet. 16V da vi har tre taggar som utgor ett trigram; vilket
ar vad vi soker.
f (t, C) Pa detta satt bygger FastTree ett snabbt, korrekt,
t(C) (9)  men férmodligen inte ett optimalt tréd.

pliic) =

4 FastTree 5 ID3vs. FastTree
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Problemet med ID3-baserade trad ar uppenbar. For
stora mangder traningsdata kan skapandet av tradet
ta olampligt Iang tid. Algoritmen vi har implemen-
terat har en logaritmisk tidskonsumtion med avse-
ende pa storleken av korpusen. Det hjalper dock
foga da varje steg tar allt for 1ang tid och att 6kan-
de av antal olika tagg-typer ger en exponentiell
tidsokning.

Nackdelen med FastTree ar att det formodligen
skapar ett sdmre trad. Nar algoritmen valjer nod
vid yttersta nivan, dvs. Utan nagra ja-svar, tar tra-
det inte hansyn till hur undertraden kommer att se
ut. Det ar da mojligt att tradet som genereras av
FastTree-algoritmen &ar genomsnittligt sdmre an
ID3-tréadet vid sbkning. Men eftersom det fortfa-
rande ar korrekt och att det ar den totala tidsat-
gangen som spelar roll kan FastTree vara ett
alternativ da man inte har ett fardigt trad att tillga.
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Using Speech Recognition for controlling
a Pan-Tilt-Zoom Network Camera

Enrique Garcia Sven Gronquist
Department of Computer Science Department of Computer Science
University of Lund University of Lund
Lund, Sweden Lund, Sweden

enrigueg@axis.com

Abstract In the last years, dramatic improvement in speech
recognition technology has taken place. This is due
In this paper we describe a prototype com-  to new research and better algorithms, as well as
ponent for using speech to control a re-  computers with more processing power.
mote controllable a web camera. Today several methods and technologies are in-
We investigate some situations where  Vvolved in speech recognition. The Hidden Markov
speech control might be useful, and Model is one example of a widely used statistical
describe the results of testing the compo-  method that is based on the idea that the speech sig-
nent. nal can be characterized as a parametric random pro-
cess. Template methods use average procedures to
derive words and a local spectral distance measure
to compare patterns.
Despite the dramatic improvement in technology,
_ further research is still needed to cope with the limi-
1 Introduction and Background tations of speech recognition. Some of the most im-

In this project we developed a Speech RecognRortant limitations are: Speech recognition systems
tion component for controlling a Pan-Tilt-Zoom &€ €asy to confuse when using a large vocabulary,

Network Camera. This report describes the speedfi€y find it difficult to differentiate between short
recognition background, the details of our impleOrds, and a high accuracy (up to 95%) is only ac-
mentation and its evaluation. hieved in quiet environments. Today the best way to

handle some of these limitations is to train the sy-
1.1 Speech Recognition stem and learn the user to operate it.

Speech Recognition is a technology that allows a There are many advantages using speech recogni-
computer to identify the words that a person speiion, besides of the obvious reason that it is a more
aks. Traditionally, the input devices to the system ar@atural way to interface numerous computer appli-
microphone and/or telephone. cations than using a mouse and a keyboard, speech
The history of speech recognition goes back téecognition allows faster input, and offers the users
the 19th century when Alexander Graham Bell trie@reat freedom of mobility; hands and eyes are free.
to build a machine that could recognize the human Users who could benefit from speech recognition
voice [1]. In 1950 Bell Laboratories could build aare people who for some reason are unable to (or
machine that recognized the ten digits. Later in 1958nd it difficult to) use a normal keyboard or mouse
MIT developed the first hardware for identifying vo-(e.g. people with hand or eye problems). It might
wels. Inthe 1970s DARPA established a program faalso be useful to professionals producing written re-
understanding continuous speech. ports, but who traditionally don’t type themselves,

Our conclusion is that speech control can
be a useful complement to the traditional
traditional point and click interface.
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like doctors, psychologists and lawyers. On the
her hand using speech recognition for such ref
requires an extremely high accuracy. @;

Additionally speech recognition technology is ¢ @
plied in telephone networks to automate operat

services and it is found in Personal Digital As  network
stants (PDAs), mobile phones and other client ™ @&

Workstation

INTERMET,
INTRANE

vices where keyboard input is difficult. @
During the last years speech recognition has
gun to be used for Internet applications. VoiceX! ..

IP Metwork

[2] and Speech Application Language Tags (SA

[3] are two standards for navigating web pages

access remote database by speech only. Comp

such as Microsoft, IBM, Philips and ScanSoft have

presented working solutions based on these stan-

dards. Figure 1: Network Cameras are able to transmit vi-
Especially Microsoft has introduced support fordeo and being controlled through Internet.

speech recognition in thaleT platform and a plug-

in for Internet Explorer [4] that allows users

browse SALT enhanced web pages. Microsoft @

also for years offered a freely downloadable Spe .

SDK that includes a very good speech recogni

engine, components, samples and tutorials.

Workstation

1.2 Pan-Tilt-Zoom (PTZ) Network Camera

A network camera can be described as a car
and a computer combined. It is a camera connec-
ted directly to the network. Inside the camera it is
a CPU, Linux OS, a web server etc. A network cagigyre 2: AXIS 2130 PTZ Network Camera. Here
mera has its own IP address and built-in functions tQhowing three different positions
handle network communication. [5]
Everything needed for viewing images over the
network is built into the unit. An embedded webAXIS 2130 (figure 2), developed by Axis Commu-
server manages web pages for displaying the vtications AB, located in Lund, Sweden. More about
deo and handles different HTTP requests for corthis PTZ Network Camera can be found at [6].
trolling the camera and displaying the video via In- The camera is controlled by client software using
ternet/Intranet, see figure 1. HTTP GETrequests that are sent to the camera’s web
Network cameras are used in professional secgerver. These requests are defined in an application
rity systems for surveillance of sensitive areas, sudprogramming interface (API) which is independent
as buildings, casinos, banks and shops. Video of the kind of network camera.
those areas can be monitored from control rooms, For example for turning the camera with IP add-
at police stations and by security managers from #ss10.13.5.35 , five degrees to the left, the client
variety of locations. software issues following request to the camera:
A Pan-Tilt-Zoom Network Camera is a networkHTTP GET http:/10.13.5.35/axis-cgi/
camera that allows the users to rotate it horizontallgtz.cgi?move=left
and vertically (Pan, Tilt) and also to adjust its zoom More information about the API and a link to the
level (Zoom). cammand details can be found in Appendix A — Axis
An example of a PTZ Network Camera is thePTZ API.
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Select Preset
Position; Causes the
camera to adopt a
pradafined positon.

Zoom: Allow smooth or siepped camera
zoom between telescopic and wide viewing

[T . ﬂ.‘". R = =i Wil
FOOUS How A] Dmg — |
EODRE Wl A & ——a | L

Click-in Image: For
direct control of the
PanTil/ Zoam devics

Tilt: Allow smeoth or
stepped vertical
panning of the

Camesra,

Home: Returns the
camera to home
position

Pan: Allow smooth or stepped horizontal
spanning of the camera

Figure 3: AXIS 2130 Client GUI

The AXIS 2130 client’s graphic user interfaceenhancing the user experience.
(GUI) for controlling the PTZ camera is based on )
mouse control and shown in figure 3. 3 Material and Methods
The users click the directions buttons with thez 1 pefining Use Cases

mouse and these clicks are translated to the corr\% . . . .
: . e have identified the following scenarios. Here we
sponding requests using the PTZ API.

don’t look at a particular camera’s capabilities, but
2  Problem Statement rather what one might want to achieve.

The project has as objective to implement and eval@eneral commands
ate a speech recognition component for controllinfhe most obvious set of basic commands that we
the AXIS 2130 PTZ Network Camera. need to implement are the simple movement com-
Using speech recognition, the component wilmands like tp’, ‘ down’, ‘left ’, ‘right ’, ‘undo’ etc.
translate voice commands to PTZ requests managiidpre complicated commands could be for moving
the camera’s positioning and zoom level. at a certain speed (in pan and tilt directions), and
We would like to test and compare this approackven to ‘lock on’ a specific (moving) object. The
with the standard PTZ GUI, driven by mouse clicimore specific scenarios can then use these as primi-
king in a gradient bar and directions buttons and sda&es.
if the speech driven user interface could offer any Another set of commands could be for handling
advantages like natural user interaction, lower leapreset positions such agdéord positon N " and
ning factor, commodity and quicker reactions of thégo to positon N . Ideally the they should be na-
users controlling the camera. med (gate, coffee machine, etc), but we could use
We believe that the results could motivate furthenumbered presets.
development of new products that combine speech For debugging purposes we might want additio-
recognition and network camera technologies fonal commands such agload grammar ' Or ‘start
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logging . Web camera (or Web Attraction)

Controlling a web camera raises two new problems:
Surveillance — Setting up more than one role. The first role is the

owner, the person who sets the various targets (like
One operator uses one or more cameras, and sho%gﬁee machine ', ‘window view ' etc). The other

be able to control any one camera at a given times +hauserwho should be able to saytow coffee
Here we have the following problems: machine * etc. but not much more.
— More than one camera: We must give each a uni-pandling more than one user. When more than one

que name, or, probably easier, a number. The 0Pgzer tries to control the camera at the same time ther
rator shouldn’t need to address a camera with its 'ﬁﬂght be synchronizing problems.

number. Using names is preferable, but names mugfe gon't investigate this any further.
not conflict with the commands (i.e. cameras should
not be namedléft and ‘right’). 3.2 Using the Microsoft Speech SDK

— Only one camera can be operated at a giVe} thjs project we have chosen to use the Microsoft
time. We need commands “kad"’at? camera Speech Software Development Kit (SDK) because
N and perhapsdeactivate camera N’ (butactiva- ¢ the simplicity of the application programming in-

ting one camera should deactivate the others). Theggtace (API) and the good support that can be found
cammands could be mouse/keyboard-operated. i, this free package.

— We should consider the difference between a sy- \ya avoided using the most recent MicrosofeT

stem where a camera only ha;anumberoffixet_j P'&DK, because of the required upgrades in many
sets (show gate, show machine A, show machine & honents and other unavailable tools. (such as
etc), and a mored hocsystem where the operator ysi-rosoft Visual Studio NET 2003).

can do anything. _ _ The Speech SDK v 5.1 comes with COM, Active-
— Sequences of operations, letting the user (0Perg- /g and vC++ interfaces for speech recognition
tor?, managerzfweb camera below) define a num-, 4 sheech synthesis for Windows. It also includes

ber of ‘targets’ (gate, machine A efc) in terms ofyqq)y distributable text-to-speech engine (TTS) and
pan-tilt-zoom, and letting the camera ‘visit’ eachtar-speech recognition engine for U.S. English
get. In this way one camera can work in & semi- yging the Speech SDK is straightforward, a num-
autonomous mode, while the operator works witlyo, of t0rials explain how to initialize the speech

other things. This might get quite complex, the 0pezq o gnition engine and how to define the grammars
rator should be able to stop the camera, look at s

or using it.
mething particular, and then letting it resume. Moreginformation about the Microsoft Speech
— We must have a useful and consistent interface f%rDK is available at [6].
working when speech control is not possible (e.g.
when the operator is using the telephone). Somet  Prototype

mes it might be bettamotto use speech control.

Also: For a system like this it is acceptable to trai _ _
the system for the operators voice (altough our sol}/Ve developed an Active-X control which can recog-
tion doesn’t do that). nize the general commands for controlling the ca-

mera. Building the prototype as an Active-X control
makes it possible to embedded it on a web page be-
low the Axis client that displays the video.

Additional issues for using the system at an exhibi- The GUI has been kept simple showing the avai-
tion: lable commands. When a command is identified that
— Working in a noisy environment (specifically lotscommand’s text color changes to red (see figure 4).
of talk around), We wrote a simple grammar defining the
— handling unknown voices (again, we don't use #llowing commands:

training system, so this is not a problem here). [Show me|Go to] (the) [leftldown|rightjup|home]

n4.1 A Speech Recognition Active-X Control

Exhibitions
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show that others words likenore’, ‘ little more ',
‘stop ', ‘back ' and ‘again ' should also be handled
like commands.

Any time that a subject used for example he word
‘left ’ the camera turned on the left exactly five
degrees, sometime much more or much less than
necessary. Positioning exactly the camera without
specifying the degrees seems difficult as to imagine
how many degrees are necessary. The GUI based in
mouse click gives a scale that itis more accurate and
clicking somewhere in the picture for centering the
camera seems simpler than using the speech version.

A collected interaction in the test 1 follows:
up RECORD POSITION #1 - turn on left
LEFT RIGHT |L 2 - more
DOWN ZOOM INfOUT  HOME - more to the left
oo ! - more

- more
- more to left

- stop

- turn little to the right

- right
‘Stop ' is not supported neither by the camera or
[Zoom] [injout] the prototype. Littte ' was not supported so the
[Record|Show me] [one[twolthree] user found it more difficult to complete the task.

The last one is for recording and displaying the The most successful test was about recording and
preset positions. In that way the prototype camiewing the presets. Users found it useful, and easy
handle the use cases for simple commands and tfteuse. They state that it should be possible to name

Figure 4: The prototype GUI

surveillance case for predefined presets. each preset by speech and then call them instead of,
. . as now, using numbers.
> Results and Discussion During the tests the accuracy was very good and

We have tested the prototype with three subjects. Wae engine proved to be good enough for commands.

had prepared the following tests: _
6 Conclusions

1. Rotate the camera so that a predefined object . .
The exactly positioning of the camera seems difficult

will be displayed in the center of the video (pan’ "' ) ) .
sing speech, as well as following moving objects.

and tilt operations were necessary to center it)u , : -
Our simple commands don't allow accurate positio-

2. Follow the trajectory of an object (a persoming for the pan-tilt-zoom values.
walking). Our prototype seemed more useful when using

. . . ) presets positions.
3. Zoom in to a distant object so that it covers the

entire display. 6.1 Future directions

4. Record and view three different preset posiFurter development of the prototype should investi-
gate other approaches like for example using scales

on the side of the video. We think the accuracy will
The tests raise a number of difficulties: usingncrease but it will never be as simple as using the
simple commands are not enough for exactly posimouse. Probably speech control is most suited to si-
tioning the camera, it was also necessary in sontaations where the users are unable to use the mouse
cases to repeat the command many times and didthe keyboard (or they are used for other purposes).

tions.
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Future version should allow renaming the positiolA\ppendix B — PTZ Grammar

and maybe interacting with the user in a dialogue
about the position presets available.

Other camera client functions that can be easy
mapped to commands likerake a shot ', ‘ Show

Full Screen 'and more could be added.

Networks Cameras can also be accessed using a

PDA, that field should also be investigated at least
with preset positions in mind.
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The complete Axis Camera API, HTTP - Interface
Specification v 1.11 can be found at:
http://www.axis.com/techsup/cam_servers/dev/
cam_http_api.htm . Only the Pan/Tilt/Zoom came-
ras support the PTZ commands.

To control the Pan, Tilt, and Zoom behavior of a
PTZ unit, the following PTZ control URL is used.
Method: GET/POST
Syntax:http://<servername>/axis-cgi/com/
ptz.cgi?<parameter>=<value>
[&<parameter>=<value>...]
with parameters and values
Specification.

from the Interface
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GRAMMAR LANGID="409">

<DEFINE>

<ID NAME="VID_Left" VAL="10"/>
<ID NAME="VID_Right" VAL="20"/>
<ID NAME="VID_Up" VAL="30"/>
<ID NAME="VID_Down" VAL="40"/>
<ID NAME="VID_Home" VAL="50"/>

<ID
<ID
<ID

NAME="VID_One" VAL="60"/>
NAME="VID_Two" VAL="70"/>
NAME="VID_Three" VAL="80"/>

<ID
<ID

NAME="VID_Place" VAL="90"/>
NAME="VID_Navigation" VAL="100"/>

<ID
<ID
<ID

NAME="VID_Position" VAL="110"/>
NAME="VID_Record" VAL="120"/>
NAME="VID_Number" VAL="130"/>

<ID
<ID

NAME="VID_Zoom" VAL="140"/>
NAME="VID_Direction" VAL="150"/>
<ID NAME="VID_In" VAL="160"/>
<ID NAME="VID_Out" VAL="170"/>
</DEFINE>

<RULE ID="VID_Navigation" TOPLEVEL="ACTIVE">
<O>Please</O>
<pP>
<L>
<P>Show me</P>
<P>Go to</P>
</L>
</P>
<O>the</O>
<RULEREF REFID="VID_Place" />
</RULE>

<RULE ID="VID_Place" >
<L PROPID="VID_Place">
<P VAL="VID_Up">up</P>
<P VAL="VID_Right">right</P>
<P VAL="VID_Left">left</P>
<P VAL="VID_Down">down</P>
<P VAL="VID_Home">home</P>
</L>
</RULE>

<RULE ID="VID_Record" TOPLEVEL="ACTIVE">
<O>Please</O>
<pP>
<L>
<P>Record</P>
</L>
</p>
<RULEREF REFID="VID_Number" />
</RULE>

<RULE ID="VID_Position" TOPLEVEL="ACTIVE">
<O>Please</O>
<pP>
<L>
<P>Show me</P>
</L>



</p>
<RULEREF REFID="VID_Number" />
</RULE>

<RULE ID="VID_Number" >
<L PROPID="VID_Number">
<P VAL="VID_One">one</P>
<P VAL="VID_Two">two</P>
<P VAL="VID_Three">three</P>
</L>
</RULE>

<RULE ID="VID_Zoom" TOPLEVEL="ACTIVE">
<O>Please</O>
<p>
<L>
<P>Zoom</P>
</L>
</p>
<RULEREF REFID="VID_Direction" />
</RULE>

<RULE ID="VID_Direction" >
<L PROPID="VID_Direction">
<P VAL="VID_In">in</P>
<P VAL="VID_Out">out</P>
</L>
</RULE>

</GRAMMAR>
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Abstract

Dyslexics pose a great challenge to
spelling checking programs. They are
among the ones who need the programs
the most, they make diverse and com-
plicated errors, and they may have trou-
ble picking out the intended word from
a long list of suggestions. The idea be-
hind the program described in this article
is to start with a spell checker based on a
noisy channel model and allow for multi-
ple transformations of deletion, insertion,
substitution and reversal between the typo
and the intended/suggested word. A user
model consists of matrices of how often
the user makes these transformations for
the different letters of the alphabet. When
the user chooses a suggestion from the
spell checker, the typo/correction pair is
used to further update these matrices.

Introduction

ther, a small number of suggested corrections is im-
portant, since it may be difficult for the dyslexic
to select from a long list (Spooner and Edwards,
1997).

A computer can have a user model for predict-
ing how a user thinks and behaves. Ordinary
spell checkers have minimal if any user model. It
is thought that a user model can improve a spell
checker by being more tuned to the kinds of mis-
takes that a certain user tends to make. For example,
one user might tend to confuse b and d, while an-
other might have problems with p and b. Knowing
about these individual confusions can improve the
suggestions given by the spell checker.

This article will look at the possibilities of apply-
ing a simple user model to a spelling correction pro-
gram presented by Kernighan et al. (1990) , which
is based on a noisy channel model. More specifi-
cally, the possibilities of applying this user model to
Swedish dyslexics.

2 Dydexia

The definition of dyslexia has been much discussed,
as well as whether or or not dyslexia should be de-

Dyslexia is a subject of much debate, both regardingned at all. Many definitions have focused on a dis-
definition and diagnosis. Because spelling is a larggepancy between the ability to read and write and
burden for dyslexics, most agree that a spell checkeiie other intellectual abilities of a person. In 1994,

can be of great advantage. Alas, most spell checlhe Orton Society decided on the following defini-

ers are designed for correcting typing errors, or tytion(Hoien and Lundberg, 1999):

pos, made by fairly able spellers. However, dyslexic
spellers make more diverse errors, including com-

pound errors consisting of a sequence of mistakes.

Many dyslexics experience that spell checkers are
not able to suggest words for their misspellings. Fur-
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decoding, usually reflecting insufficient need for labeled data; concept drift; and computa-
phonological abilities. tional complexity (Webb et al., 2001). Further, if

] ] user modeling profiles are to be created, a sufficient
The causes of dyslexia are disputed, but research ount of time is required before they can be of any

shown that phonological training in early schooling,qe A solution to this might be the incorporation of
can be helpful. While many dyslexics eventuallygiereqtypes. Ideally, these should be used for initial-
manage to read at a fairly high level, the troubleg, the user model, until there is more information
with spelling are more persistent. about the individual user. Also, it should be regu-
larly checked whether or not the right stereotype is
activated (Virvou and Kabassi, 2002).

A user model defines the way a computer believes

a person using it will behave. Dynamic user mode#t Approachesto spell checking

generally refers to a set of stored numbers indicat- N ]
ing how a particular person behaves on a number dihe traditional spell checker will go through a text

scales. The field of user modeling has been arour?d?d for each word check if it is in its dictionary. If
for about twenty years, starting with student model! IS, the spell checker moves on to the next word.
ing in the early eighties. The cognitive processeg it is not, the spell checke'r tries inserting, remov-
that underlie the user's actions and the user's bdd, Substituting and swapping (or reversal of) letters
havioral patterns or preferences are some things tHgtS€€ if it can find any words from the dictionary.
user models may wish to describe. Another is th&hese four changes represent major error types. A

difference between the user’s skills and expert skillimitation of this approach is that only words in the
(Webb et al., 2001). dictionary are considered correct, which may lead

Among others, the following structures and prof0 Poth false negatives and false positives. Another

cesses are often included in a user modeling systeffftitation is that no account is taken for the sur-
(Kobsa, 2001): rounding words. Further, many spell checkers only

check for errors at one place in the word (or at least
¢ the representation of assumptions about uséftis used to be the case, e.g. (Kernighan et al.,
characteristics in models of individual users;1990)).
such as assumptions about knowledge, miscon-
ceptions, goals and preferences; 4.1 Levenshtein distance

« the representation of common characteristics éfevenshtein distance (LD), also called edit distance,

users, grouping them into subgroups, or stereds & measure of similarity between two strings. The
types: distance is the number of deletions, insertions, or

substitutions required to transform the source string,
e the classification of users as belonging to one g, into the target string, For example, ikis "thing”
more subgroups, along with the integration ofaindt is "thing”, thenLD(s,t) = 0, because no trans-
typical characteristics of these subgroups intéormations are needed. The strings are already iden-
the current individual user model; tical. If sis "thing” andt is "think”, thenLD(s,t) = 1,
_ _ . because one substitution (change "g” to "k”) is suf-
o the recording of users’ behavior, especiallicient to transfornsinto t. A greater Levenshtein
their past interaction with the system; distance, means more different strings (Gilleland, ).

o the formation of assumptions about the user The Levenshtein distance can be found by (Gille-
based on the interaction history. land, ):

3 User modeling

Observing the user’s behavior can provide exam- 1. Setnto be the length of s. Set mto be the length
ples for training the user model, which can be used oft. If n =0, return m and exit. If m =0, return
to make a model to predict future actions. There are  n and exit. Construct a matrix containing 0..m
however problems: the need for large data sets; the rows and 0..n columns.
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2. Initialize the first row to 0..n. Initialize the first number of times that a word appears in the train-
column to 0..m. ing corpus andN is the number of words in that
corpus. The conditional probabilities are computed
from four confusion matricesdel[x,y], the number
4. Examine each character of t (j from 1 to m). ©f times that the charactery (in the correct word)

were written a in the training setadd[x,y], the

5. If s[i] equals t[j], the cost is 0. If s[i] doesn't number of times«< was written as xysub[x,y], the
equal t[j], the costiis 1. number of times thatwas written as; andrev|x,y],
the number of times thady was written agx. From

6. Set Ce”.d[l’J] of the m_atrlx egual to the mini- these matrices probabilities are estimated by divid-
mum of: a. The cell immediately above plus.

1: d[i-1,j] + 1. b. The cell immediately to the 't?]gtt;y C;:Ji["a’ly] ‘;;‘r::grisrfxghéhter;mbeg;f :'e";ezc_
left plus 1: d[i,j-1] + 1. c. The cell diagonally y PP g set, resp

3. Examine each character of s (i from 1 to n).

above and to the left plus the cost: d[i-1,j-1] +t|vely.
cost. 4.3 General issuesfor spell checkers
7. After the iteration steps (3, 4, 5, 6) are comWhat size should the dictionary be? A larger one
plete, the distance is found in cell d[n,m]. is of course preferred, but with many unusual words
there is an increased risk that they will match a mis-
4.2 Noisy Channel Model spelled word. A larger dictionary takes longer to

The noisy channel model of Shannon (1948) hasearch, and on smaller devices storage might be an
been applied successfully to many different probissue. Compiling a dictionary is not a trivial task, as
lems, spell checking among them. The models ha@gssible text sources may contain errors and many
two components: a source model and a channpfoper nouns.
model. In applying this to the production of natural
language text, it is assumed that a person chosessa
word w to output, but that the noisy channel induceShis paper will describe the implementation of a
the person to output strimginstead. spell checker that uses a noisy channel model, which
Kernighan et al. (1990) describe how probabilityallows for more than one deletion, insertion, substi-
scores for candidate corrections can be found usingtion or reversal between the typo and the correc-
a noisy channel model. Using a Bayesian argumertion (Kernighan et al. only have one), and where the
the intended correctiorg, can often be recovered word chosen as the correction by the user updates
from the typot, by finding the correctios that max-  the programs confusion matrices. The spell checker
imizesPr(c) Pr(t|c). The first factorPr(c), is a prior is written in java, and the interface is Mac OS X’s
model of word probabilities.Pr(t|c) is a model of cocoa.
the noisy channel that accounts for spelling trans-
formations on letter sequences, such as insertiornsl What the user sees
deletions, substitutions and reversals. The user is met with a text editor window and a
The first step of Kernighan et al. is proposing canspell checker window. When the "check spelling”
didate corrections, which means finding words thétutton (in Swedish:kolla stavning is pressed, the
differ from the typo t by a single insertion, deletion,first word that the spell checker considers to be
substitution or reversal. These transformations amisspelled is selected (highlighted) and the user
named from the point of view of the correction, notis provided with five suggestions along with the
the typo. For example, for the tymimpe could be misspelled word, in the spell checker window (see
the wordsimpletransformed by a noisy channel byFigure 1). To correct a word, the user selects a
replacing thd with nothing at position 5. word from the list and presses the "correct” button
When a list of candidates have been generatddatta). There are several other buttons in the spell
they are scored as described abover(c) is es- checker window. Guesgiissg makes new sugges-
timated as(freq(c) + 0.5)/N wherefreq(c) is the tions based on the word in the text box. This is use-

I mplementation
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ful if the user wants to make changes to the originafet been gone through for this purpose. Scorer thus
misspelling and get new suggestions, if the intendecbnsiders Pr(c) to be 1. This should be rectified.
word was not in the list. For more on this, see th&corer returns to SpellChecker a list of n Correc-
description of the CHECK system in the conclusiontionWords, sorted by score. If there are not five non-
Ignore (ignorera) adds the selected word to a tenzero scores, words are added to the list according to
porary list of words which will not be regarded asedit distance. Finally, SpellChecker makes a Typo
misspelled. Add wordlégg till ord) will add the se- with the misspelled word, its list of all possible Cor-
lected word to the program’s dictionary. Find nextectionWords and the list of suggestions that scorer
(sok nastg will skip the selected word and move onprovided. These suggestions are then displayed to
to select the next misspelled word. the user.

The Trainer class is used to initially fill and update
the confusion and character matrices. For the initial
The SpellChecker class handles all real spell checksaining, a list of common misspellings in Swedish
ing, while the Spellinterface class handles the intehas been used. The matrices continue to be updated
action with the interface. The other main classess the user uses the spelling checker. Feedback is
are Corrector, Scorer, and Trainer. LevDistance casent to Trainer every time the user selects a word as
culates the Levenshtein distance and gives opera-correction.
tions associated with this distance. There are several
classes for holding information about words and coe Evaluation
rections: error/correction types (Correction), a word
that is a possible correction (CorrectionWord), and ¥nfortunately, this spell checker has yet to be tested
typo and its possible corrections (Typo). on texts by dyslexics. Hopefully this will be done in

When the "check spelling” button is pressedthe near future. A corpus for use in calculating prior
for each word, Spellinterface asks SpellCheckeprobabilities and for enlarging the dictionary should
whether or not it is misspelled. If SpellChecker find$lso be incorporated.
that the word is not in the dictionary, it asks Correc- For the initial training of the confusion matrices
tor for a list of words which are possible correctiongnore training material is needed, since the program
for the typo. Corrector first get a list of words whichis of no use if these are not representative of com-
are within a certain range of the typo’s length. Itmon errors in spelling in Swedish. However, filling
then uses LevDistance to calculate the edit distan¢ee matrices is not easily done, since texts or lists
between these words and the typo, and gets a litth both typos and corrections are needed, or it has
of operations necessary to transform the correctip be done by hand. Further, it is difficult to obtain
spelled word into the typo. A CorrectionWord holdssamples of dyslexic writing, since dyslexic people
this word and the list of operations. SpellChecketend to write less and be less inclined to share their
then sends the list of CorrectionWords it receivewriting. Getting a lot of text from one person is even
from Corrector to Scorer asking for the n best onegnore difficult. And since it cannot be said that all
Scorer holds the confusion matrices and the charadyslexics make the same mistakes, a set of matrices
ter matrices described above in section 4.2. For eashitable to one dyslexic person might not be suitable
CorrectionWord, Scorer calculates a score, based & another.
the Bayesian argument described in the same sec-There are some problems associated with updat-
tion. The probability of is taken to be the probabil-ing the confusion matrices based on the users’ cho-
ity of the suggested word times the product of theen correction. One is that the user might have cho-
conditional probabilities of the operations needed teen the wrong correction, meaning that the matrices
transform the suggested word into the typo. Thare not updated correctly. However, if this does not
probability of the suggested wordr(c) was es- occur very often it should have little impact on the
timated as(freq(c) + 0.5)/N by Kernighan et al. scores calculated from the matrices, given that the
(1990). Unfortunately, this prior model cannot yetmatrices are well filled. A larger quantity of mis-
be estimated for this program, as a corpus has ntatkes might actually lead to more efficient training.

5.2 Program structure
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806 Adaptiv stavning
.,_' Kolla stavning ",

I [fesken varr dyr
|

"""" Majliga rattningar

Gissningar:

fisken L a\' Gissa y
facken 5 =
fiskens L (_ Ignorera )
fickan L el
fiken ; (_ Lagg tillord )

E\. Sok nasta :I

fesken 8 Ratta )

Figure 1: The spell checker in action

The approach used here assumes that therewsrd might be misspelled for the intended meaning
some consistency to an individual’s spelling patwhile being in the dictionary as it is a correct word.
terns. More research should be looked at to decideor example, "witch house?” would be viewed as
whether or not this is actually the case. Also, a majarorrect by a spell checker even though the intended
short coming in this implementation is that it only tosentence was probably "which house?”. These mis-
some extent addresses phonetic misspellings. Thakes are difficult to discover without a grammati-
is, only phonemes represented by one letter can loal analysis or a more direct listing of words which
dealt with. sound alike

The Scorer always returns a list of n possible cor-
rections. It might be better if it only returned those’

who had scored above zero. However, given the limrpg anpication of a simple user model for a spelling

ited confusion matrices in this version of the pro,rection program based on a noisy channel model

gram, this may lead to no suggestions being madgeems promising. While the spell checker is by
In a future version, a more sophisticated selectiof, means complete, this rudimentary structure does
based on score and variations in scores might & rprisingly well. Of course, this said before the
used. program has been put to a real test. The idea of using
The dictionary is stored in java’s hashtable. Morghe confusion matrices as a rudimentary user model
efficient methods of storage might be preferred. Fgs promising, and is not limited to use for dyslexic
example Stava (Kann et al., 1998) uses Bloom filpegple, though they might need an adaptive spell
ters. Other necessary improvements to make thgecker more. The existence of research on whether
spell checker useful is to incorporate inflections s@r not dyslexic people make different spelling mis-
all don't have to be in the dictionary, and to havegkes should be looked into.
some way to check compound words. Another de- Ashton describes the CHECK strategy, developed
sirable extension is some kind of context SenSitiVityto help students use spell checkers more effectively
This work will not address some important as-and independently. This strategy makes use of the
pects of spell checkers for Swedish, such as holehange to” box that many spell checkers have and
to deal with compound words and the inflection othat most let the user type in. It should be explained
verbs. Another issue which will not be addressedp the student that they can make changes in the
but which is a problem in most languages, is that word in this box and then press the "guess” button

Conclusion
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(or one with equivalent function) to generate a listvhich have to do with word pronounciation. To ad-
of suggestions for the new word. If the new word igdress this, Toutanova and Moore (2002) build two
closer to the intended word, it might appear in thelifferent error models using the Brill and Moore
new list. This can be repeated as many times as agorithm, one letter-based one and one based on
necessary, but it is best if only one type of change ia phone-sequence-to-phone-sequence error model.
made at a time. CHECK stands for Since the better correction phonetic errors is espe-
cially interesting for a spell checker for dyslexics,

e Check the beginning sound of the word their methods should certainly be looked into.

e Hunt for the correct consonants Apart from more support from research on the
kinds of spelling mistakes that dyslexics make, get-
e Examine the vowels ting a program that handles phonetic errors better

) ) . . is vital. Having more filled confusion matrices is

e Changes in suggested word lists may give hintg,g very desirable, so that one might have several

sets that can serve as the beginning for different user

groups, such as "regular users”, dyslexics, or people

One possibility is to include instructions such awvho speak Swedish as a second language, where the
these in the program, if the user requires extra helspell checker could be adjusted after mother tongue.

Right now there are five words in the list of sug-
gested words given to the user. If the intended\cknowledgements

i in that list, th h I . o :
word is n_ot_ln that Tist, the user has to employ a1'hanks to Pierre Nugues for all advice in developing
method similar to the CHECK strategy. Ideally, thehiS oroject. Also, | would like to thanBsa Wen.

spell checker should find the target word in the firstt lin f i int ted in th biect of spell
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Abstract

This report describes some experiments
with a statistical technique that extracts

on one side, but red on the other”. No good tech-
nigues have yet been developed to automatically
identify different types of discourse relations. A

useful application would perhaps be to extract all

discourse relations in Swedish. Three
types of relations are used: Cause-
Explanation-Evidence (CEV), Contrast
and Elaboration. The method is eval-
uated by building two-way classifiers,

with the results: Contrast vs. CEV

64.5%, Contrast vs. Elaboration 56.6%
and CEV vs. Elaboration 54.9%. The
conclusion is that the technique, with
improvements or modifications, seems
to be usable to extract discourse rela-
tion in Swedish, but further investiga-

tions are necessary.

causes from discourses and put them into a knowl-
edge base. For example you could ask: “What
causes crops to grow?”, and a knowledge base
agent would answer “the sun”, “the earth” and
“rain”.

In many cases there are markers that indicate
a particular discourse relation, as in the examples
above “because” and “but”. However you could
also say for example “The car is green on one side,
and red on the other”. A human might conclude
that the car being red on one side is in contrast to
the car being green on the other side, but since it's
not explicitly marked, some more elaborate rea-
soning strategy is needed.

This project work was an attempt to implement
R algorithm that makes a choice whether two word

provided by Lars Aronsson from the RunebergSPans in Swedish can be classified as together con-
project. As a tool to identify nouns and verbs Stituting a particular discourse relation. The algo-
the Granska grammatical tool was used, whicHithm has been developed by Marku and Echihabi
was provided by Jonas Sjcbergh at KTH £i.(2002), and is here implemented for and tested on

nally the Stockholm-Ume& corpus was needed téwedish discourse.
build the Granska tool, and was provided by Sofi L
Gustavfson-Capkova also at KTH. 83 A statistical model

1 Credits

Most of the corpora used in this project have bee

The approach taken by Marcu and Echihabi (2002)
was to build a simplistic statistical model. Basi-
There are relations in discourse, for example “I didcally there might be some word pairs that are fre-
put my coat on this morning, because it was cold”.quent in contrasts, for example “green” and “red”
The second clause of the sentence is describinas in the example above, and other pair in expla-
a cause of the fact stated in the first clause. Annations, i.e. “cold” and “coat”. To capture these
other example is the contrast: “The car is greerpatterns a table can be made, where the word pairs

2 Introduction
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formed from each different combination of words Contrast
from the first and second part are counted. This is [BOS ..]J[, men ... EOS]

the cartesian product of the text spdis andWs, [BOS ..][, ehuru ... EOS]
defined agw;, w;) € Wy x Wa. The table be- (BOS ___][' fastan ... EOS]
comes non-commutative since the first text span, [BOS ___][’ trots att ... EOS]

so to speak, ends up in the columns of the table

and the second text span ends up in the rows.
The probability that two text spans forms a par-

ticular relation can be calculated as follows:

Cause-Explanation-Evidence
[BOS ...][, darfor att ... EOS]

[BOS ...][, eftersom ... EOS]
[BOS ... EOS][BOS Alltsé ... EOS]

P(Wq, Wi|ri)P(r [BOS ...][, alltsa ... EOS]
P, 1) = 2 P(Wl[];/)l)( SAE [BOS ... EOS][BOS Séledes ... EOS]
[BOS ...][, sdledes ... EOS]
The factor P(Wy, Wi|r) can be estimated with [BOS ... EOS][BOS Sélunda ... EOS]
[I P((wi, wj)|ry), werew; andw; symbolizes the [BOS ...][, sdlunda ... EOS]
words in each spar?((w;, w;)|r) is directly cal- [BOS ..][, ty ... EOS]
culated from the table. [BOS ... EOS][BOS Ty ... EOS]

Of course not all possible word pairs, that might [BOS ... EOS][BOS Darfor ... EOS]
be encountered in for example contrasts, will be
counted in the table, which makes it necessary to Elaboration
shift some probability mass to these previously un- [BOS ..][vilket ... EOS]
seen pairs. Marcu and Echihabi used the Laplace
method.

Table 1: Swedish extraction patterns used in the
4 Extraction of sentences experiments.

First of all three discourse relations were used

in the experiment. These are Cause—Explanations—ince quite a smgll corpus was used this approach
Evidence (CEV), Contrast and Elaboratidn. was taken. For this purpose the Granska grammat-

. 2 _ _
To be able to experiment with the technique,'cal tool < was used. All non-nouns and non-verbs

Swedish corpora were attained from the Runeberé\llere identified and marked, and later discarded in
project (45 million words) and the European Par-_o:I eﬁperlm(tants. Thetﬁranska tool also helped to
liament (16 million words). The first difficulty 'd€ntify sentences in the corpora.

was to find good Swedish markers for extraction Finally the training examples were extracted
of training examples. By inspection of sentenced!!th 156762 Contrasts, 43159 CEV and 21072

the extraction patterns in table 1 were judged td-'aPorations, and the testing set with 771 Con-

be good enough. Since a great portion of the cortrasts, 176 CEV and 79 Elaborations.
pora was from Nordisk Familjebok from the end .

of the 19th century and the beginning of the 20th5 Experiments
century, some old markers were used ( “ty” ands 1 Methods of evaluation

“ehuru”), together with some more modern ones | h hni lassifi
(“eftersom” and “trots att’). To evaluate the technique, two-way classifiers

The corpus was divided into a training setvere built to distinguish Contrast vs. CEV,

(99.5%) and a test set (0.5%). Results from MarciOntrast (;/S._Elabgratiorél anbd CFI(V VS.h Elabora-
and Echihai (2002) indicate that using only nound!on- A decision is made by taking the maxi-

and verbs makes a steeper training curve, ang'um OfP(T’f|W1’W2) for each relation, where
P(rg|W1,Ws) is calculated from the table. In

'For a description of these, see Marku and Echihabi__
(2002) and literature referenced to from there. 2see www.nada.kth.se/theory/projects/granska/
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equation 1,P(WW;,W2) can be discarded, since Contrast Elaboration

it's the same for all relations. CEV 64.5 % 54.9%

An approach that would eliminate the factor Contrast 56.6%
P(rk), would be to put the same amount of sen-
tences from each type of relation in the test set. Table 2: The result of each evaluation.

However, since there were as few as 71 Elabo-

rations in the test set, and as many as 771 Con-. .
y It is cold” and “It is cold, thus | put my coat on”.

trasts, this was instead emulated by taking th . .
y taKing %oth are causal and basically state the same thing,
mean of the amount of correctly classified sen-

. : but the order of the clauses are reversed. In the first
tences from each relation. In this way the result

is more statistically validated. So, for examplecaSe the training procedure would take "I put my

: raincoat on” as the first clause of the sentence and
in the case of Contrast vs. CEV, all contrast sen-. . , . .
e itis cold” as the second, but in the opposite order
tences from the test set were classified and the per- .
" a0 the second case. Perhaps it would be better to
centage of correctly classified sentences was ¢ |aentify the cause and the effect in each sentence
culated. The same thing was done for CEV sen-

. and train the table with these instead of using the
tences and finally the mean of these percentag?s : )
A . eft and right part of the sentences. To test this hy-
taken as the result. This is similar to having the . . . .
. . pothesis the training with CEV relations was done
same proportions of contrasts and CEVs, meaning_ . : ) :
that P(r ) = P(r ) and this factor can gain, but with the word spans put in logical order,
.\ contrast cBv that is causes to the left and effects to the right.
be discarded.
. . . : The result was that 65.1% of the sentences were
During early experiments it was discovered that L
: correctly classified in the contrast vs. CEV case.
the Laplace method seemed to shift too much mass
of probability to unseen word pairs. In one ta-

ble there were 900 times as many zeros as actuat

counts in the table. Therefore Lidstone’s rule wassince texts from different time-spans were used,
used instead, which amounts to setting: i.e. Nordisk Familjebok and Svenska Familj-
journalen from the end of the 19th and beginning
of 20th century, and modern discourse from the
(2)  European Parliament, the results above might have
been biased. At worse the classifiers only differ-
where cardinal is the number of entries in the ta€entiates between old and new sentences, and not at
ble. It was found that a lambda 6f05 seemed to all between different kinds of discourse relations.
maximize the accuracy of the classifiers; a valuelhe problem is clear since in older Swedish, as

that was kept during all subsequent experiments. in Nordisk Familjebok, “v” is often spelled “f” or
“fv”. For example “av” becomes “af” and “sil-

5.2 Results and an improvement ver’ becomes “silfver”. Other differences might
The accuracy of the classifiers are presented in taglso influence the classifiers. It was actually found
ble 2. A maximum result of 64.5% in the Con- that using the contrast vs. CEV classifier on old
trast vs. CEV condition is in the same realm as the&/s. new sentences gave a result of 77%.
results from Marcu and Echihai (2002), who had In an attempt to get around this problem, the
between 60% and 70% in most conditions.The retests sets were further divided. Sentences from
sults for Elaboration were worse, with 57% in the Nordisk Familjebok and Svenska Familj-journalen
Contrast vs. Elaboration case. were separated from sentences from the Euro-
During these experiments one thing wasn't confpean Parliament, and old and new sets were thus
sidered however. The method so far has been corfiermed. The CEV vs. contrast classifier was evalu-
sisting of using a left and a right part in the training ated for each case. The results were 60% correctly
examples. A problem with this can be illustratedclassified sentences from the old set and 58% from
with the two sentences “I put my coat on, because¢he new.

3 A source of bias

(count + \)
(total + X - cardinal)’

P((w1, w2)|rg) =
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6 Conclusions References

Daniel Marcu and Abdessamad Echihabi. 2002.
Results around 60% clearly indicated that the clas- An Unsupervised Approach to Recognizing Dis-

sifier is better than random assignment of text course Relations. InProceedings of the 40th

¢ hcl of th . tAnnual Meeting of the Association for Com-
Spans 1o each class. course the accuracy IS no putational Linguistics ACL-2002 (available at

high, but since marker words themselves are not www.isi.edufharcu/papers/relations-acl2002.pdf),
used to train the classifiers, the accuracy can prob- Philadelphia, PA, July 7-12

ably be increased tremendously. The corpora used
were also quite small, and more training examples
are needed to increase accuracy.

The results with elaboration are not very good,
which first of all can be accounted to the fact that
only 21072 training examples were used. Also, as
Marcu and Echihabi (2002) states, there is some
dispute regarding the existence of a well formed
category of elaboration as a discourse relation.
Perhaps this can be used as a way to experimen-
tally find evidence for well formed categories.

The fact that two quite different types of dis-
course was used, that is old and new, had a great
impact. Since the Contrast vs. CEV classifier was
better at discriminating between old and new sen-
tences than Contrasts and CEVs, the bias intro-
duced was quite large. A conclusion might be that
the method works better on restricted discourses.
For example a classifier trained on technical re-
ports would be very good at identifying discourse
relations in other technical reports.

There are some simple improvements that could
be made. For example, since there seems to be
no intrinsic order in contrast relations the table
should be made commutative, that is training both
“forward” and “backward”. This was however not
judged as a critical point, since there were more
than 150000 training examples of contrasts. An-
other thing is to find the value of lambda in Lid-
stones rule, that maximized the accuracy. Using
the value of 0.05, instead of 1 as in the Laplace
method, greatly improved the classifiers, and more
improvement can probably be made.

To sum up, some evidence is presented that this
constitutes a feasible technique for automatic ex-
traction of discourse relations in Swedish, at least
with some improvements, but further investiga-
tions would be necessary to accurately evaluate
this contention.
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A writing assistant using language models derived from the Web

Sven Karlsson
Department of Computer Science
Lund University

sk@svenk.nu

basic idea that language is a game governed by a
Abstract set of commonly agreed set of rules. The rules

change over time and between groups. Think of
The web is the largest amount of text ever  football, American football, rugby, Wales foot-
available to man, and the search engines ball and football originate from the same set of
has classified and counted words on a rules and they have their likeness but being good
large portion of it. This give us access to  at one of the those not mean that you are good at
huge copra in a number of languages. all of them. Now that we have access to huge
This article tries to se how the different  amounts of corpora we need find ways to use it.
measurement methods behave and what We have looked at uni/bigrams, bi/trigrams, mu-
possible use they might have. The tual information, T-scores, and log likelihood as
measurements used in this article are measurements for word collocation. The Google
uni/bigrams, bi/trigrams, mutual informa-  API didn’t give us any possibility to use a win-
tion (Church & Hanks 1990), T-scores dow for the words so had to make do with regular
(Church & Mercer 1993), and log likeli- bi & trigrams. There are of course other statisti-
hood (Dunning 1993). A lot of work has cal test we could have used such as t-scores and
been done to make a visual display that 2. The criticism about t-scores has been that is
makes it easy to compare the differ meas- assume normal distribution and is therefore not
urements suitable for limited copra, so would been a can-

didate but time did not allow that.

1 Credits 3 Background

This project is a part of the course DAT171 LanBeing dyslectic, | produce a tremendous amount
guage Processing and Computational Linguistiasf errors and | haven't found a speller that can
at Lund University. The idea of using the web agind them all. My dream is to make a speller that
a source for statistics came from senior lecturewould catch more errors and help you before you

Pierre Nugues. make them. Today | usually let someone proof-
) read what | write, but there are four problems
2 Introduction with this:

L i q Thl' I’'m running out of friends because it can be
anguage was first grammar came second. The quite time consuming.

set that is described by grammar is not the sa The proofreader needs domain specific
set as the modern language. These are the key

! _ Jus : knowledge.
points why | think statistic analyzing and the; g, persons are better proofreaders than
brute force approach has been so successful. others.

Though | could not fully comprehend Wittgen-
stein’s language theory | sympathizes with the
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4. 1 need to understand and be able to work toFhese are the two simplest measurements meth-
gether with proofreader. ods. Here we look at the quotient between uni-
So if | hand out this paper to ten people and asgram and bigram or bigram and trigram. The idea
them and to proofread and correct it for me weés to counter the effect of commonly used words
would probably end up with ten different docu-by looking at the quotient, which means if a cer-
ments. Every person has is view of languagg&in combination of word is likely it's also likely
should look like and all of them would or couldthat a smaller part of it also will be likely. The
be grammatically correct. Grammar alone wegroblem here is that we still do not compensate
will not catch awkward expirations or faulty im- for extremes in occurrence. But still is an easy
plications, so we | need tools that can handle thisand fast way that gives very interesting results for
some problems. The big difference between
4 Practical uses Uni/Bi- and Bi/Tri-grams and the other methods

are that they are merely balanced counts as op-

| have mentioned spellers before. | think it would,,caqd to the other methods. which are based on
work great as a complement finding words th ignificance. 1

have been misspelled in a way that they are cor-

rectly spelled words but not the intended word. § 2 Mutual Information

also think it will get the suggestions for the re-

placement word up to a level of a human user. IFano (1961: 27-28) defined mutual information
can also pick up problems with sentencing that ibetween particular events x and y, in our case the
missed by the normal grammar checker, but ibccurrence of particular words. Pointwise Mutual
won't be able to give any clues to what is wrongnformation was presented by Church & Hanks
in this case. In Swedish, there is a special proba 1990 and is the method we used. Mutual In-
lem with split compounds that probably alsoformation measurements are better at compensat-
could be solved. There are more areas than speltg for rare word then simple Uni/Bigram and
ing and proofreading that will benefit from this. Bi/Trigram. This mean that we find rare word
To simplify languages is a big market for thosehat when used their used together. When Church
who write manuals and technical documents o& Hanks wrote their article they saw a use for
other literature where it is important that thetool for lexicographers so they automate the
reader can understand. It does also make thingsocessing of copra. The formula we used looks
easier when you want to translate a text, espéike this:

cially if it will be machine translated. It could

also help people who write in a non-native lan- o) NC(Wl,WZ

guage. Here | think we can go a step further and (Wl,W )— log, W >

create a tool that will be able to suggest word and C W
actually help the writer in an early stage. Ther
are products like these on the market Co:Writer -3 T-Scores

by Don Johnston nc. This program IS _for kid -Scores is standard statistical test that looks at
and uses very restricted topic dictionaries but

think that there will come much more advance he difference between th_e observed and expected

. eans. T-Scores according to Church & Mercer
tools in a near future. 1993 better picking out grammatical patterns or
combinations of very frequent word such as “and
of” or “and the”. The formula looks like this

The five methods compared in this paper range

from very simple to complex. The common fea- 2)_ 1 2
ture of the methods is the use of the count of uni, T(vvl 2)_ C(vvl,w ) C(Wl)c(w )
bi and trigrams. In all the methods we used the W)=
scores and the resulting ranking and discarded

level of significance.

5 The statistic measurements

5.1 Uni/Bigram and Bi/Trigram

81



Table 1. Google & api no restriction.

5.4 Log likelihood

Word Google api %
Log likelihood (Ted Dunning 1993) is much The 18300000 12700000 0,693989
more complex than the other measurements wef 16700000 11600000 0,694611
used and claims that it is more accurate seeind 17400000 12100000 0,695402
from a statistical viewpoint. The main advantaggo 17200000 12100000 0,703488
with this method is that it can be used on smalk 17800000 12400000 0,696629
corpora that are not binomially distributed. Inygy 16100000 11200000 0,695652
our case we can assume that we have a bingy,q 16200000 11300000 0,697531
mially distributed corpora as we have huge op, 15800000 11300000 0,71519

might | say ridiculously large corpora. _ o
Table 2. Google & api language restriction.

6 Implementation

hat causes these results is unclear. One theory
that it is different languages or control charac-

i . . ers that could cause these problems. This may
GUl/displaying (see Appendix A). As the VVebexplain some of the grave errors in Table 1 but it

transactions take a lot of time, every look up tak%loesn’t explain the 30% difference between a

up to 3 sec. and the average length pf a Semenﬁ‘(ajrmal Google search and an API search. | re-
is ten words and as we access it 3 time once f%r )

) . ) . tricted the search to include only English and
unigrams, bigrams, and trigrams so it can take u nly the body text in Table 2. A difference that

to 2 minutes. At times when load is heavy, it Cat ing ang can cause problems is the three per-
time out and fail a search completely and there Bant variation in lookup between wordgnd

not much to do about the time it takes to do %nd To has a difference in excess to 200000
lookup. when we use a restricted Google search, but

6.1 Google API when we use the API we get the exact same an-
' swer. There is a possibility to check if number of

Google provides a SOAPAPI with example hits is an estimate or if it's an exact value, but
code in Java. The API makes it possible to acce¥#en we are dealing with English almost every-
the Google search engine from your program an@ing is an estimate so it is of no greater use.
gives an easy way to retrieve the result. A search o

via the AP should give you the same result a¥/hen restricting a search, you choose from 28
normal web search, but it doesn't as we can s@fferent languages and 240 domains. It is also
from Table 1 & 2. If you don't use language re-POssible to restrict a search to just text or links.

striction as in Table 1 the errors are so grave thdt® even further restrict a search you can put on

The implementation consists of tree parts the we
connection (Google API), calculations an

the result must be impaired. date restriction or search just one site.

Word Google api % 6.2 Scaling

The 3670000000 failed To get the scale right was a time consuming job.

Of 2440000000 1530000000 0,627049 And as discussed before we are only interested in

And 2390000000 1510000000 0,631799 the scores and the resulting ranking.

To 2320000000 1460000000 0,62931 The scaling model can be set in different ways

A 2240000000 1410000000 0,629464 linear, logarithmical or preset scale; they can ei-

You 213000000 426000000 2 ther be self-adjusting or have fix min and max.

Wwas 20100000 245000000 12,18905 Each problem needs is own scaling so that result

An 16000000 300000000 18,75 really shines through the noise. It would also be
good if the users could make their own adjust-

1 ments.
SOAP, or the Simple Object Access Protocol, is an XML based protocol for
accessing remote objects over the network.
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Uni/Bigram

.toCONSISt .or.CONSISt at

Bi/Trigram

..«CONSISt .orto CONSISE at

T Score

..CoNnsist «..consist at

Mutual information

Is it to consist of or to consist a.t

Log Likelihood

..consist of «.consist at

Figure 1. consist at consist of.

or 11000000
7 Results at 10500000

We start with a favorite exampM/ill it consist of Table 3. Unigrams.
or will it consist at

If we look at the bigrams, we find that even with-
Here we can see (Figure 1.) the expected diffegyt any calculation it is obvious thabnsist ofis
ence betweewf andat in all 5 of the measure- the correct form. We can also see that all the
ments. We can also se that the wotdnsist pigrams that containonsistare much lower than
scores as very unlikely alternative except withhe others.
the mutual information. This could be explained
by the fact thatonsistis a rare word compared to

the rest of the words. The behavior that mutyal Bigram count
information shows is exactly what we want. Agjt 5880000
divergence that is harder to explain is the res [f to 7110000
from log likelihood. Any idea mail me! to consist 123000
nsist of 97600(
In Table 3, we can see the scores from the G()%—?O?St ° 3440000
gle API. Consiststicks out and is a tenth as con o 6790000
mon ny of the other words are. .
onasany ot W to consist 123000
consist at 213(
Unigram count Table 4. Bigrams
Is 11600000 ) L .
it 10900000 When we look at the trigrams it is not so obvious
to consist atis wrong because we hawa to
to 11100000 consistthat scores equally low. But what we can
consist 120000( qually Tow.
of 11600000
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see is that the proper way to usensistin is the

phraseo consist of.

Trigram count
Isitto 318000
it to consist 1090
to consist of 10700(
consist of or 5660
of or to 32800
or to consist 192
to consist at 299

Table 5. Trigrams.

Word T-Score  Mutual Log Like

it 0,506897 2424,219 11,86122
to 0,652294 2665,84 12,07437
consist 0,010165 350,2004 9,416546
of 0,820168 987,7525 12,46565
or 0,296552 1853,864 11,07464
to 0,617273 2605,124 11,99476
consist 0,010165 350,2004 9,416546
at 0,00179 42,76772 3,769503

Table 6. T-scores Mutual information Log

Likelihood

This is for the person who wants to go to the motions

and see that | did the math correctly.

8 Further work

» Finding more good examples to try out.

« See if it is possible to make word predic-
tion

9 Conclusions

The conclusion must be that it is possible to use
the web as base for collecting language data.
There seem to be great possibilities to make a lot
of different tools out of the data available and the
amount of data makes it easier and produces
more reliable data. The sparse testing that we
have done so far shows good promises for the
future.
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» Tweak the scales and make it to do simple

math operation between the ranks of the
different measurements.

Test it other languages and specific do-
mains.

Implement methods for smoothing N-
grams for sparse data.

Test other measurements like Z-score and
2

X -

Building a large local database of uni, bi
and trigram would be the first step this

would cut execution drastically time and
make evaluations of methods, measure-

ments and problem a more reasonable task.
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Appendix A. My program

] GoolgeizerDemo *

~Wirite text

is itthe most freguently used

Googlize

The googleized text

Uni/Bigram

«itme MOSt frequently used

BiTrigram
is it the MOSt fre que 3.2.{. used
T Score

is ;.”:m most froquantly usad

Mutal information

«.the most ...
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Automatisierte metrische Analyse lateinischer Dichtung
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Abstract

This paper describes a prototype sys-
tem for the automated metrical anal-
ysis of classical Latin verse. FEven
though the Latin writing system not
at all guarantees a perfect rendering
of the features relevant for the met-
ric in a verse, it is quite well possible
to at least narrow down the results
to a few candidate solutions. Use of
a dictionary should greatly improve
the performance and deliver a unique
solution most of the time.

1 Einfiihrung

Dichtung zeichnet sich dadurch gegeniiber Pro-
sa aus, daf in ihr der sprachliche Ausdruck
durch bestimmte Regeln eingeschrankt ist. Sie
konnen sich etwa auf die zuldssige Abfolge von
betonten und unbetonten Silben beziehen, wie
in den Versformen der meisten modernen euro-
péischen Sprachen, oder auf die Kombination
bestimmten Worter, wie etwa im Reim; daher
bezeichnet man die Sprachform in Gedichten
auch als ,gebunden®.

In der lateinischen Dichtung der Antike be-
zogen sich solche dichterischen Formen iiber-
wiegend auf die Abfolge unterschiedlich langer
Silben. (Wir bezeichnen heute lange Silben als
schwer, kurze als leicht; das vermeidet Verwir-
rung, weil schwere Silben sowohl lange als auch
kurze Vokale enthalten konnen, leichte Silben
allerdings nur kurze.) Diese Form der Versbil-
dung heifst quantitative Metrik. Ein zuléssiges
Muster fiir einen Vers kann etwa folgender-

86

steht — fiir eine schwere, - fiir eine leichte und
x fiir eine beliebige Silbe; == steht fiir wahlwei-
se eine schwere oder zwei leichte Silben. Dieses
Versmaf heifit (daktylischer) Hexameter.

Wie auch in den meisten modernen Spra-
chen ist die lateinische Orthographie alles an-
dere als vollkommen: Lange und kurze Vo-
kale werden mit denselben Buchstaben wie-
dergegeben, sind also nicht zu unterscheiden;
Diphthonge werden mit zwei Buchstaben ge-
schrieben, die aber auch fiir getrennte Laute
stehen konnen (etwa a-e); das Zeichen i steht
sowohl fiir den Vokal i als auch den Konsonan-
ten j. Dazu kommen zahlreiche weitere Varia-
tionsmoglichkeiten etwa in der Silbenbildung,
die sich in der Schrift nicht widerspiegeln.

Trotzdem ist es erfahrungsgeméf fiir Men-
schen relativ einfach moglich, auch unbekann-
te Verse beim ersten Lesen iiberwiegend kor-
rekt zu skandieren, also metrisch zu analysie-
ren. Dies gilt selbst dann, wenn viele Vokabeln
unbekannt sind und also keine Informationen
aus Vorwissen ergidnzt werden kénnen. Es soll-
te daher moglich sein, auch einen Computer
mit Heuristiken zu versehen, wie Menschen sie
in dieser Situation anwenden, und ihn damit
Verse automatisch analysieren zu lassen.

2 Umsetzung

Fiir die Realisierung des Projekts wurde Has-
kell als Programmiersprache gewahlt; seine al-
gebraischen Datentypen und seine bequeme
Speicherverwaltung machen es einfach, auch
komplexere Datenstrukturen zu realisieren.
Das Programm betrachtet jeweils nur einzel-
ne Verse. Die Analyse erfolgt in fiinf Schritten;
jede Verarbeitungsstufe erhélt nur die Ausgabe



des vorangegangenen Schritts. Gibt es in einem
Schritt mehrere Interpretationsmdoglichkeiten —
etwa ae als Diphthong oder als zwei getrennte
Vokale —, so werden sdmtliche Moglichkeiten
betrachtet und an die néchste Stufe weiterge-
geben. Weniger wahrscheinliche Moglichkeiten,
in diesem Fall die Interpretation als zwei ge-
trennte Vokale, werden dabei mit ,Strafpunk-
ten“ belegt. Dies erlaubt es, d&ufierst unrealisti-
sche Interpretationen spéter auszufiltern.

1. Zunéchst wird jedes Wort einzeln in Lau-
te zerlegt; da ein Laut bei weitem nicht immer
einem Buchstaben entspricht, vereinfacht dies
die weitere Verarbeitung. Zugleich wird fiir je-
den Laut vermerkt, ob es sich um einen Vo-
kal bzw. Diphthong oder eine von verschiede-
nen Konsonantengruppen handelt. In diesem
Schritt wird nicht versucht, zwischen langen
und kurzen Vokalen zu unterscheiden: Da ein
Vokalbuchstabe gleichermafien fiir einen lan-
gen wie einen kurzen Vokal stehen kann, wiir-
de sonst nur nutzlos die doppelte Zahl von Lo-
sungskandidaten erzeugt werden. Fiir die Zer-
legung wird gewohnliches Parsing mit rekursi-
vem Abstieg verwendet.

2. Anschliefend werden aus den Lauten Sil-
ben gebildet. Die lateinischen Silbenbildungs-
regeln sind relativ einfach: Von mehreren Kon-
sonanten, die zwischen zwei Vokalen stehen,
gehoren alle bis auf den letzten zur ersten Sil-
be; gibt es nur einen Konsonanten, gehort die-
ser dagegen zur zweiten Silbe. Eine Kombina-
tion aus einem Plosiv und bestimmten Dauer-
lauten, etwa tr, wird dabei meist wie ein einzel-
ner Konsonant betrachtet (sog. ,muta cum li-
quida®). Auch fiir diesen Schritt reicht ein Par-
ser mit rekursivem Abstieg, mit etwas Nachbe-
arbeitung, aus.

3. Nun werden die bisher isoliert betrachte-
ten Worter wieder zusammengefafit. Im allge-
meinen geniigt es, sie einfach zu verketten; al-
lerdings treten an den Kontaktstellen der Wor-
ter Konsonanten zum folgenden Wort iiber,
wenn es mit einem Vokal beginnt. Treffen dort
zwei Vokale unmittelbar aufeinander, so ver-
schwindet zudem meist eine der Silben, es kon-
nen aber ausnahmsweise auch beide erhalten
bleiben (Hiat). Dies wird beim Zusammenfii-
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gen beachtet.

4. Nachdem jetzt die Silben im Vers vollstén-
dig bekannt sind, wird in diesem Schritt ver-
sucht, ihr Gewicht zu bestimmen. Silben, die
einen Diphthong enthalten oder auf einen Kon-
sonanten enden, sind stets schwer; Silben, auf
deren Vokal ohne dazwischen stehende Kon-
sonanten der Vokal der nédchsten Silbe folgt,
sind meist leicht. Bei den verbleibenden Silben
héngt das Gewicht ausschlieflich von der Lén-
ge des Vokals ab, die ohne Worterbuch nicht
bekannt ist, und kann daher nicht bestimmt
werden.

5. AbschlieBend wird durch pattern mat-
ching gegen die in Frage kommenden Vers-
mafe gepriift, welche Losungskandidaten eines
der Versmafie realisieren kénnten. Dabei wer-
den viele Kandidaten verworfen; so kann etwa
die Silbenfolge schwer—leicht—schwer in einem
Hexameter nicht auftreten.

Das Ausfiltern unrealistischer Kandidaten
ist am besten nach Schritt 3 moglich, wenn die
Strafpunkte fiir den gesamten Vers vorliegen.

3 Ergebnisse

Das Programm wurde mit rund hundert Ver-
sen aus der ,Aeneis“ von Vergil (durchge-
hend Hexameter) und den ,Amores‘ von Ovid
(abwechselnd Hexameter und Pentameter) er-
probt, die wihrend der Entwicklung des Pro-
gramms nicht getestet worden waren.

Nur bei einem Vers gelang keine metrische
Analyse; die korrekte Interpretation hatte so
viele Strafpunkte, daf sie als zu unwahrschein-
lich verworfen wurde. In den iibrigen Fallen
wurde jeweils die korrekte Analyse gefunden.
Allerdings konnten dabei nur in rund einem
Achtel der Félle alle anderen Lisungskandida-
ten ausgeschlossen werden; in den {ibrigen F&l-
len blieben mehrere Moglichkeiten offen, so daf
die korrekte nicht identifiziert werden kann.
In einzelnen Fillen blieben zwar bis zu vier-
zig falsche Kandidaten iibrig, doch ist dies die
Ausnahme: Immerhin bei der Hilfte aller Verse
waren es nicht mehr als zwei.

Eine deutliche Verbesserung diirfte der Fin-
satz eines Worterbuchs bringen, in dem Vokal-
langen und Diphthonge verzeichnet sind. Ob-



wohl auch dann noch nicht alle Mehrdeutig-
keiten beseitigt sind — etwa bei Wortern wie
malum, die mit kurzem und langem a vorkom-
men, oder dem Hiat —, diirfte schon ein weni-
ger umfangreicher Grundwortschatz die Ana-
lyse beinahe perfekt machen.

Will man weiterhin auf ein sicher aufwen-
dig anzulegendes Worterbuch verzichten, diirf-
ten sich die Verbesserungsmoglichkeiten dage-
gen auf kleinere Anderungen am Strafpunkte-
system beschrinken. Mdoglicherweise ist es aber
noch moglich, bessere Heuristiken fiir die Deu-
tung von ¢ als 7 oder j zu finden: In seiner
jetzigen Form halt das Programm h#ufig noch
einen Vokal fiir méglich, wo ein menschlicher
Leser intuitiv lingst abgewinkt hitte.

4 Dank

Fir das Programm habe ich die Parser-In-
frastruktur adaptiert, die Lennart Andersson
(Lund) in seinem Papier ,Parsing with Has-
kell“ beschreibt. — Die Anregung, lateinische
Metrik mit EDV zu behandeln, verdanke ich
Marcus Deufert (jetzt Leipzig).
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A text critiquing system for Swedish-speaking students of French

Fabian Kostadinov Jonas Thulin
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University of Zirich Lund University
fkostadinov@gmx.ch Jonasthulin@hotmail.com
Abstract stating the student’s level. Rules may include for
example. ..

Making objective, quantitative linguis-
tic analyses is a time-consuming and
demanding task. Therefore, we have
developed a language analysis system,
which can be used for counting oc-

e how many times certain advanced verb tenses
are being used throughout the text,

curences of any given pattern. Rule e how often the same substantial grammatical
trees and external dictionaries are sup- mistakes, as using a pronoun followed by a
ported. The program is written in 100 % wrong verb form, are repeated,

Java 2 and Swing. Its strength is that

rules can be easily added or modified e the average sentence length,

and the main weakness is that it cannot
assess language as well as a human can,

since only quantitative criteria, and not and much more. _
semantic ones, are taken into account. However, the task of manually applying these
rules to a text is time consuming and requires

a profound understanding of grammatics, inflec-
tions and text analysis in general. As in today’s

Ever since people have been learning new |anW0|'|d where one teacher often has to supervise
guages besides their mother tongue, it ha been $€veral dozen students at the same time, such anal-
question of interest of how to approach the targe¥sis cannot be done regularly; it is simply too de-
most efficiently. A number of different approachesmanding in terms of time and knowledge.

and recommendations has been developped by lin- With the program we have written, we tried to
guists for support purposes. Interested in howdevelop a prototype of an analysis tool, that should
to define reliable measures, which empower anye able to commit linguistic analysis based on a
teacher to state the language level of his pupilstule sheet automatically. We believe that there is a
some linguists over time developped such meareal need for such a program since it would allow
sures. They found out that the active and passivboth the student and the teacher to keep track of
ability of speaking a language by a student, is rethe student’'s changing language level in an easy
flected astonishingly well by certain grammaticaland uncomplicated manner. The aim of the pro-
indicators (besides, of course, the richness and varam is to provide one with an easily understand-
riety of the student’s vocabulary). So they gener-able single measure on a scale, but also showing
ated rule sheets that can be applied to a text writthe mistakes or certain grammatial constructs in
ten by a student and return an indicator numberthe text.

1 Introduction
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2 Language learning and linguistic 2.2 Intermediate-level user (level 3—4, CEF
development B1-B2

Intermediate-level users possess a basic command

Both childrgn Iearning their native Iang_uage andy¢ the standard langauge, and have adequate abil-
adults learning a foreign language acquire the Ianl—ty in coping with day-to-day communication.

guage step by stepClahsen, 1986 (Schlyter,  apout 50 9% of their utterances consist of full sen-

2003, starting with nouns and simple phrases, adgo e and verbs are inflected and negated, but not

vancing via using simple everyday langauge to (inyyays correctly. Swedes at this level often forget
some cases) using the complex language found Mat e.g.auanddesare maps o& leandde les re-

e.g. magazine and journal articles. spectively, and therefore frequently use the tauto-
However, there is one substantial difference betogical construcau I’ or forget mappingle lesto
tween native- and foreign-language acquisitionges An intermediate-level user would say some-

in native-language learning, there is no othething like Non, je ne suis pas venu en train, mais
“deeply-rooted” language with which the new lan- en autobus.

guage could interfere, whereas there is in foreign-
language learning. This interference makes it diffi-2.3 Advanced user (level 5-6, CEF C1-C2)

cult for Swedish-speaking FEdeamers 10 grasp agor several years of French studies or stay

€9 W(Ijrq o;lder,_ eI|S|or;), cofmplex relatlvej (e'%'in a French-speaking environment one can have
?uxque $t|nc ectl?g Y{Er séatgr rr)]ersor; and Verb reached the advanced level. This level is character-
orms o _presezn In the Swedish, efg_.;r SIM™ized by full acquisition of typical French-language

ple, conditionnet, gérondif andsubjoncti These constructs and productive use of a significant

parts of the French language are (in general) Onl%tmount idiomatic expressions and fixed phrases
partially comprehended by casual (non-academig

: : ._(approaching native-speaker quality). Grammati-
or non-professional) users. Of course, this applie PP g P quality)

to Swedish Ki ho h ; al (syntactic) mistakes are rare and even complex
0 SWEdISh-Speaking persons, who have no growpomguage, like the one being used in this report, is

up in a French-speaking environment. (at least partially) mastered. Level 5+ examde:

Below the levels are roughly described: je dis quelque chose auquelle je ne suis pas tout
a fait g, ce sera la composistion des rapports
2.1 Novice (level 1-2, CEFCommon comme celui-ci. Enéflechissant, je pense que
European Framework) A1-A2) traduire ce rapport en francgais serait un bon exer-

' _ _ cise pour le lecteur qui se croit vraiment itréser
Novice users having only “survival-level” lan- |e frangais. C’est improbable que personne qui

guage skills tend to use mostly noun phrases ifjse ceci ne puisse le fairgyith any mistakes cor-
their communication, and do not yet inflect verbsyected.

fluently. Also, negations are usually of the type

<negator> <noun phrase> . Novice-level 3 The program

students also need a co-operative and patient in-

terlocutor who does not mind the student having®ne of the major goals of our program was the
limited fluency and vocabulary as well as needingseparation of the above mentioned linguistic rules
to ask aid questions. An example of novice-levelfrom the program logic itself. If we are able to sep-
language production ison, pas en train, en auto- arate language specific linguistic rules for analysis

bus from the rest of the program, we are also able to re-
use the same program for different languages. Of
IFrench as a foreign laguage course, rule sheets must exist for every language

?In Swedish, the conditional is (usually) constructed with to be checked against by our program. This part
mg Eﬁ;@ﬁﬁgﬁﬂﬂ infinitive; consider it analogous with  h55 to be done by linguists. The program itself
3That mode is ce.rtainly not used in the same way inshould be able to load a new text, analyze it using

Swedish (or German) as in French. the rules and show the results during runtime, and
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not during compile time as far as possible. We ddout annotated with tags, for instance HT®IThe
not want a poor linguist having to learn the depthsGUI then presents the result to the user again.
of programming languages before being able to We will now take a deeper look into the pro-
translate his/her rules to a format, which the program’s different pieces.
gram is able to handle. _

We therefore chose the growing standard xmML4 ~ Implementation concepts
to encode the rules. Further, we need a dictioy ¢ Implementation language

nary to look up words in the foreign language to

obtain some grammatical information about everyohur ;I)(;o?]ramf is implemented 'r ?OO % Java gnd
word. In order to analyze a text we had to split jrShould therefore run on any platform supporting

up in words and sentences first. We decided to us‘(lzava 1.4 and Swing GUIs.

Java’s (version 1.4) ability to work with regular 4, 5 The GuI

expressions. Although Perl and Prolog at the mo- ] - ) )

ment still tend to be the standard languages, theif " GU! is a multilingual text editor with support
not providing one with integrated features for cre-for reading and writing Unicode text file as well as

ating user interfaces like Java’s Swing classes do {9 Native clipboard handling, e.g. copy from MS

a severe disadvantage. It would certainly be possit/ord and paste into the editor. After the user has

ble to use e.g. Prolog for the parser, but since oufyPed: pasted or loaded a text, he/she can press the
program is likely to be used mostly on Windows Analyze button to obtain a version of his/her text

machines target and non-programmers would pre¥ith XML tags, added by thénalyzer  accord-
fer not having to install Prolog just for our pro- N 0 the rules specified in the rule file.
gram, we decided to do it entirely in Java. 43 The rule file

The program on a high-level user perspective i . )
relatively simple. Fist, the user chooses a file tjl’he information of how a text has to be parsed by

load into an editor pane (or types or padtisli- theAnalyzer is stored in an XML-encoded file.

rectly into the editor), presses the *Analyze” but- e will call it the “rule file” or “XML rule file”.

ton and then receives back another window, wherQNe assume that the reader has a basic knowl-

grammatical mistakes are marked up and his/he‘?dge of the current XML standqrds, understands
language level is shown on a séale roughly the syntax and semantics of XML and

. . knows how XML and a DTD are connected one
Looking deeper into the program, as soon as th

lyze button i d by th e mput o (e other)
analyze butlon Is pressed by tn€ user, the inputtex The strict separation between encoding the rules

fsint to tt;)e c.orA.r:alyzeIr( I?sta;]strlngtadnd thi on the one hand and th&nalyzer ’s program
nalyzer Degins its work. ‘1 it has not done | logic on the other hand results in a gain of in-

before, it loads the XML-encoded rules, splits ulodependency and configurability. The rules them-

the text into tokens and applies the rules one aﬂesrelves may be changed easily without any need

agotr;etrhto the dtoke?s. Sramrr:jgt[[(?al mforrlnatlonof complementary changes to the program logic.
about the words 15 Tound i a dictionary. In Ol e 5 the tags, their possible attributes and car-
case the dictionary is contained in a hash table, b

better alt ti : datab | ttuc}inalities are defined in a DTD file, the user has
erer aleraives as using a database or a 'eilear guidelines to follow when writing new rules.

tree could be thought _Of' An invalid XML rule file will result in the parser
When the analysis is done, th@alyzer re-  throwing an error and writing an error message to
turns the text to the GUI part of the program, ihe screen because a flag is set to check the XML's

- validity before parsing.
“Pasting is OS native and allows the user to analyzeeqg.  ~
Word documents by opening them in Word, copying the text,  8In our prototype only the raw XML is shown, but adding
and pasting it into the editor. a style sheet would enhance the user’s experience consider-
>We have not yet agreed how to report a preliminary lan-ably. However, we consider it out of the scope of an 80-hour
guage level using the data from the counters, so the tablproject, but may add it in a future version, if it is requested
in (Schlyter, 2008 by the users and either of us finds the time.
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As its name indicates, a rule file contains a set ok/sentenceTokenizeRule>
different rules, each one encoded with valid XML

;Ef"llgs_' Eacg t_|me thAngl)t/)zer tls séart;c:é;ﬂhl_e E)UCI)eM one “regex-tag” which encloses a regular expres-
e 1S read in, parsed by a standar ion. The text will be split up into sentences using

) . Sl
parst(:]r, tra?sfo(rjrr_led tﬁ a f\ett %fl Jav%objlects, Wh'cfhis regular expression as a delimiter. Therefore
are then stored In a hash table. ralyzer one has to be aware of blank characters, spaces

flnallthorlfs }l_\i'th thlls hals_h table. hich and so on. (This is valid for all the tags containing
In the rule file, only valid XML tags, which are regular expressions in the rule file.)

defined in the corresponding DTD, are allowed. A
rule file may contain comment tags (starting with4.3.3 The Word Tokenize Rule
<!-- and ending with-> , however such com-  The second special rule is called the

ments are simply ignored by the parser. wordTokenizeRule . It is nearly the same as

The rule file starts with the standard XML thesentenceTokenizeRule  and looks like:

header. We used W3C-compliant version 1.0 stan-

dard XML. Currently, no namespaces are in use’<wordToken|zeRuIe>

however Xerces-J, our parser, should be able téregex>[a—zA—ZO—9]+</ regex>
handle namespaces correctly, but such functional<-/ wordTokenizeRule>
ity has not been tested out. This rule is used for tokenizing a sentence into
An important issue not to be forgotten in the words.
header tag is choosing an appropriate character
set. As we are dealing with French, the characte?"?"4 The common rules
set must at least contain all French special char- Following the two special rules come the com-
acters, such ag or a etc., and the rule file itself mon rules (or core rules). There must always exist
must be stored in the chosen format. Of coursét least one rule, which at the same time is the root
one has also to make sure, especially for unusud initial rule.
character encodings, that the used parser engine isEach rule consists of two parts: Tisearch
able to handle the chosen character set. If an inagnd theaction . A rule is applied by first
propriate character encoding set is chosen, thef@earching in a sentence for an occurrence of the
is a risk that certain words will never be found in Search criteria and then, dependent on whether
the dictionary or the program will not be able to @ construct in the sentence (e.g. a word which)
successfully match certain words in the text to thenatches it or not, thection s found respec-
search rules (see below). tively notfound part is executed.
Further, the rule file consists of a set of “counter  The rule tag contains an attribute id, which is

tags”, two special rules and finally a set of theits unique identifier in the XML document (“is of

Each Sentence Tokenize Rule contains exactly

common or core rules. type ID ). Additionally, each rule tag must spec-
ify a framesize value, indicating the number of
4.3.1 The counters words that the rule should be applied to. The start

The tagcounters embraces a set of empty position for a rule’s word frame to be opened is al-
tagscounter . These counters can be specifiedways the current position of thenalyzer (the
to be the holders of search information, in othedeft index) counting as many words to the right as
words how many times certain grammatical formsthe frame-size’s value specifies or to the end of a

are met by thé\nalyzer . sentence.

4.3.2 The Sentence Tokenize Rule The Search A search can contain three differ-
The first special rule is called the ent search criteria or any combination of the three.

sentenceTokenizeRule . Itlooks like: e <regex>apprends?<iregex> searches

<sentenceTokenizeRule> for regular expressions such agprend or

<regex>[.;:1?]</regex> apprends

92



e <lemma>apprendre</lemma> searches 5|0 |c
ol Ne] [} Q
for every word that has a lemma equal to the 2| 2|3
stringapprendre for instanceapprendraitor Category > 2|8 |2 €
appris noun X | X[ -1-7-
. . verb (ordinary) - XX | XX

e <inflection —

category="verb">...</inflection> "eTb (parﬂmple) XXX XX
is able to search for certain grammatical con; adjective X X]-]-]-
structs, here for instance for a verb. pronoun X XX - |-
Int _pronoun X | X|X|-]-
The attributecategory  represents a word | determiner XX -|-]-
category and may take one of the following| adverb S BT B N
values: noun, verb , adjective , pronoun , preposition -l - -] -] -
int _pronoun (interrogative pronoun), | conjunction - - -
determiner , adverb , preposition , numeral A N A B
conjunction , numeral 7, interjection , interjection SR I N B I
abbreviation , residual (any word that | gbbreviation R I I R
does not fit into one of the other categories). residual N N R

Depending on the category, different combina-

tions of tags may be added to the inflection tag.Table 1:Possible tag combinations for given word

The program does not check whether a given come
bination of tags makes sense or not, it simply

ategories

searches for this very combination (thus searchpg aware of the order! The XML parser does only

ing for a noun with a third person smgula_r tag will accept tags appearing in this specified order, thus
of course never return any regult). Basmally,.ev-fOr any rule you do not specify a gender, tense and
ery word may have a combination of the following mode, you have to assure that the number tag ap-

grammatical information:

1. gender : Possible values afeminine
masculine

or ]
fi

pears above the person tag.

It is also easy to recognize that in the rule
le combinations of these tags can be specified

that have no connection to real grammatical word

number: Possible values argg (singular)
orpl (plural).

forms at all. The program will not show any er-
ror message to the user but simply not return any

result. Table4.3.4indicates the use of word cat-

3. person : Possible values ark, 2 or 3.

Possible values ardfuture
,imperfect orpast .

4. tense :
present

mode: Possible values armdicative
conditional , infinitive
participle or subjunctive

All these have a common empty tag format as
<tense value="present"/>

By writing these categories we oriented our-
selves not only on purely grammatical and linguis-
tic knowledge but tried to find a compromise with
the needs of programming purposes too. Further,

" Numerals are rarely used in the dictionary. Our program
will treat them as Residuals.
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egories and the corresponding grammatical infor-
mation that may be specified.

Some comments have to be made:

1. In verbs, the grammatical information to be
specified varies heavily. Whereas “normal”
verb forms do not have any gender, partici-
ples may indeed have a gender. Imagine the
feminine plural past participle of the French
verb ouvrir (= to open)ouvertes To have
appropriate knowledge about this word, one
needs to be able to specify a gender (femi-
nine), a number (plural), a tense (past) and
a mode (participle). On the other hand,
of course a word like third person singular
present ofire (= to laugh) does not have any



gender at all. 2. Whether tagging of current frame should be

done and which tag should be used,
2. For many European languages, there are no

participles with forms other than present or 3. Which rule should be the next one to take

ast. .
P The rule usesextrule ’s value, which must

3. Some pronouns do have a gender sucheas point to an existing rule’sd , to detect which rule
she, his, hemwhile others, such asyou, we, to take next. This next rule does not need to be
my, yours do not. The same applies to inter- specified as child tag insideund/notfound
rogative pronouns. The only reason for which rules can be specified

inside thefound/notfound tags is the higher

4. Determiners that have a gender and/or a nunteadability of the XML file. The program will al-
ber are for example the French wosds son, ways identify the next rule to take using the ref-
ses, seizgsixteen) and others. erence thanextrule  points to, but disregard

E dh | | ion th where in the XML file it is specified. If no next
very word has atleast a regular exp'ressmnt Hle is set, then the initial or root rule will be the
may be searched for, namely the word itself, and A ext one to be applied again

lemma. If one would like to look for a verb with- If tagging is set toyes but no tag name is pro-

out further grammatical information, then at IeaStvided, the program will tag the output text with the
a category can be specified. current rule’sid

Wf’rd catggoriesf are a subject of depate through action always specifies what has to be done,
the field of linguistics; often they are simply more if the search delivers a result, this is called the

or less given by the dictionary one uses. found and what has to be done if it does not find
An example: any result, simply called theotfound

Such a structure makes it possible to search for
multi word constructs or to compare words. For
instance, one could specifisaarch thatis look-
ing for first person singulaje, then specify an
action found  to go to another rule that then
looks for a verb in a specified frame that also has a
first person singular ending. On the other hand,
if je is not found, then simply the word should
be skipped and the second rule should never be
called. This can be specified by not providing
notfound  with and next rule.

<rule id="myRule" framesize="max"/>
<search>

<l-- <regex>(ouverte)|(ouvertes)
</regex> -->commented out!!
<lemma>ouvrir</lemma>

<inflection category="verb">

<gender value="feminine"/>

<number value="pl"/>

<tense value="past"/>

<mode value="participle"/>
</inflection>

</search> An example:

These criteria will look in a frame of 4 words for <action>
the first occurrence of a word that hagvrir asits  <found inccounter="fem_pl_pp_ouvrir"
lemma, is a verb and a feminine plural past parnextrule="rule2"
ticiple. In the sentenchk a fermé toutes les portes dotagging="yes"
ouvertesthe wordouverteswill be found, but if tagname="fem_pl_pp">
the frame size is reduced to only 4, even thoughk<rule id="rule2">...</rule>the next rule
starting at the beginning of the sentence, applying/found>
the rule once to the sentence will result in nothing<notfound dotagging="no">
being found. </notfound>

: - : . </action>
The action part specifies mainly three things:

These instructions will, if something is found by
1. Whether any counter should be incrementedthe search , cause thé\nalyzer to increment
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the counterfem _pl _pp_ouvrir , tag the frame
with the tag<fem _pl _pp>...</fem  _pl _pp>
and then go taule2 . If nothing is found, the
Analyzer simply goes to the next rule, which is
not specified here, thus making the initial rule be
applied again.

Overview
On the next page is an overview of all the possible
tags, their attributes and possible child tags.
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Tagname Attributes (Direct) child tags
Action found
notfound
Counters counter*
Counter id::ID # Required
Found inccounter::IDREF # IMPLIED rule?
nextrule::IDREF # IMPLIED
dotagging::(yes | no) "no"
tagname::NMTOKEN # IMPLIED
Gender value::(feminine|masculine) # REQUIRED
inflection category::(noun|verb|adjective| gender?
pronounjint  _pronoun|determiner| number?
adverb|preposition|conjunction| person?
numerallinterjection| tense?
abbreviation|residual) # REQUIRED mode?
Lemma::# PCDATA
Mode value::( indicative|conditional
[infinitive|participle|
subjunctive) #REQUIRED
Notfound inccounter::IDREF # IMPLIED rule?
nextrule::IDREF # IMPLIED
dotagging::(yes|no) "no"
tagname::NMTOKEN # IMPLIED
Number value::(sg|pl) # REQUIRED
Person value::(1|2|3) # REQUIRED
Regex::# PCDATA
Rules counters?

sentenceTokenizeRule
wordTokenizeRule
rule+

Rule id::ID # REQUIRED search
framesize::CDATA # REQUIRED action
(can take the value "max"
for a frame as big a possible,
or a numer > 0 alternatively).

Search regex?
lemma?
inflection?

SentenceTokenizeRule regex

Tense value::(future|present|

imperfect|past) # REQUIRED
WordTokenizeRule regex

Table 2:All possible tags, their attributes and possible child tags

96




All tags that do not embrace child tags are byThe basic text analyzing algorithm works as
definition empty tags. Exceptions are the two taggollows:

regex andlemma, which simply only embrace
PCDATA

This table is to be read as: “There is atag called
gender that has exactly one attribute called
value . A value ofvalue is required and must
be eitherfeminine  or masculine . The tag
gender contains no further tags, therefore it is
an empty tag.”

# REQUIREDand # IMPLIED are used in
their original XML-standard meaning. Child tags
followed by a question marR indicate that the
current tag may have 0 or 1 of this child tag, a plus
+ that it may have 1 or more child tags of this kind,
and an asterisk that it may have 0 or more child
tags. If no sign is specified, then exactly 1 child
tag has to be added.

4.4 The Analyzer

TheAnalyzer carries out the core functionality
of the program. Generally said, it holds a hash ta-
ble of rules, as specified in the rule file, and simply
applies one after the other sequentially to the text.
It always starts by applying the initial rule and then
following the rule’s references (as specified by the
nextrule  attribute of thefound/notfound

tags). Also, as specified by the rule file, it incre-
ments counters if needed that may later on be read
out and used for further purposes.

An  Analyzer must implement the
IAnalyzer interface, which only provides
one method:
public String analyze(String
input) analyze() takes the text to be
parsed as an inp@tring and returns a pseudo
HTML-annotated String  if some rules are
specified to do some annotation tagging. This
returnString  may in a further step be displayed
by a web browser or processed further.

The classAnalyzer implements this inter-
face. Further, it provides a method
public Map getCounters() that returns a
(Java)Map containing the counters. The key to
the Map is simply the name of the counter (thus
a String ), while its value is of typdnteger
The Integer  object can simply be read out by
usingintValue() to receive annt
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1. Split up the input string into sentences by us-
ing sentenceTokenizeRule

2. The basic algorithm to analyze a text is the
following:

3. Split up every sentence into words by using
wordTokenizeRule

4. Repeat as long as there are more sentences:

(a) Repeat as long as there are more words
in a sentence:

i. Go to the next word in the frame.

ii. Try whether the current word
matches the search criteria of the
current rule.

iii. If there is a match, then process the
found part of theaction
Otherwise, check whether there are
still more words in this frame to be
considered. If there are, choose the
next one and go tae If there
are no more words in this frame,
then thesearch was not success-
ful. Process the not found part of the
action inthis case.

iv. Eventually: Increment counters now
and annotate the current frame with
annotation tags if specified.

v. Check for the next rule.

If no such next rule is specified ex-
plicitly at this moment, then choose
the initial rule again. The initial rule
should be applied now to the first
word in the sentence after the cur-
rent word.

Otherwise, apply the next rule to the
current word.

(b) Save the return value of applying the
rule. This value now indicates the index
position of the next word to be analyzed.
This is now your current word. Go &e

5. Put all the possibly annotated/tagged words
together to a single text again and return the
final result string.



As we can see, this algorithm simply applies theindependently of the rest of the source code with-
initial rule sequentially to all words and if it once out the need of recompilation. We used XML for
is successful, then it tries to process the next ruléhis purpose.

in the engine/rule tree to the word. The program needs a French dictionary to work
The Analyzer — always works with word yith At the moment, the availability of such dic-
frames of a certain size that must be given in thgjonaries is not exactly the same as for English lan-
rule tag. The frame’s size should be set with caregyage. As our time resources were limited, we
If & frame is too small, certain grammatical con-chose the easiest possible way to extract informa-
structs in a sentence, for instance words that argon from the dictionary. Of course, there is variety
may not be found. Imagine the sentehd®ve of sing databases to letter trees that improve mem-

course never seen something like this beftiie oy ysag8 very significantly without great losses
frame size is set to a size of 3, tAmalyzer is  f performance.

not able to connect logically the participdeento . . . .
glcaly P e A question still open is about the quality of

the earlier encountered main velnlave On the ! .
: o . ._analysis, which our program can reach. On the

other hand, if the frame size is too big, certain -

. . one hand, the more sophisticated the rules get, the
nonsensical forms may be believed to match the .

o more precise the results are. On the other hand,
search criteria perfectly, although of course they . .
do not there will always be certain problems that cannot

be answered fully either by the programmer or the

4.5 The dictionary linguist. What is the optimal word frame size for

each rule, for example? An important point is

and lemmas of words. At program start, the Wholethat our program does not take into account any

dictionary is loaded into the computer's memorysemantlcal information at all about the text to be

and stored in a simple hash table, which then ignalyzed, nor is a corpus lllustratirig bon us-
being used by theearch . Each word in the age (of today) being used. However, we believe

text builds a key: the corresponding value is anthat extending our program to a semantical level
object that is holder of all possible inflections of T[O,O wou_ld be a much more de.mandlng t"_’lSk’ and
the word. it is dubious whether a semantical analysis would

Due to the fact that a dictionary can never con—horlour our huge efforts implementing it with any

tain every possible word of a language and alséemarkably higher feedback quality.

depending on the tokenizing rules, it might be that Although our idea of splitting up the analyza-
certain words in the text are not found in the dic-tion of repeatedly taken nesearch es and then
tionary. TheAnalyzer will simply ignore this ~action s, it is unceratin that such an approach
word and continue with the next word, thus neverreally can cover the complexity of all linguistic
recognizing it as a match for treearch . Such rules. It was merely hard to find a least common
a behaviour should be tolerable as long as only general structures behind all rules. Of course, this
small percentage of the text’'s words are not constructure now could be improved. One could think

We use a French diction&tyo look up inflections

tained in the dictionary. of adding severasearch parts to a single rule
in the XML file, that then could be linked log-
5 Summary ically using an AND or an OR operator (“The

ayvhole search is only successful, isearch 1
C10\ND search 2 OR search 3 are successful”).
It would also be nice to have a graphical user in-

Our program is surely not thought as a commerci
product, but this has never been our goal. Indee
with our prototype we have shown that basically it "
is possible to encode the linguists’ rule sheets in éerface for editing those rules.
way, that they can more or less easily be changed

8The dictionary is freely available for non-commercial —
purposes éiittp://abu.cnam.fr | °At the moment the program uses up to 85 MB of RAM.
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Installation information

A Java prerequisites

Our program makes use of newer Java features to deal with regular expressions extensively. We ourselves
used the J2SDK version 1.4.2, Standard Edition, to develop the program. Sun Microsystems introduced
regular expression handling in version 1.4, so this is the oldest Java version that we can recommend to
the user.

The latest Java 2 Software Development Kit and Java Runtime Environment can be downloaded from
http://java.sun.com/

B Insufficient initial heap size

Our program uses lots of memory! Be aware that if you start the program without defining special
options for the Java Virtual Machine to increase the maximum heap size, the program might start to save
information from the dictionary to the hard disk drive temporarily, not ending to write data to the disk.
Under Windows implementations, you should therefore start the Java Virtual Machine as:

java -mx90M ...

This will set the JVM to use a maximum heap size of 90 megabytes which will be enough for our program
to run. In our experiences, the program never used more then 86 MB or memory.

C Working with the Xerces-J XML DOM Parser

To parse the XML file, we used the freely available Xerces-J XML DOM parser. The program works
fine with version 2.6.0. It can be found undéitp://xml.apache.org/xerces2-j/index.

html | It is easiest to start your program, adding the corresponding paths by usingabspath

option. You need to add both the filesrcesimpl.jar andxml-apis.jar to yourCLASSPATH

Be aware that as soon as you set you these options, it might be that you have also to add the current
working directiory (where your program source is located, for instaeck/rom/sources ) and

perhaps also the directory, where your binary runtime executajoles.€xe  under Windows), for
instanceC: \Program files  \jdk1.4.2 , are located.

java -classpath C:\...\Xerces-J\xerceslmpl.jar;
E:\...\Xerces-J\xml-apis.jar;
[C:\...\jdk1.4.2\bin;
C:\...\se\lu\rom\sources;]
se.lu.rom.sources.MyMainClass

D Usage of the program classes

There is the central interface IAnalyzer and the implementing class Analyzer. Always use these two to
get an instance of the Analyzer, as in:

/* Get the path of the rules file, e.g. from args[0] */
String rulesFilePath = args[0];

[* Get the dictionary to look up words as a Map, e.g. a Hashtable. Imagine the path of where to fin
ImportDictController idc =

new ImportDictController(new File(args[1]));

Map dictionary = idc.importDictionary();

/* Instantiate your analyzer */
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IAnalyzer myAnalyzer =
new Analyzer(rulesFilePath, dictionary);

/* Now do the analyzation and catch the result */
String outputText = myAnalyzer.analyze(inputText);

Now use the HTML annotated outputText to be displayed in your output window, for instance your
browser.
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A part-of-speech tagger for Swedish using the Brill transformation-based

learning
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fmarier@uwaterloo.ca bengtsjodin@hotmail.com
Abstract an encoding of information, the program needs to

_ _ _ _ decipher and reform it in meaningful ways so that it
This paper describes an implementation of  can be further processed into the final state.

a Brill Part-of-Speech tagger for the Car- For example the program must find the nouns and
Sim project. It introduces the concepts  yronquns in the text and properly realize which of
of part of speech tagging and Brill tag-  {he words refer to separate entities and whether they
gers and presents some results measured  gre static or moving objects. This is done by split-
with the given implementation. Giventhe  {ing the text into sentences where the words then are
high running time of the Leaming algo- (49464 with their part-of-speech. The result is then
rithm, very few results are available and \,qeq poth for detecting road objects and clauses,
these limitations, along with some partial  \hich are used to fill event structures. These two

solutions, are discussed. things are what is needed to fill out the template.
1 Introduction 1.3 Part-of-Speech Tagging
11 Goal Part-of-speech (POS) tagging is also called gram-

Our task was to implement a Brill part-of-speectmatical tagging. It is one of the most common forms
(POS) tagger for Swedish using Java as the prograrmf corpus annotation. The labeling of the words in a
ming language. The focus was on the learner part sEntence with their lexical or word classes is called
the algorithm as it is the most complex part of sucthagging. The POS is divided between the open and
atagger. the closed classes: The open class words are Nouns,

] ] Adjectives, Verbs and Adverbs whereas the closed
1.2 The CarSim Project are Determiners, Pronouns, Prepositions, Conjunc-
The CarSim projeétis an attempt to visualize writ- tions, Auxiliaries and Modals.

ten accident reports. The report is translated into @ some morpho-syntactic information can also be
symbolic template, which is then used to generaigrovided, marking the word as a proper plural noun
a three-dimensional animation. Our tagger is SURyr a singular comparative adjective. This captures
posed to be used in the translation part of the Camost of the information that a word contains.

Sim. One of the biggest problems with labeling a word

Thisis an |mportant_part because the texts are _@orrectly is disambiguation, meaning to find the in-
be processed automatically, and as such the tagoing yed form of the word, e.g. the word “can” could

of the words is vital for the information to be ex- be amodal or a noun. An annotated text may be used
tracted correctly. Since all language are essential% improve lexicons and otherwise help with the un-

See http:/iwww.lucas.lth.se/lt/carsim.shtml derstanding and learning of languages.
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1.4 Kinds of Taggers with the most likely tag.

The progress of automated part-of-speech taggers
has gone from handwritten rules to Markov prob-D
ability chains and on to machine-built rules. The
early attempts required a large amount of repetitive
work. Even the taggers that use Markov chains,
though they achieve a high correctness probability,
nest their rules inside a large set of such chains mak-
ing them unreadable by humans.

The main advantages of the Brill tagger, with its
machine-built rules, is that its rules can be easily
transformed into a readable form and thus increase
the human knowledge base. Also, it can be trained
on top of a more complex pre-existing tagger to help
improve its accuracy.

Create index of errors in
annotated text.

FOR every value in error index.
Create all possible rules.

Discard duplicate rules.
Find rule with the largest
error reduction.

Store the rule.

Apply the rule to text for
the next iteration.

2 The Brill Method WHILE best rule fixes at least

_ G(some threshold value) errors.
A POS tagger that uses a transformation-base
error-driven learner technique is called a Brill tag2.1 Error Threshold

ger. The Learner has to consider rules that fix more errors

Such a tagger must initially be trained to be ablgnan a certain threshold. We have set this value to be
to tag a text correctly. A manually annotated corpus gfter performing a few tests on a very small train-
is used as a training reference. An initial state anNGng corpus. It appeared as if increasing this number
tator first processes the same text without the taggouid decrease the accuracy of the tagger since it
This annotator can be slightly complex, using statisjiscarded too many rules. However, bringing this
tics derived form the corpus, or very simple, merely,umber down to 1 also decreased the accuracy of
tagging everything as nouns. the tagger.

The machine-annotated text will then be com- e pelieve that this is due to the fact that the
pared with the reference noting the differences assarner would learn too many “bad” rules that might
errors. The algorithm will then try to find the mostiy 1 error in the training corpus but would introduce
effective tag transformation rule, based on the CUthany more in the test corpus. After all, a rule that

rent errors. fixes only 1 error overall on a large corpus can hardly

The rules are based on a number of templates thgé considered as representing a linguistic feature.
contain the structures and variables. For every error

one instance of each type of rule is created. Th@ Implementation Overview

most efficient rule IS the one that gorrects the r.no§—t|ere is a description of all the classes (see Figure 1)
errors, and that one is found by letting all the various oo in our implementation

rules be applied to the text, remembering the best Note that all of these classes are part of the

one. )
. o . se.lth.cs.BrillTagger Java package.
The resulting text is, in each step of the learning 99 P g

algorithm, what is used as a base in the next thus 81 Main Programs
ways reducing the number of errors until a threshold Tagger. Class that does the actual tagging
is reached. The resulting set of rules is ordered by given an input file and a list of rules.
the amount of errors they correct.
Here is some pseudo-code describing the learning ® Learner: Learns rules from the corpus.

algorithm: e FrequencyExtracter: Extracts the tag fre-

Annotate every word in the text guency of each word from the corpus
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| FrequencyExtracter i
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|Tokenizer|

InitialAnnotator |

ugdes lses

CorpusReaderl

| Tagger

Learner

3.2

3.3

ret

|TokenList|

contlains

|Ru|e| |Token|

Figure 1: Class Diagram

rns

esfRulelList

contfains

InitialAnnotator : The initial annotator takes a
list of tokens and assign to them the most fre-
guent tag.

Utility Classes

CorpusReader This class goes through the
corpus, calling the ParseAction each time a
word is encountered.

ParseActiont Action to perform each time a
new word-tag pair is extracted from the corpus
by the CorpusReader. A typical action is to cre-
ate a Token object containing the word and the
tag.

RuleList: Container for all instantiated rules
learned by the Learner.

Token: Basic unit of an annotated text.

Tokenizer. Tokenizes a file into its grammati-
cal components.

TokenList: Basic data structure for manipulat-
ing an annotated text as a list of tokens (word
and tag).

Rule Templates

Rule: Base class for all the learned non-
lexicalized rules.
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RuleNotlInstantiatable:  Exception thrown
when there are not enough information to in-
stantiate the rule. For example when trying
to instantiate the PrevTagRule on the very first
word of the corpus.

NextTagAndTwoBeforeRule Changes the
current tag from source to destination if the
next and second previous words are tagged in
a certain way.

NextTagRule Changes the current tag from
source to destination if the next word is tagged
in a certain way.

NextTwoTagsRule Changes the current tag
from source to destination if the next two words
are tagged in a certain way.

OneOrTwoAfterRule: Changes the current
tag from source to destination if the next word
or the one after that is tagged in a certain way.

OneOrTwoBeforeRule Changes the current
tag from source to destination if the previous
word or the one before that is tagged in a cer-
tain way.

OneOrTwoOrThreeAfterRule: Changes the
current tag from source to destination if the
next word or the one after that or two words
after is tagged in a certain way.

OneOrTwoOrThreeBeforeRule: Changes the
current tag from source to destination if the pre-
vious word or the one before that or two words
before is tagged in a certain way.

PrevTagAndTwoAfterRule: Changes the cur-
rent tag from source to destination if the pre-
vious and second next words are tagged in a
certain way.

e PrevTagRule Changes the current tag from

source to destination if the previous word is
tagged in a certain way.

PrevTwoTagsRule Changes the current tag
from source to destination if the previous two
words are tagged in a certain way.



e SurroundTagsRule Changes the current tag java se.lth.cs.BrillTagger.Tagger
from source to destination if the previous andest.txt
next words are tagged in a certain way. The program will then print each word along with
its tag on the same line. There will only be one word
e TwoAfterRule: Changes the current tag fromor token) per line.
source to destination if the second nextword is The alternative is to call the Tagger from within a
tagged in a certain way. Java program. The Test.java class, distributed with

TwoBeforeRule Ch h ¢ the implementation, gives an example of such thing.
¢ TwoBeforeRule Changes the current tag from Basically, one  has 1o use  the

source to destination if the second previousragger tag(Reader reader) method
word is tagged in a certain way. in order to have the Tagger read and tokenize the
input text. The result is a TokenList which has a

similar interface than ArrayList. Each token can
then be extracted and used by a larger program.

4 User's Manual

4.1 FrequencyExtracter

The initial annotator must be run one time in ordeg Results

to generate théagfreq.dat file that contains a

hash of each word encountered in the corpus alorf Of these results were gathered by running the
with the statistically best tag. It is run in the follow- actual Leamer discarding rules having fixing less
ing way: than 2 errors. The baseline on the test corpus was

java se.lth.cs.BrillTagger. 82'542%2 . .
FrequencyExtracter training In the first experiment, the full 13 non-lexicalized

where “training” is the directory containing thetemplates were used. The results follow:

files from the training corpus. nb nb nb training tagging
The program will display the number of words | words files rules accuracy accuracy

added to the hash table. 2336 1 25 96.147  83.032

4849 2 58 96.02 84.07

4.2 Learner 7136 3 82 96.118 84.212

The Learner must also be run once before the TaggerAnother experiment was performed where we

can be applied to a text. It will output a list of rulesonly used the NextTag rule template. The results of
this second experiment follow:

into therules.dat

file. Itis run in the following

way: nb nb nb  training tagging
java se.lth.cs.BrillTagger.Learner words files rules accuracy accuracy

training 4849 2 47 94.839 83.954
where “training” is the directory containing the | 24345 10 123  95.046 84.544

files from the training corpus.

The program will initially display the corpus size
and the baseline on the training corpus. Then it wiNye have implemented the Brill learning and tagging
display the selected rules along with the number cfigorithms entirely. The initial annotator we are us-
errors that they fix. Finally the program will print ing is the one that derives the initial tags statistically.
out the number of errors remaining as well as thgye have also implemented all 11 non-lexicalized
number of rules that were learned and the accuragyle templates mentioned in the original Brill paper,
on the training corpus. as well as two other ones mentioned in the Roche
and Schabes paper (“previous bigram” and “next bi-
gram”).

There are two ways to use the Tagger. One can runOur implementation does not include the un-
the tagger as a stand-alone program by passing tkeown word tagging rules nor the lexicalized rule
name of the file to tag: templates.

6 Evaluation

4.3 Tagger
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6.1 Running Time of the Learner So we decided to make the Token class im-

The learning algorithm takes a very long time to runutable.  This slows down some aspect of tag-
Because of the way the algorithm works, there is nging/learning since modifying the tag of a Token
easy way out of this excessive run time. Here is AOW requires the program to create a brand new To-

table of the training time for very small corpus sizesken object. However, it also means that the cloning
method of TokenList does not have to perform a

nb words b files tralnlng time deep copy anymore. It can just reuse the same Token
2336 1 6 min instances instead of calling their copy constructor.
4849 2 o5 min This modification has reduced the learning time
7136 3 157 min by 20%. It is part of the final implementation.
All tests were performed on a Pentium Il 650
MHz with 256 MB of RAM. 8 Conclusions
7 Enhancements Our initial tests revealed that the algorithm does

bring an improvement over the baseline, but its run-
We have considered two enhancements in order fing time is excessively large and it is hard to predict
cut down on the learning time. Without having acwhat accuracy we would get if the Learner was al-
cess to a profiler, we decided to attempt to speed Ygwed to run on the entire corpus.
the Learner by attacking one at a time the two sus- We were surprised by the slow learning rate of
pected bottlenecks. More work on the learner wilthe algorithm since we were expecting a few rules to
be necessary to identify other bottlenecks that migRfignificantly improve the accuracy of the tagger on
explain the performance of the implementation.  the test corpus.

More testing on a larger training corpus needs to
happen before the tagger can be used effectively.
The first attempt involved speeding up tag compar- we can hope that the preliminary results that we
isons by converting string comparisons to pointefave presented here will scale well with an enlarged

comparisons. We used the “intern()” method otorpus and will deliver the kind of accuracy that
the String class in order to achieve that. HoweveRgyi|| claimed to get in his paper.

simple tests revealed that this modification had in-
creased the learning time by approximately 40% ol Acknowledgements
a very small training corpus.

7.1 String Comparisons

After thinking about this surprising result, weWe are very grateful for Pierre Nugqes msyghtful
comments and for the weekly meetings with him

came to the conclusion that string comparisons welg
. . . that have kept us on track and allowed us to progress
probably quite fast in most cases since for the vast

. ) even though we ran into some problems.
majority of tag comparisons, only 1 or 2 charac-
ters would have to be compared before the two tags

would be deemed different. Hence the overheageferences

involve_d in creating a h.aSh .table of String .object.?:_ Brill 1995. Transformation-Based Error-Driven
would increase the running time of the algorithm. Learning and Natural Language Processing: A Case

This modification is not part of the final imple-  Study in Part-of-Speech Tagging Association for
mentation. Computational Linguistics.

7.2 Corpus Cloning Emmanuel Roche and Yves Schabes 1996terminis-
tic Part-of-Speech Tagging with Finite-State Transduc-
In order to apply all rules to the same corpus, ers Association for Computational Linguistics.

we decided to provide the TokenList class with a
clone() method. That way, we do not have to
undo a rule before applying the next one. Unfortu-
nately, this also means that a large data structure is
copied quite often.
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Abstract

This paper presents a project for imple-
menting and evaluating a probabilistic
part-of-speech tagger for Swedish. The
resulting program accurately tagged
95.9% of text containing only known
words, and 89.7% of randomly selected
text.

1 Introduction

Part-of-speech tagging is the method to assign
each word in a text with a tag describing its
proper part of speech in the context.

Two major problems in the process is resolv-
ing ambiguous words and classifying unknown
words. To solve this task a few different methods
has been developed. The most common are tag-
ging based on rules, and probabilistic, or stochas-
tic, tagging based on statistics. This paper
presents a project for implementing a probabilis-
tic part-of-speech tagger for Swedish.

2 Probabilistic POS tagging

In probabilistic part-of-speech tagging the tagger
program is trained on a corpus annotated with a
certain tagset. Statistics for the sequence of
words and tags is collected, and is then used for
estimating the most probable tagging of untagged
text.

The background theory is given in (Charniak
et al., 1993). An instructive description of the
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steps taken and decisions made in implementing
an efficient stochastic part-of-speech tagger is
found in (Carlberger and Kann, 1999), a paper
which has served as a major guide for the initial
steps of this project.

2.1 The basic model

This section contains a brief overview of the ba-
sic theory for developing the model.

A text can be considered as a sequence of n
random variables W, =W, ,W,,..W, where each

variable can have a value from a fixed set of
words {w,,w,,...w, }. For each sequence of word

variables 1, there is a corresponding sequence

of random variables 7 , that can take their val-

l.n?

ues from a fixed set of tags {¢,,¢,,...¢,}. The tag-

ging problem can then be described as finding the
most probable sequence of tags, 7, , knowing the

sequence of words, w, . A formal definition of

this is:

T(Wl,n): argmaxp(tl,n |Wl,n)
L

From Bayes’ rule we know that:

P(B| A)P(4)

P(4|B)= #(5)

Applying this on the right hand side we get:



T (w )= P(w, I6,)P(1,)
( W, ) argtlmax i " ]

and since the denominator will be constant for a
given problem the expression is simplified to:

T(Wl,n)=argmaxp(wl,n |t1,n)P(t],n) (1)
L

2.2 Approximations for the implementa-
tion

The probability values needed for solving this
problem is achieved from hand-annotated cor-
pora. Even a large corpus will not be large
enough for collecting the statistics needed in
Equation 1. For this reason the problem is ap-
proximated using the following two assumptions:

P(ti |t1,i—1’wl,i—1)=P(ti ‘ti—Z’ti—l)
P(Wi ‘tl,i’wl,i—l):P(Wi |ti)

The first assumption states that the current tag is
only dependent on the two previous tags. The
second assumption states that the current word is
only dependent on the current tag.

The expression for the problem now becomes:

T(Wl,n)z argmaxﬁP(ti |ti—27ti71)P(Wi |ti)
t., i=1
(2)

Equation 2 allows us to use statistics from every
sequence of three tagged words, called trigrams,
in a corpus. Even with this simplification the data
will usually be too sparse to produce a reliable
result. There are simply too many trigrams that
will not appear or will only appear a small num-
ber of times in a corpus. We will have to ap-
proximate further by using the probabilities for
the sequence of two tagged words, bigrams:

P(ti |ti—27ti71)zp(ti |ti—l)

and in the case the bigram data will be too sparse
we will also use the unigrams:

P(t; 1)~ P(1,)

Now we apply a useful strategy by interpolating
between these:

P( 2 |ti—2’ti—l)z

APt Vb5, t0)+ Pt L)+ AP(1)
where A, + 4, + 4, =1.

Putting this into Equation 2, we get:
T ( Wl,n ) =
H[/llp(ti |ti—2>ti—1)+/12P(ti ‘ti—1)+/13p(ti) ]P(W; |ti)
i=1
3)

Finding good values for the three lambdas is part
of this project.

2.3 Estimating the probabilities

For estimating the probabilities in Equation 3 the

following statistics is needed:

e Cn : the count of all words
e ((w) : the count of word w
e ((t) : the count of tag ¢

e ((t,,t,) : the count of bigrams where tag

t, is followed by tag ¢,

e C(t,,t,,1,) : the count of trigrams where
tag ¢, is followed by tag ¢, and then by
tag 1,

e C(w,t) : the count of word wtagged with
tag [
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T(Wl,n): arg maxﬁ |: ﬂ’l C(tifzat,;l,tl.) )
tl,n i=1

Cltot,1)

Figure 1: Equation 4

C(tifl’ti)_k/l C(tt)
S Cy) o, ()

The statistics is then used to estimate the prob-
abilities as follows:

P()= <)

C

n

C(t,.1,)
C(ti—l )

C(ti—z’ti—l’t" )

lilligs i) ===~

AT Clt 0t ,)
C(Wiati)

P(w, |fi)=Tt_)

P(ti | ti—l) =

Substituting this in Equation 3, we get the final
equation in Figure 1.

This expression can easily be translated into a
computer program. Tables for the various sta-
tistics can be built from an annotated corpus,
and a suitable algorithm can iterate over the
different combinations of probabilities to find
the maximum. The naive implementation,
making an exhaustive search, will not suffice
for sentences longer than a few words though,
since the algorithms expansion is polynomial.
The Viterbi algorithm is usually applied in this
situation, as it is quite insensitive to any length
of a sentence.

3  The SUC corpus

The corpus used is the SUC 1.0 corpus, created
between 1989-1996 as part of a research pro-
ject by the Departments of Linguistics at
Stockholm University and Umeé University.
The selection of texts is a collection of mod-
ern Swedish prose first published in 1990 or
later. Each of the more than one million words
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is annotated by the SUC tagset, which is listed
in appendix A. The corpus is divided into 500
files containing roughly 2000 annotated words
each.

4 The implementation

The program was developed in C++ using the
Standard Template Library for the tables. It is
divided into two major parts. The first part
builds the statistics tables by parsing a set of
annotated files. The second part implements
the algorithm in Figure 1 and produces a
suggestion of tagging for a text, one sentence
at a time.

4.1 Training and evaluation

The goal for this project was to implement the
basic model for probabilistic tagging in a com-
puter program. The program was to be trained
on the SUC corpus, and part of the corpus
should be set aside for test and evaluation. Un-
known words should be handled in a simple
manner.

The corpus was divided into 50 randomly
selected files each for the optimizing and test
sets, and the remaining 400 for the train set.

A complete evaluation of the program was per-
formed as follows:

The training phase consist of collecting the
statistics from the train set. This means count-
ing words, bigrams, trigrams etc and store the
result in tables.

In the optimizing phase each text in the opti-
mizing set is read and tagged by the program
using the equation in Figure 1 with different
sets of values for the three lambdas. The values
used are between 0 and 1 in steps of 0.1. The
tagging is then compared with the correct one,
and of course the lambda values giving the best




result are the optimal values for that particular
training set. A sample output can be seen in
appendix B.

During the test phase the test set is tagged in
the same way, using the optimal lambda val-
ues, and the result is compared with the correct
tags.

In the first evaluation session the program only
handled words known from the test set. This
was implemented in the optimizing and test
phases by simply letting the program skip sen-
tences that contained unknown words.

Two different sets of lambda values pro-
duced the same best result for the optimizing
set. The values [0.5 0.4 0.1]and [0.7 0.2 0.1]
for 4,,4, andA,respectively each resulted in

95.90% correct tagging of the input. Investigat-
ing both these lambda settings for the test set
resulted in 95.98% and 95.94% correct.

For the second evaluation session handling of
unknown words was implemented as always
tagging it as a noun singular. The tag selected
from the SUC tagset was “NN UTR SIN IND
NOM™.

The optimal lambda values were [0.6 0.3
0.1] with a 89.85% correct tagging. The corre-
sponding value for the test set was 89.24%.

To improve the result, the handling of un-
known words was modified to use information
from the bigram table built during the training.
For each of the possible tags in the tagset the
bigram table was searched for bigrams starting
with that tag. From the collection of bigrams
found, the one with the highest count was se-
lected. In this bigram, the second tag was se-
lected as the best candidate for tagging an
unknown word following the first tag. This
was put into a best-from-bigram table, shown
in appendix C.

This time the optimal lambda values were
[0.5 0.4 0.1] with 90.25% correct tagging.
The corresponding value for the test set vas
89.73%. The output from the latter session is
the content of appendix B.

4.2 Interactive session

This section will show a few examples of the
program in interactive mode tagging text from
the console.

> Jag ser en hok flyga.

Jag PN UTR SIN DEF SUB
ser VB PRS AKT
en DT UTR SIN IND
hok NN UTR SIN IND NOM
flyga VB INF AKT

DL MAD

The input line is ”Jag ser en hok flyga” (I see
a hawk fly”) and the tagger outputs one line for
each token with a suggested tag from the SUC
tagset. All these words are known from the
training, and the tagging is correct.

> Jag ser en falk flyga.

Jag PN UTR SIN DEF SUB
ser VB PRS AKT

en DT UTR SIN IND

falk NN UTR SIN IND NOM (?)
flyga VB INF AKT

. DL MAD

If we exchange “hok” (“hawk”) for “falk”
(“falcon”) the tagger encounters an unknown
word, as denoted by the question mark. In this
case the best-from-bigram table is consulted,
and a noun is suggested.

> Jag ser en glada flyga.

Jag PN UTR SIN DEF SUB
ser VB PRS AKT
en DT UTR SIN IND

glada JJ POS UTR/NEU PLU ..
flyga VB INF AKT
. DL MAD

Next, we change the bird to “glada™ (“kite”).
This word is also an adjective in Swedish
(“happy/merry”). The training set contains the
adjective form, but not the noun form. This
results in the tagger finding the sequence De-
terminer/Singular — Adjective/Plural the most
probable, even though it is a rare combination.
In the test sentence the sequence is part or two
trigrams, [VB DT JJ]* and [DT JJ VB]. An

! This line is truncated. The tag is JJ POS UTR/NEU
PLU IND/DEF NOM.

? These are abbreviations for brevity. The figures refer to
the complete tags as shown in the example.
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investigation of the tables shows that the count
for those trigrams is 0 and 1. The bigram count
is 1. If we investigate the corresponding values
for the previous example, Determiner/Singular
— Noun/Singular, the number of trigrams are
850 for [VB DT NN] and 49 for [DT NN VB].
The bigram count is 8189.

In fact, the word “glada” does appear once
as a noun in the SUC corpus. If the tagger is
trained on the full corpus it will then tag the
test sentence above correctly. This of course a
coincident, and the basic problem of incom-
plete information of the possible tagging for a
word remains.

Using the console input it is interesting to test
how well the tagger handles ambiguities.

> Ser du min min?

Ser VB PRS AKT

du PN UTR SIN DEF SUB
min PS UTR SIN DEF

min NN UTR SIN IND NOM
? DL MAD

“Ser du min min?” (“Do you see the expres-
sion on my face?”). The ambiguous “min” is
resolved in context. A sentence that is too dif-
ficult is not hard to construct:

> Var var var och en en gang?

Var PN UTR SIN IND SUB/OBJ
var VB PRT AKT

var VB PRT AKT

och KN

en DT UTR SIN IND

en DT UTR SIN IND

gang NN UTR SIN IND NOM

? DL MAD

”Var var var och en en gang?” ("Where were
each and everyone once?”). Several words in
this sentence have multiple tagging possibili-
ties. Table 1 contains a list of the words, their
possible tags and the number of occurrences of
the combination word/tag. The tagger fails to
catch the multiword expression “var och en”
(“each and everyone”). After training the tag-
ger on the full corpus the sentence was tested
again:

> Var var var och en en gang?
Var HA
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var VB PRT AKT

var PN UTR SIN IND SUB/OBJ
och KN

en PN UTR SIN IND SUB/OBJ
en DT UTR SIN IND

géng NN UTR SIN IND NOM

? DL MAD

This time the expression was noticed. Once
again this is a coincidental, and it is easy to
find similar cases where the tagger will fail.
The difference between training from the train
set and full corpus is near a 25% increase of
parsed tokens (933629 vs. 1166896), and the
resulting improvements are a simple verifica-
tion of the fact that, in general, the larger the
corpus the better.

Var
35 HA
44 VB PRT AKT
9 PN UTR SIN IND SUB/OBJ
3 DT UTR SIN IND
10 VB IMP AKT
var
5070 VB PRT AKT
58 PN UTR SIN IND SUB/OBJ
132 HA
13 VB IMP AKT
49 DT UTR SIN IND
1 AB
3 VB INF AKT
3 NN NEU SIN IND NOM
och
25562 KN
en
13139 DT UTR SIN IND
336 PN UTR SIN IND SUB/OBJ
315 RG UTR SIN IND NOM
3 U0
8 AB
2 NN UTR SIN IND NOM
gang
433 NN UTR SIN IND NOM

Table 1: Possible tags for words in the example
sentence.

5 Conclusion

The goal for this project was to implement a
model for probabilistic part-of-speech tagging
in a computer program and evaluate it using
the SUC corpus. The results of the training are



very encouraging, considering that the tagging
algorithm is more or less a straightforward im-
plementation of the equation in Figure 1.

In the introduction the two main problems
for part-of-speech tagging were mentioned,
ambiguity and unknown words. Resolving am-
biguity is part of the design of the probabilistic
model, and as has been briefly demonstrated it
generally work better the larger the training
data is.

Handling of unknown words is a part that
has to be added to the model. In the current
implementation it is very rudimentary. Judging
from the difference in result between the three
evaluation sessions there is much to gain in
improving this part of the program.

Another problem that appeared during test-
ing is the problem of the program having an
incomplete set of tagging options for a token.
The tagger will produce a tagging based on
available data, of course, but as shown in the
example the result would sometimes have been
better handled by the unknown word routine.
This is a hard problem to solve, and would re-
quire some heuristics bridging tagging based
on known words and tagging suggested by the
handler of unknown words. A different, and
complementary, approach is of course trying to
avoid the problem by giving the tagger as
complete training data as possible.
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A. The SUC tagset.

Category Code

AB
DL
DT
HA
HD
HP
HS
IE
IN
1]
KN
NN
PC
PL
PM
PN
PP
PS
RG
RO
SN
S[0)
VB

Feature Code

UTR
NEU
MAS
UTR/NEU

SIN
PLU
SIN/PLU

IND
DEF
IND/DEF

NOM
GEN
SMS

POS
KOM
SUV

SUB
OBJ

Category

Adverb

Delimiter (Punctuation)
Determiner
Interrogative/Relative Adverb
Interrogative/Relative Determiner
Interrogative/Relative Pronoun
Interrogative/Relative Possessive
Infinitive Marker

Interjection

Adjective

Conjunction

Noun

Participle

Particle

Proper Noun

Pronoun

Preposition

Possessive

Cardinal Number

Ordinal Number

Subjunction

Foreign Word

Verb

Feature

Common (Utrum)
Neutre

Masculine
Underspecified
Unspecified

Singular

Plural
Underspecified
Unspecified

Indefinite
Definite
Underspecified
Unspecified

Nominative
Genitive
Compound
Unspecified

Positive
Comparative

Superlative

Subject
Object
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Gender
Gender
Gender
Gender
Gender

Number
Number
Number
Number

Definiteness
Definiteness
Definiteness
Definiteness

Case
Case
Case
Case

Degree
Degree
Degree

Pronoun Form
Pronoun Form



SUB/OBJ

PRS
PRT
INF

SUP
IMP

AKT
SFO

KON
PRF

AN

Underspecified

Present
Preterite
Infinitive
Supinum
Imperative

Active
S-form

Subjunctive
Perfect

Abbreviation

Pronoun Form

Verb Form
Verb Form
Verb Form
Verb Form
Verb Form

Voice
Voice

Mood
Perfect

Form
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B. Output from test session,

unknown word = best-from-bigram
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total:
total:
total:
total:
total:
total:
total:
total:
total:
total:
total:
total:
total:
total:
total:
total:
total:
total:
total:
total:
total:
total:
total:
total:
total:
total:
total:
total:
total:
total:
total:
total:
total:
total:
total:
total:
total:
total:
total:
total:
total:
total:
total:
total:
total:
total:
total:
total:
total:
total:
total:
total:
total:
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116190,
116190,
116190,
116190,
116190,
116190,
116190,
116190,
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116190,
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116190,
116190,
116190,
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116190,
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correct:
101528,
correct:
correct:
correct:
:103441,
correct:
correct:
correct:
:103920,
correct:
correct:
correct:
correct:
correct:
correct:
103842,
correct:
correct:
correct:
:104023,
correct:
correct:
correct:
:103758,
correct:
correct:
correct:
correct:
correct:
correct:
correct:
correct:
correct:
correct:
104166,
correct:
correct:
correct:
correct:
correct:
correct:
correct:
correct:
correct:
correct:
103927,
correct:
correct:
correct:
correct:
correct:
correct:
correct:

correct

correct

correct

correct

correct

correct

correct

correct

98263,

102307,
102820,
1031898,

103594,
103741,
103849,

103698,
102115,
102752,
103157,
103445,
103641,

103937,
104050,
104106,

102868,
103289,
103576,

103927,
104021,
104103,
104152,
104023,
103266,
103612,
103800,
103941,
104076,

104200,
104046,
103517,
103787,
103955,
104070,
104194,
104244,
104071,
103704,

104051,
104192,
104258,
104103,
103817,
104026,
104157,

= 84.5710
= 87

88
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0515
4930
8183
0275
1591
2857
3786
4397
2486
8862
4345

0309
1996
3726
4543
5516
5998
5284

8966
1436
3003
4457
5266
5972
6394
5284
8768
1746
3364
4578
5740
6514
6807
5482
0929
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4698
5688
6755
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6738
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C. best-from-bigram table

Collected from the bigram table, built during training. The known tag points to the most common tag
following it. Sorted by the number of occurrences in the train set.

14442:
12567:
8853:
8830:
8189:
7524 :
7235:
6547 :
6227:
6160:
5912:
5876:
5761:
5052:
4524 :
4377
3680:
3678:
3601:
3595:
3546:
3378:
3329:
3213:
3009:
2857:
2846:
2563:
2510:
2086:
2083:
2067:
2007:
1988:
1717:
1683:
1513:
1490:
1456:
1434:
1393:
1377:
1339:
1250:
1232:
1176:
1138:

970:

924:

923:

893:

871:

849:

821:

NN UTR SIN IND NOM ——>>
PP -——>> NN UTR SIN DEF
JJ POS UTR SIN IND NOM -->>
IE ——>> VB INF AKT

DT UTR SIN IND -->> NN UTR
NN UTR SIN DEF NOM ——>>
VB PRS AKT -——>> AB

<s> -——>> PP

NN UTR PLU IND NOM ——>>
JJ POS UTR/NEU PLU IND/DEF NOM
AB ——>> PP

PM NOM -—->> PM NOM

NN NEU SIN IND NOM ——>>
PN UTR SIN DEF SUB ——>>
DL MID -->> KN

PN NEU SIN DEF SUB/OBJ -->>
JJ POS UTR/NEU SIN DEF NOM

HP - - - ——>> VB PRS
VB PRT AKT ——>> AB

KN ——>> NN UTR SIN IND
DT NEU SIN IND -->> NN NEU
VB INF AKT -——>> PP

DT UTR SIN DEF -->> JJ POS
JJ POS NEU SIN IND NOM -->>
NN NEU SIN DEF NOM ——>>
DL MAD -->> DL MID

PL -——>> PP

RG NOM -->> NN UTR PLU IND
NN NEU PLU IND NOM ——>>
VB PRS SFO ——>> PP

SN -——>> PN UTR SIN DEF
PS UTR SIN DEF -->> NN UTR
NN UTR PLU DEF NOM ——>>
DT UTR/NEU PLU DEF ——>>
DL PAD -->> DL MAD

DT NEU SIN DEF -->> JJ POS
Uo ——>> Uo

AB POS -->> PP

VB INF SFO ——>> PP

PN UTR PLU DEF SUB ——>>
VB SUP AKT -——>> PP

PN UTR SIN IND SUB ——>>
PN UTR/NEU SIN/PLU DEF OBJ

PC PRF UTR SIN IND NOM -->>
NN UTR SIN DEF GEN ——>>
HA -——>> PN UTR SIN DEF
PM GEN -->> NN UTR SIN IND
PN UTR/NEU PLU DEF SUB -->>
PC PRS UTR/NEU SIN/PLU IND/DEF
PS UTR/NEU SIN/PLU DEF -->>
VB PRT SFO -——>> PP

PS NEU SIN DEF -->> NN NEU

PC PRF UTR/NEU PLU IND/DEF NOM

VB SUP

SEFO

-=>> PP

117

PP
NOM
NN UTR

SIN IND
PP

NOM
SIN IND

UTR/NEU
NN NEU
PP

NOM
PP

SUB
SIN IND
PP
JJ POS

UTR/NEU

NOM
VB PRS
NOM
NN UTR

SIN IND
-—=>>

SIN IND

NOM

NN UTR

AKT

AKT
NN UTR

NOM

SIN DEF
SIN IND

NOM
UTR/NEU

SIN DEF

AKT

AKT

PP

SIN IND
SIN IND

AKT
-—=>>
SIN IND

NOM
NN UTR

NOM

PLU IND NOM

SIN DEF NOM

NOM
NOM

PLU IND/DEF NOM

NOM

NOM
NOM

NN UTR SIN IND NOM
NOM

PLU IND NOM



725: JJ KOM UTR/NEU SIN/PLU IND/DEF NOM —-=>> NN UTR SIN IND NOM

721: NN NEU PLU DEF NOM -=>> PP

681: IN -=>> DL MID

673: PS UTR/NEU PLU DEF —-=>> NN UTR PLU IND NOM

619: PN UTR SIN DEF OBJ -=>> DL MAD

607: PN UTR SIN DEF SUB/OBJ -->> VB PRS AKT
574: JJ POS UTR/NEU SIN/PLU IND/DEF NOM -——>> NN UTR SIN IND NOM
557: PN NEU SIN IND SUB/OBJ -->> PP
517: NN NEU SIN DEF GEN —-=>> NN UTR SIN IND NOM
502: HP NEU SIN IND -->> VB PRS AKT

481: JJ POS UTR/NEU PLU IND NOM —-=>> NN UTR PLU IND NOM
444: PC PRF NEU SIN IND NOM -->> NN NEU SIN IND NOM

444: DT UTR/NEU PLU IND -—=>> NN UTR PLU IND NOM

436: NN AN -=>> RG NOM

433: PC PRF UTR/NEU SIN DEF NOM -=>> NN UTR SIN DEF NOM
425: PN UTR SIN IND SUB/OBJ -->> PP

417: AB KOM -->> KN
385: RO NOM -—-->> NN UTR SIN DEF NOM
359: NN UTR - - SMS -—-->> KN
343: NN UTR PLU DEF GEN -=>> NN UTR SIN IND NOM
335: DT UTR/NEU SIN IND -=>> NN UTR SIN IND NOM
312: DT UTR/NEU PLU IND/DEF -->> NN UTR PLU IND NOM
305: DT UTR/NEU SIN/PLU IND -->> NN UTR SIN IND NOM
301: PN UTR/NEU PLU DEF OBJ -->> DL MAD
290: JJ SUV UTR/NEU SIN/PLU DEF NOM -->> NN UTR SIN DEF NOM
289: PN UTR/NEU PLU IND SUB/OBJ -=>> PP
285: JJ POS MAS SIN DEF NOM -->> NN UTR SIN DEF NOM
281: JJ POS UTR SIN IND/DEF NOM -=>> NN UTR SIN IND NOM
243: AB SUV —-->> PP
200: NN UTR SIN IND GEN -—=>> NN UTR SIN IND NOM

196: AB AN -=>> RG NOM

175: VB IMP AKT -=>> AB

156: RG UTR SIN IND NOM -=>> NN UTR SIN IND NOM

146: PN UTR PLU DEF OBJ -——>> PP

141: NN NEU - - SMS -->> KN

139: PN UTR/NEU PLU DEF SUB/OBJ -=>> VB PRS AKT

131: NN UTR PLU IND GEN -——>> NN UTR SIN IND NOM

130: NN NEU SIN IND GEN -=>> NN UTR SIN IND NOM

126: HD UTR SIN IND -->> NN UTR SIN IND NOM

115: JJ POS NEU SIN IND/DEF NOM -=>> NN NEU SIN IND NOM
108: NN NEU PLU DEF GEN -=>> NN UTR SIN IND NOM

104: DT UTR SIN IND/DEF -—=>> NN UTR SIN IND NOM

103: RG UTR/NEU SIN DEF NOM -->> NN UTR SIN DEF NOM

95: RG NEU SIN IND NOM -—=>> NN NEU SIN IND NOM

92: JJ SUV UTR/NEU SIN/PLU IND NOM -->> PP

92: HP UTR SIN IND -->> VB PRS AKT

86: HD UTR/NEU PLU IND -—=>> NN UTR PLU IND NOM

75: NN NEU PLU IND GEN -—=>> NN UTR SIN IND NOM

59: KN AN -=>> PM NOM

58: RG SMS -->> KN

56: JJ SUV UTR/NEU PLU DEF NOM -=>> PP

56: HD NEU SIN IND -->> NN NEU SIN IND NOM

52: HS DEF -->> NN UTR SIN IND NOM

33: NN - - - - -=>> DL MAD

33: JJ POS MAS SIN DEF GEN -->> NN UTR SIN IND NOM

32: HP UTR/NEU PLU IND -=>> VB PRS AKT

31: PM SMS -->> KN

30: NN UTR - - - -=>> PP

30: DT NEU SIN IND/DEF -=>> NN NEU SIN IND NOM

27: PC PRF MAS SIN DEF NOM -->> NN UTR SIN DEF NOM
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NN
JJ
VB
PN
VB
VB
JJ
JJ
AB
DT
PL
JJ
JJ
RO
RG
JJ
JJ
RO
PC
DT
DT
VB
RG
NN
JJ
RO
PP
PC
PC
JJ
JJ
VB
VB
PC
PC
PC
JJ
JJ
HP
DT

- - - SMS ——>> KN

POS UTR - - SMS -——>> KN

KON PRS AKT -->> PN UTR/NEU SIN/PLU DEF
MAS SIN DEF SUB/OBJ -->> VB PRT AKT

AN ——>> PM NOM

KON PRT AKT -->> JJ POS NEU SIN IND NOM
SUV MAS SIN DEF NOM -->> NN UTR SIN IND
POS UTR/NEU PLU IND/DEF GEN -->> NN UTR
SMS  —->> KN

MAS SIN DEF -->> NN UTR SIN IND NOM

SMS  —->> KN

POS UTR/NEU SIN DEF GEN ——>> NN UTR
AN ——>> NN UTR SIN IND NOM

MAS SIN IND/DEF NOM -->> NN UTR SIN IND
MAS SIN DEF NOM ——>> HP - - -

SUV UTR/NEU PLU IND NOM ——>> NN UTR
POS UTR/NEU SIN/PLU IND NOM -->> NN UTR
GEN —->> NN UTR SIN IND NOM

PRF UTR/NEU PLU IND/DEF GEN -->> NN UTR
UTR/NEU SIN DEF ——>> NN UTR SIN DEF
MAS SIN IND -->> NN UTR SIN IND NOM

SMS  —->> KN

GEN —->> NN UTR SIN IND NOM

NEU - - - -——>> DL MAD

POS UTR/NEU - - SMS -->> KN

SMS  —->> KN

AN -——>> NN UTR SIN IND NOM

PRF UTR/NEU SIN DEF GEN ——>> NN UTR
PRF MAS SIN DEF GEN -->> NN UTR SIN IND
KOM UTR/NEU SIN/PLU IND/DEF SMS ——>>
KOM UTR/NEU SIN/PLU IND/DEF GEN ——>>
KON PRT SFO -->> DT NEU SIN IND

IMP SFO -——>> PP

PRS UTR/NEU SIN/PLU IND/DEF GEN ——>>
PRF UTR SIN IND GEN -->> NN UTR PLU IND
AN ——>> NN UTR SIN IND NOM

SUV MAS SIN DEF GEN -->> JJ POS UTR/NEU
POS UTR SIN IND GEN -->> NN UTR SIN IND
NEU SIN IND SMS -——>> KN

AN ——>> RG NOM
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Morphar: A Morphological Parser for Swedish
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Abstract

This paper introduces the model and im-
plementation for Morphar, a morphological
parser for Swedish. The parser approach is
intended to be as simple and natural as pos-
sible, taking advantage of the characteris-
tics of Swedish morphology. It is based
around a lexicon and a parser inspired by
compiler construction techniques. The ref-
erence implementation has shown the
model to work. The program is fast and re-
turns correct results for more than 70 % of
random input words. The implementation
is distributed freely for use in non-
commercial applications.

1 Introduction

The purpose of amorphological parser is, given an
inflected word, to analyse the word and provide the
user with information on what the root word is, and
what inflections it has undergone. Such a computer
program may be a stand-alone tool, but is often
used in conjunction with other language processing
components to analyse complete texts. The parser
discussed in this paper, Morphar, is intended for
use in both kinds of situations.

Most morphological parsers today take the ap-
proach of the two-level model presented by
Kimmo Koskeniemmi (Koskenniemi, 1997). The
Morphar project takes a different approach. The
intention was to use as natural a model as possible.
Data structures are laid out much as in an ordinary
non-electronic dictionary, with entries for each
word, holding information on syntactic category
and possible inflections as well as suffixes for

121

compound forms. The parser is constructed as
typical computer language compiler.

The report will discuss general morphology
(chapter 2) and Swedish morphology (chapter 3).
Then the theory will be used to model the morpho-
logical parser Morphar (chapter 4). Some impor-
tant implementation notes are included (chapter 5).
Finally, pros and cons of the model and implemen-
tation are discussed (chapter 6).

2 Morphology

Morphology is the study of morphemes, the mini-
mal units of meaning in alanguage. There are two
kinds of morphemes, grammatical morphemes and
lexical morphemes. Lexical morphemes corre-
spond to the word stems, while grammatical mor-
phemes can be either grammatical words or af-
fixes.

Furthermore, affixes can be divided into four
groups: prefixes (before the stem), suffixes (after
the stem), infixes (in-between parts of the stem),
and circumfixes (surrounding the stem). Examples
of prefixes are pre-, sur- and in- used as above, and
examples of suffixes are -s and -ed.

In European languages, words are built up by
one or more morphemes (Nugues, 2003). Often, a
lexical morpheme that defines the meaning of the
word is concatenated with a number of grammati-
cal morphemes (prefixes and/or suffixes) that de-
fines the semantic function in the phrase or
meaning.

2.1 Inflection

Grammatical affixes are often added to a stem in
order for the word to agree in tense, number, gen-
der or case to its neighbour words in a meaning.
Thisis called inflection.



Inflection is, in most languages, relatively pre-
dictable (Nugues, 2003). For instance, in English,
plural is indicated by an -s suffix, and past tense
for verbs is indicated by an -ed suffix. However,
most languages include a number of exceptions
from these simple rules. The plural of sheep is
sheep, and the past tense form of eat is eaten.

2.2 Derivation

Another class of affixes are the derivational af-
fixes. Such affixes, when added to a stem, may
change the syntactic category and/or the meaning
of the word. Examples of English derivational
morphemes are prefixes un-, con- and suffixes -ly,
-ist and -ish (Fromkin, 1998). Derivation rules can
be combined (as in un-system-atic-al-ly, where
un-, -atic, -a, and -ly all are derivationa mor-
phemes).

Unlike inflectional morphemes, derivation rules
often have many exceptions. Furthermore, deriva-
tion isirregular; athough the adjective doable can
be derived from the verb do, no adjective
*pleasable can be derived from the verb please.
Thereis no logical explanation for this, and hence
no rule to decide when the rule may be applied.

2.3 Compounds

Combining words together may form new words.
Such words are called compounds. The category of
a compound word is the category of the last word.
The last word is the only word that is inflected.
However, the words may be “glued” together by
compositional morphemes, such as in the Swedish
compound tidsmaskin (time machine), composed
of tid (time) -s- (compositional morpheme) and
maskin (machine).

2.4 Paradigms

Since the inflectional system is rather predictable,
one may construct patterns of inflections that apply
to aclass of words. For instance, In Swedish, many
nouns with O-plural® use the -et suffix to denote
definite form, and the -en suffix to denote both
plural and definite form, e.g. bord (table), bordet
(the table), bord (tables), borden (the tables). We

1 0 isthe symbol for the “zero” morpheme. The O mor-
pheme does not change the textual representation of the
word.

may say that all such words share the same para-
digm. The paradigm is an inherent property of the
word.

3 Swedish Morphology

The general morphology described in the previous
chapter can be used directly when constructing the
parser. However, most languages do not use al the
possible features, and so the model can be simpli-
fied. As afirst — important — example, inflections
are only realized by suffixesin Swedish.

The Swedish language is built up by words from
the following grammatical categories:

e Nouns,

¢ Adjectives,

«  Pronouns,
*  Numerdls,
*  Verbs,

¢ Adverbs,

*  Prepositions,
» Conjunctions,
e Subjunctions,
e Interjections.

These categories should be well known, and so for
the rest of this chapter, | will concentrate on spe-
cial casesfor Swedish and inflections.

3.1 Nouns

Swedish nouns may be inflected to agree in num-
ber, definiteness, and case. Number can be singular
and plural, definitenessis definite or indefinite and
caseis either normal form or genitive.

An inherent property of Swedish nouns is gen-
der, which may be neuter or the “common” gender
(Dalgish, 2003).

The paradigms for nouns are called declensions.
Swedish nouns can be categorized into four de-
clensions: -or, -ar, -er, and O declension (Hellberg,
1978). Each declension has severa exceptions.
Additionally, words may not belong to any of these
declensions. Most such words are borrowed from
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other languages, e.g. English (musical, cocktail)
and Latin (examen, spektrum).

32 Adjectives

Adjectives may have comparative forms. positive
(the normal form), comparative, and superlative
form. Depending on the function of the adjective, it
may be inflected to agree with the noun (or pro-
noun) in number, gender and definiteness. The
rules are rather complex, and there is no need to go
into detail on these issues, so instead a list of pos-
sible inflections is presented. These are &l the
forms that an adjective can take:

e Common gender form,

* Neuter form,

e Plural form,

» Definiteform,

e Masculine definite form,

» Comparative form,

e Superlative definite form,

e Superlative indefinite form.

Thefirst five inflections are in the positive form.
The comparative form cannot be further inflected.
The superlative form may be definite or indefinite.

As you can see, definite singular positive form
may be in the normal form or in masculine form. If
the sex of the noun is masculine, the sex of the ad-
jective may (but need not) be masculine. Exam-
ples: den vackre/vackra mannen (the beautiful
man), den vackra kvinnan (the beautiful woman),
den vackra stolen (the beautiful chair). As you
might have noticed, sexless nouns always use the
non-masculine form.

Many adjectives may be compared by adding
-are and -ast to the normal form to get the com-
parative and superlative forms. These are the regu-
lar adjectives. Other adjectives are irregular, e.g.
liten—mindre-minst (small—-smaller—smallest) and
gammal—-aldre-&ldst (old—older—oldest). Finaly,
many adjectives are compared periphrasticaly, e.g.
handikappad—mer handikappad—mest handikappad
(handicapped—more  handicapped—most  handi-
capped) or not at all, e.g. dod (dead), blind (blind),
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and tom (empty). (Above examples taken from
Stroh-Wollin, 1998.)

3.3 Verbs

The dictionary form of the verb is called the infini-
tive form. This form is often preceded by the in-
finitive marker (att skriva, to write). Verbs are
inflected by tense (present, past, and supine) and
mood (indicative, imperative, conjunctive), where
the indicative form is the norma form. Conjunc-
tive forms may be in the present or past form. The
present form is no longer used. Therefore, the past
conjunctive may be denoted just “conjunctive’.

The indicative forms may be divided into active
and inactive. Active form is the normal form. Pas-
sive form is constructed by adding an -s to the
stem, e.g. skrdmma—skrdmmas, skram-skrams,
skramde-skramdes.

The paradigm for verbs are called conjugations.
There are four conjugations in Swedish. Conjuga
tion 1-3 are weak and are easy to implement. The
4™ conjugation is strong and may include ablauts.

Participle

Participle is sometimes considered to be a gram-
matical category of its own. In this theory, partici-
ples are considered to be inflected verbs. The
present participle takes one form in Swedish. The
past participle is inflected on gender and number.
The three forms are common gender, neuter, and
plural.

3.4 Other categories

The other grammatical categories are considered
indeclinable in this theory. Despite this, some pro-
nouns (e.g. possessive pronouns) are inflected to
agree in gender and number just like adjectives,
e.g. min-mitt—-mina, (my/mine). Also, numerals
can be divided into cardinals and ordinals. Despite
this, each word in the closed categories is consid-
ered to be alexeme in its own right.

4 TheMorphar Model

The Morphar morphological parser is a lexicon-
based compiler-inspired system. Every non-
compound word is described in the lexicon, includ-
ing al inflectional endings. When the system
analyses a word, the word is looked up in the lexi-



con. During look-up, each part of the word is re-
placed by its description. At the end, we have a
structured morphological description of the com-
plete word. There are some differences between
the work of an ordinary computer language parser
and the morphological parser Morphar. These are
described in detail in 4.3.

41 Thelexicon

The lexicon has a number of entries, one for each
lexeme. The lexeme can be retrieved by its stem.
Here, the stem is the longest common beginning of
al forms (inflected on tense, number, gender etc.)
of the lexeme. There may exist zero-length stems.

Every lexeme consists of the lemma (the “ca-
nonical” form of the word, e.g. the infinitive for
verbs or the singular indefinite of the noun) and
some inherent properties. One inherent property is
the syntactic category. Another is the paradigm.

The paradigm may be shared among all words
with the same exact inflected forms, or may be
known by a single word only. In the Morphar sys-
tem, the paradigm consists not only of the inflec-
tiond endings (suffixes), but aso the
compositional endings. The compositional endings
are all the possible compositional morphemes that
are used when the lexeme is the non-last word of a
compound. As an example, the word boll (ball) has
the inflectional ending -s, as in fot-bolls-skor
(football shoes). It can be noticed that boll also
have the inflectional ending [, asin boll-plan (ball
park). The use of inflectional endings is not com-
pletely arbitrary, but the rules can be quite com-
plex and there is little need to constraint the parser
to valid compositional endings only.

4.2 Creating The Lexicon

To make the lexicon memory efficient, we need to
keep track of the paradigms created, in order to
share the paradigms between words as far as possi-
ble. Introducing the syntactic category entity,
which is nothing but alist of paradigms, does this.
We need one list for each syntactic category.

A paradigm can be constructed if we know all
the forms of a lexeme. After computing the stem
and al suffixes, we may compare with existing
paradigms. If a paradigm matches, we use it. Oth-
erwise, we create a new paradigm with the new
suffixes.

The standard paradigms for nouns (declensions)
and verb (conjugations) may be added beforehand.
In that case, we are able to add more information,
for instance gender and compositional endings.

4.3 TheAnalyser

The anayser used in the Morphar system works
amost like a computer language parser. One dif-
ference, however, is that each input string may re-
sult in several abstract syntax trees. Another
difference is that an ordinary parser returns a tree
structure for each possible interpretation, but the
Morphar analyser returns only alist. So, instead of
one syntax tree, we may get several morpheme
lists.

The analyser computes all the possible stems of
aword (that is, al initia substrings of the word)
and for each retrieves the lexemes with matching
stems in the lexicon. If alexeme is found, the ana-
lyser tries to inflect it using its paradigm to match
the input word. If a match is found, it is added to
the list of results. Then, if possible, the anayser
adds a compositional ending to the stem and con-
catenates the result so far with the results of the
analyse for the rest of the word. In short, the algo-
rithm can be described in the following way:

1. Find al stem candidates.

2. Find every lexeme that has a stem equal
to the stem candidates.

3. If alexeme can be inflected to match
the input word, we have found a mor-
pheme list (syntax tree).

4. If alexeme has a compositional ending
that matches the part following imme-
diately after the stem in the input word,
repeat recursively from step 2.

When all morpheme lists are found, we should sort
them on probability. The user (or client program)
may then use a first-N agorithm to consider only
the N most probable analyses.

5 Implementation notes

The Morphar reference implementation is pro-
grammed entirely in Java. Each model entity (lexi-
con, lexeme, inflectional ending, paradigm,
syntactic category, analyser etc.) isimplemented as
aclass.
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The source of the lexicon is the word list used
by Den stora svenska ordlistan®. The word list is
distributed under the Creative Commons Share-
Alike 1.0 license®. The source currently consists of
about 25.000 lexemes.

Thelexicon is built by a hash table holding lists
of lexemes sharing the same stem. The stems are
the keys in the table.

Theresult isreturned in atree structure. The
structure can be printed to a PrintStream or a
Writer, which can be directed to the console or a
text field in a graphical user interface. The abbre-
viations used in the output is the same asin the
Stczckhol m-Umea Corpus (SUC) of Written Swed-
ish".

The implementation contains two user inter-
faces. Thefirst is asimple console program, which
prompts the user for input and displays the result
(the input can be specified on the command line as
well). The second implementation is a graphical
user interface (GUI) written using Java Foundation
Classes (JFC). The GUI can be run stand-alone® or
as an applet. However, since appletsin web brows-
ers are disallowed to access files on disk, the applet
version can be run from the AppletViewer tool
only . The AppletViewer isincluded in the Sun
Java SDK release.

6 Prosand Consof TheMorphar M odel

The Morphar model is simple, yet efficient. The
analyser is fast. Words are analysed in millisec-
onds. The program returns the correct analysis
sorted first in 70-80 % of real-world random input
words. The reference program loads in under three
seconds on any standard performance PC (around
1.000 MHz and 256 MB of internal memory).
Some disadvantages compared to the standard
two-level model has shown to exist. In the model,
there is no support for derivational morphemes.
However, such support can be added without sig-
nificant changes to the model. Also, the reference
implementation returns too many incorrect results.
This can be avoided by adding post-analysis rules,
as is done in computer language compilers. The

2 Created by Tom Westerberg. See http://sv.speling.org for
more information.

® The license can be found at
http://creativecommons.org/licenses/sa/1.0.

4 see Appendix A.

® see Appendix B.

rules could prescribe that only a subset of the lex-
emes and the forms can exist in compounds, and
words of syntactic categories A and B cannot be
combined to form compound words.

For the reference implementation, it is a short-
coming that the source word list contains only
around 25.000 words. Also, information on com-
positional endings is missing in the source and is
added by hand when creating the standard para-
digms for nouns and verbs.

As of today, paradigms cannot handle umlauts
and ablauts. The 4™ conjugation for verbs must
thus be treated as many paradigms, one for each
lexeme. This, of course, is not a disadvantage of
the model, but of the implementation.

7 Conclusion

The Morphar model has proven to be useful and
efficient. The reference implementation works sat-
isfactory in most situations, and is pretty fast too.
Some features are missing in the model, first and
foremost a rule-based filter to remove incorrect
analyses. Also, the handling of derivational mor-
phemes is yet to be modelled, and the paradigms
need to be refined.

The implementation is working and may be dis-
tributed freely for use in non-commercial applica
tions.
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A. SUC Abbreviations

Category  Category
Code
AB Adverb
DL Delimiter (Punctuation)
DT Determiner
HA Interrogative/Relative Adverb
HD Interrogative/Rel ative Determiner
HP Interrogative/Rel ative Pronoun
HS Interrogative/Rel ative Possessive
IE Infinitive Marker
IN Interjection
JJ Adjective
KN Conjunction
NN Noun
PC Participle
PL Particle
PM Proper Noun
PN Pronoun
PP Preposition
PS Possessive
RG Cardinal Number
RO Ordinal Number
SN Subjunction
uo Foreign Word
VB Verb
Feature Code Feature
UTR Common (Utrum)  Gender
NEU Neutre Gender
MAS Masculine Gender
SIN Singular Number
PLU Plural Number
IND Indefinite Definiteness
DEF Definite Definiteness
NOM Nominative Case
GEN Genitive Case
POS Positive Degree
KOM Comparative Degree
SUvV Superlative Degree
PRS Present Verb Form
PRT Preterite Verb Form
INF Infinitive Verb Form
SUP Supinum Verb Form
IMP Imperative Verb Form
AKT Active Voice
SFO Sform Voice
KON Subjunctive Mood
PRF Perfect Perfect
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B. Screen Dump from The Reference Im-
plementation

%’ Morphar

~Input

Type & sentence and press Analyze.

"Gamla stjdrnor kommer man ihAg béttre &n de som &nma inte blivit
stjarnor.”™

Analyze | Mext |

~Dlutput

Select 5 word to see all itz possible analyzes:
: 2llgsumal 777 . PLU
qanmal (JJ) .DEF

|

ghjarnor
kommer

man
ih&g
battre
an

de
20M

anru i3
ke
blivit
ghjarnor

Exit
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Abstract

A system has been designed to tag named
entities (NEs) from text. The relevant
domain is traffic accident reports. The
texts are written in the Swedish language.
The NEs to be tagged are names of roads,
streets, city squares, towns and cities.

The system makes use of a rules-based
approach. Gazetteers are used to find lar-
ger cities, morphological rules are applied
to individual words, and context rules are
applied to groups of words.

The project has shown evidence that the
formation of Swedish words aids in iden-
tification and tagging of information in
text.

Introduction

names are composed of word stems belonging to a
much older form of the language in use today.

The working hypothesis at the outset of the pro-
ject was to use regular expressions to perform the
first task, and to use morphological rules combined
with context rules to solve the second problem.

2 Related work

This project has been inspired by the work of
Nugues et al [1]. Another source of inspiration is
the tagging systems developed by Andrei Mikheev
and his team described in [4].

3 Regular expressions

In certain parts of this text, regular expressions
are used. The syntax used is standard, however a
few notations may need a further explanation.

A typical regular expression to match the letters
A to Z may be written as [A-Z]. In Swedish, the
alphabet is expanded with three more letters after

The task was to develop a system to be incorpd, the letters A A and O. In some regular expres-
rated into the CarSim project [1]. For this purposesions in this text, the patterns [A-O] and [a-0] ap-
a sub-system that can tag towns, cities, roads, higpear, indicating a pattern that would match all
ways, streets and city squares was needed. characters of the Swedish alphabet.

The task at hand is divided into two parts: 4 Tags

& order for the CarSim system to be able to oper-

ate on the NEs found in the text, these are tagged

with XML tags. The XML tag set used was in-

vented for this purpose, but follows the MUC

%NAM EX convention. The following tags are used
y the system:

Detection of roads, highways streets an
squares.
Detection of city and town names.

It turned out that detection of roads, squares a
particularly highways can be done with very goo
results by applying simple regular expressions rtg 5 5

; .~ ['2ENAMEX TYPE="ROAD">
text. However, the formation of town names is|a -\ AMEX TYPE="HIGHWAY"> C_ountry roads.
: = Highways.
lot more complex than the formation of street
names. This is due to the fact that many town
! Message Understanding Conferences. See [2].

Ct
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<ENAMEX TYPE="STREET™>  City streets. 10) Print out tagged representation of text.
<ENAMEX TYPE="SQUARE™>  City squares.

<ENAMEX TYPE="CITY"> Major city. At each tagging stage, previously tagged groups
<ENAMEX TYPE="TOWN"> Towns and minor of tokens are ignored by the system in order to
communities. speed up processing.

The tags are applied to text as follows by thi$ Finding roads and highways

example: ]
Swedish county and country roads as well as

highways follow very simple rules of naming. This

Olyckan skedde p&ENAMEX TYPE="ROAD">VAag : re T
makes detecting them quite trivial.

16</ENAMEX> mellan <ENAMEX TYPE="TOWN">
Dalby </ENAMEX> och <ENAMEX TYPE="CITY">

Lund</ENAMEX> Lyckligtvis, for de inblandade,
befann sig en polispatrull i narheten p&NAMEX
TYPE="STREET”> Norrangavagen/eENAMEX>

The common way for country and county roads
to be mentioned is agig 16 lansvag 16or riksvag
108 with the possible abbreviations 16 and rv
108for the last twd.

Translation: The accident occurred on road 16

between Dalby and Lund. Fortunately for those

involved, a police patrol happened to be nearby off!
Norrangavage

These can be found by looking for the follow-
g patterns in the text:

vag Nn
vag Nnn
riksvag /rv Nn

The system goes through a number of processing | fksvag /v Nnn

steps in sequence to perform the tagging. These I{::\nsv.:a:lg /v Nn
steps are: lansvag /Iv Nnn

5 Order of processing

1)  Build up an internal data representation of Here,N denotes a digit from 1 to 9 anal de-
the text for efficient access to tokens. notes a d|g|t from O to 9. The slash denotes a
2) Perform a pass through the text lookingshoice between any of the words it separates.

for and tagging county and country roads _ _ o
and highways. Finding Swedish highways is similar to the task

3) Perform a pass through the text lookingf finding roads. Swedish highways are nants
for and tagg|ng Compound street names. . 22 and the |Ik§, arE fO"OWGd by one or two d|g'
4)  Perform a pass through the text lookingts, where the first one is always non-zero.

for and tagging multi-token street names. _ )
5)  Use a gazetteer to find and tag the names The highway tagger looks for the following pat-

of major cities. terns:
6) Perform a pass through the text to tag
towns based on word prefix and suffix. EN E Nn
7) Perform a pass through the text to find | EMN EN-an
towns by using context rules. In this step, | motorvag E N ENn:an
a list is built of possible towns. mororvag E Nn E Nan
8) Pass through the list of possible towns | Va9 EN E Nn:an
and clean out all duplicates and known | Yad ENn
false hits. EN

9) Use list of towns as a gazetteer to tag the
text for towns in a final pass.

3 vag 16meansoad 16 lansvag 18meanscounty road 16
andriksvag 108meanscountry road 108The abbreviations
2 Dalbyis a minor townundis a city and are more common in police reports and are never used in
Norrangavagerns the name of a street. newspaper text.
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These patterns have proven to be adequate fiance, the word is capitalized, which will cause a
tagging all roads and highways in text taken fronfalse hit.
the relevant domain. They achieved a 100% preci-
sion and 100% recall score in a test where a 290n order to get around this, the system uses a gaz-
kB development corpus of relevant domainetteer of false hits, an exclusion list. Tokens or
specific text was taggéd groups of tokens are compared against exclusion
lists to avoid tagging words such @dycksplatsen
7  Finding compound street names
. Of course, each such exclusion list is both spe-
The Swedish language very often uses ComMfic to the domain and specific to the tagging task
pounding to form new words, quite the opposite tqt hand. The contents of such a list along with the
what is done in Romance languages and English. gesign of the regular expressions that it guards can

_ _ be seen as the training of the system.
An example is a person who works with clean-

ing windows. He is referred to assindow cleaner g Other street names
in English, but in Swedish, the wofdnsterputsare
is formed by the word&nster(window) andputsa ~ Compounded words are not the only way to form
(to clean or to polish something). street names in Swedish. A very small fraction of
street names are formed completely irregularly, but
This compounding property of the languagenost still contain words likevag, gata (road,
also reflects how city streets and town squares astreet) stig (path) and so on.
named. A typical Swedish street may be named
after an entity compounded with a word for a An extension to the notion of compound street
street. names is multi-token street and square names,
henceforth referred to as just multi-token names.
For example a street callgdak street named
after the oak tree would be called something like A multi-token name is a street such &snst
Ekvagenin Swedish, wherdek is Swedish for the Wigforss gata(a street in Lund),Lilla Torg (a
oak tree or oak wood, angiigenis the nominative square in Malm®) and so on, composed of several
form of a word meaningtreet tokens.

The compound street tagger uses this regularity These are easy to detect by using regular ex-
of the language to find roads and city squares. Tharessions and exclusion lists. These are some of
following regular expressions are used to seardhe rules used to find such streets:
for target expressions:

[A-OJ[a-6]* [A-OJ[a-0]*sgata  [A-O][a-6]*s gata
[A-O][a-6]*gatan [A-O][a-6]*vagen [A-OJ[a-0]* [A-O][a-6]*sgatan  [A-O][a-6]*s grand
[A-O][a-0]*stigen [A-O][a-6]*torget [A-O][a-0]* [A-O][a-6]*sgrand
[A-O][a-6]*platsen [A-OJ[a-0]*grand [A-O][a-0]* [A-O][a-6]*svéag
[A-OJ[a-6]*granden [A-OJ[a-6]*leden [A-O][a-6]* [A-O][a-0]*s vag

[A-O][a-6]* [A-O][a-0]*s gata

These regular expressions may of course score
hits that prove to be wrong. A good example is that Examples of exclusion list entries for these
we want to be able to detect and t@gtaplatsena rules are expressions suchR& vag(on the way),
square in the city of Goteborg. However, withinHans vag(His path) and similar, common con-
the domain, a very common word @dycksplatsen structs of the language that deal with the weéd)
(the scene of the accident). When this starts a seroad, path).

Similar rules work fine for squares, again keep-
ing in mind thatplats (a synonym for square in
Swedish) is also a common word meanjsigceor

* The test corpus consisted of press clippings on car accident
from Swedish news sources.
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location which has to be kept in mind when de-lists containing common words that may be formed
signing the exclusion list for this rule set. along the same rules.

9 Tagging major cities

The system uses a gazetteer to find those tokens

that are to be tagged as CITY. The reason for this ggome examples of common suffixes used are:
is that there are not many major cities in Sweden.

The test system developed used a gazetteer of Zg by
cities for this purpose. -stad fors
) ) _ | -boda -vik
The system will look for two things when using g4 jarvi

the gazetteer. Not only is the exact match to the
listed item sought, but also the word with the letter tpage gre present in town and city names such

‘s’ appended to form the possessive form of th%sGenarp Hyby, Filipstad, BengtsforsLénsboda
word. ValdemarsvikOnsalaandJukkasjarvi

The system will find the cityStockholmif an When it comes to prefixes, very many of the

exact match can be done or a match can be donejgyre common prefixes involve names of kings or

the varianiStockholms other historical persons as exemplified by the cities

L . KarlstadandKarlskrona
Swedish is abundant with compounded words,

as has already been noted. A phrase suckthas  pgyever, it turned out that the suffix proved to

police in Stockholnis built up as one wordstock-  pe 4 petter source for identification of a town name
holmspolisenin Swedish. The system will not, andpan the prefix. The final system looks only for
shall not tag such compounds due to the fact thgtege prefixes:

they seldom refer directly to a location but rather
to where a certain subject is from. Mal-

Kung-
: . . Kristian- Karl-
10 Tagging towns using prefixes and suf-| cpistian- Carl-
fixes Na&s- Berg-
As in many other European languages, Swed slﬁal'

town names often stem from words that were in
common usage hundreds of years ago, creating
patterns in their formation. This, combined withP
the Swedish quirk for compounding words, is ver
useful when it comes to searching for town names.

It is quite possible to find a lot more common
efixes on Swedish towns, however, extending the
refix list when using a large suffix list added very
ittle to the detection scores of the program.

Although there are local themes and variation One large cause for false hits by using the suf-
on formation of town names, most notably farﬁx rules Was_that very many surnames of people
north, where naming often stems from the Saan‘ﬁ.red foLmed_ n tthe sarrrlle W?/I/ afi Itown Fnames.
language rather than from Swedish, morpholog Indesbergis a town, whereaslagoaiena rors-

can be used to detect town names. Most notable HEr91S & person. A further complication is that the

Swedish town name formation is the plethora o r(;?netng\?vr;a;ne?gnasrlmsdtssicr)r:iIg?fggu?gecéde\:/:/];erfeporet(s)
common prefixes and suffixes. pap ; P

ple often are introduced once with full name, and

The system works with two lists of suffixes andthereafter mentioned only by last name.

prefixes, which are matched against capitalized

words in the text. This is combined with exclusion To _avo_ld scoring false hits d_ue to this kind .Of
complications, the system tries to determine

whether a name, rather than a town, has been
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found. If a possible town is preceeded by a capital- These are examples of context rdles

ized word, this word is checked against a list of

common first names. If there is a match, the wargolisen iTOWN1

is considered to be a name rather than atown. | ROAD1 mellanTOWN1 ochTOWN2

norr onTOWN1

Another method used to find names is based |amafikolycka i TOWN1

the Swedish tradition of double names. Douhléilolycka i TOWN1

names in Swedish are first names that are hypheS8TREET1 i norraTOWN1

ated, like Jan-Akeand Anna-Karin If a possible

town is preceeded by two capitalized words, which Note the type tags: ROAD1 will match any to-

are separated by a hyphen, it is also considered ken or group of tokens tagged as a road by the ear-

be a name. lier passes that the system made over the text.
Also, STREET1 will match anything tagged as a

If a word has been categorized as being a hamgreet.

and not a town, a backwards search is done about

50 words, and a forward search about 250 words to After the list of town candidates has been built,

remove false tagging of the name. The reason faris subject to elimination of duplicates. Any town

this is that it is very common for newspaper text tdound should only be on the list once.

omit the first name of a person in the headline, in-

troduce the person by full name somewhere near After this, all already known cities are elimi-

the beginning of the text and then refer to the pemated, as are all towns that match known prefixes

son by last name only for about one quarter of and suffixes. Exclusion lists are also applied, both

page until the full name is mentioned again. on suffixes and on entire words, to remove refer-
ences to gas stations, forests, streets, sports arenas
and so on. The reason that the exclusion lists oper-

11 Tagging towns using context rules ate on suffixes is the affinity for compounding

. words in Swedish.
Very many Swedish towns can be found by the

simple rules described above. However, there are pq gp example, we want to find the towfirke
other town names that are not as regularly formeg, this text: “Olyckan intraffade pa vag 104 mellan
WhereasBjérred can be found by the suffix rules ysirke och Stora Harrie. Mer exakt intraffade oly-
and Kungsorcan be detected by the prefix rulespan strax norr om Shellmackéf. We do not,

the town ofLomma which is close to Bjarred geo- however, want to get the worghellmackeron the
graphically, will not be detected. None of theiqyns Jist.

towns Morgongava Virke or Radwould be found
by those rules either.

The final result of the application of context
rules and post-processing is a list of towns. This

In order to improve detection, a set of contexfist js ysed to make a pass through the text and tag
rules was introduced. These are used to analyze thg 5.currences of those words.

surroundings of a word. In the domain of traffic
accident reports, town names are commonly used
in certain special contexts.

. . ® The translations are The police in TOWN1, ROAD1 between
The context rules are applied by scanning th@ownz1 and TOWN2, North of TOWN?, Traffic accident in
text for matching patterns. As soon as a completBOWN1, Car accidentin TOWN1 and STREET1 in northern

match is made, the words that may possibly bEOWNI. .
towns are extracted. These are then added to a i he accident occurred on road 104 between Virke and Stora

f did for furth . arrie. More specifically, it happened west of the Shell gas
of town candidates for further processing. station This sentence is, however, constructed. There are no

gas stations in Virke, and road 104 does not run through the
town.

" The word meanthe Shell gas statiomnd is another exam-
ple of compounding of words in the Swedish language.
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A test on the 290 kB development corpusl4 Conclusions
showed that 50 towns that could not otherwise be
detected were found by this set of rules, of which ~ The project has shown that detection and tag-
11 were false hits. All false hits were actual geoding of Swedish towns, streets, roads and cities can
graphic locations, however. Some were lakes arRe done quite reliably by using a rules-based ap-

islands, some were foreign countries and som@roach. Evidence was found that roads and high-
were city boroughs ways can be automatically detected with absolute

confidence by applying simple rules based on
regular expressions. City squares and streets may
12 Multi-token towns also be detected quite reliably by applying slightly
more advanced regular expressions.
Some towns in Swedish are augmented with
extra, descriptive words. Examples drdla Edet, When it comes to detecting and tagging towns,
Stora Rabyand Sodra SandhyCommon for many the approach that worked best was to look for
of these is that the first word is almost always amommon suffixes. Prefixes added a bit more recall
adjective likeNorra (northern) orLilla (lesser). (it went up from 89% to 93%), and precision was
helped by the addition of the exclusion lists (an
Therefore, the system is instructed to look foimprovement from 81% to 89%).
a list of adjectives before any towns that are found.
If a capitalized adjective that is on the list is found The towns that were not detectable by use of
before the town name, this is also incorporated iprefix and suffix rules could in some cases be

the tag. found by the context rules instead. It turned out
that the few simple context rules used for the test
13 Results system worked well enough to tag only geographi-

cal locations, however, only about 80% of the loca-

The final system was blind-tested on texts it hagons they managed to detect were actually towns.
not been subject to before. A 14 kB text was used,

which was composed of domain-specific text from
Swedish news sources. The total number of tOke'ﬁeferences
in the text (words and punctuation) was 2533.
[1] Per Andersson, 20037 Prototype to Extract and

On this text, precision and recall was measured. Visua!ize Information frc_;m Car Accident Reports in
Recall is measured as the number of relevant re- SWedish Master's Thesis, department of Computer
sults in the answer set over the total number of Science, Lund Institute of Technology.
possibly relevant results. Precision is measured §&WEB:
the ratio of relevant results over all results in th¢1ttp://WWW.(:s.nvu.edu/cs/facuItv/qrishman/muc6.h'[ml
answer set.

[3] Jerry R. Hobbs, Douglas Appelt, John Bear, David

L Israel et al., 1996-ASTUS: A Cascaded Finite-State
0 1 tl
For the test text, a recall of 93% and precision Transducer for Extracting Information from Natural

of 89% was measured. Upon inspection, the t'ext Language textin Roche and Schabes, edSinite
showed evidence that the results could be im- siate Devices for Natural Language ProcessigT
proved by adding more context rules and restrict- press, Cambridge MA, 1996

ing more words by using the exclusion lists fo

r - .
town suffixed. [4] Andrei Mikheev, Marc Moens and Claire Grover,

1999,Named Entity recognition without gazette@érs
EACL'99, Bergen, NorwaCL June 1999. pp. 1-8

8 1t may, with good reason, be possible to argue that a city
borough is a town.

° It shall be kept in mind that the system, as described here, is
a small prototype system.
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A Writing Assistent Using Language Models Derived From the Web

Sharon Tsai
dOooyt@efd.lth.se

Abstract by the amount of different words available in the

corpus.
In the field of Linguistic there exists Plw) = C(w) 1)
many powerful tools for measuring the N

statistic characteristics of words and
sentences. These tools rely on a corpus
to which the data is compared. In or-
der to get good and meaningful results
from the tools available, a suitable cor-
pus is thus needed. As the corpus is the
key that ties the tools together, it is of
uttermost importance. For most appli-
cations, all though not all, a large cor-
pus is useful. This paper presents a solu-
tion to using the largest corpus known to
man, the Internet. It will show a proto-
type program using many different lin-
guistic tools on information gathered by

It is also possible to calculate probabilities of
a word following a given word. This is known as
the maximum likelihood estimate and is defined in
equation 2.

Clwi—1,w;)

C(wi_l) (2)

P(wi|wi_1) =

The maximum likelihood estimate for a word

following two given words is defined in equa-
tion 3.

C(wi—2, wi—1, w;)

®3)

P(wi|wi—2,wi—1) = Clwr 2. wi1)

1.2 Mutual Information

the premiere search engine Google.
Mutual Information is a tool for measuring the

strength of word associations. A high value is
an indication of two words occurring together but

. , . with a total small fr ncy, such as technical
The basic mathematical tools needed for this wor o S equency, such as e(,:, ca
. : o . . erms. For instance, such terms might be "hyper-
is explained in this section. For a more in depth ex-

. . threading processor” or "keyhole surgery”. Mu-
planation please see (Language Processing Corp- o . . .
. . ual Information is defined in equation 4
putational Linguistics, 2003).

1 Method

NC(U)Z‘, wi+1)

1.1 N-Grams I(w;, wit1) = logy m (4)

N-Grams is simply a method of counting the fre-

quency of a sequence of N word in the corpusl-3 T-Score

These frequencies can then be used to calculafe-Score is a statistic tool which measures fre-
probabilities. Equation 1 shows the probability of quently occurring grammatical combinations. A
a single word occurring. It is naturally the fre- high T-Score means that the two words occur of-
guency of the word occurring in the corpus dividedten together, such as "of the” and "in the”. The
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definition of T-Score is shown by equation 5 is to be analyzed. The final result is presented in
the text area below the text field. The status label
C(wi,wip1) — 5C(wi)C(wit1)  at the bottom updates the program status, search
C(wi, wit1) progress and possible error messages. See fig-
(5) wure2, 3and 4.

T(wi, wi+1) =

2 Implementation

The prototype program is implemented in Java.|
For more information please see (J2SE 1.4. 1w o
API Specification, 2003). It is made up by five
main classes: GUI, UserPane, SearchResultPan
SearchHandler and HTMLWriter. See figure 1 for |
the overview of the structure.

sEND | msaT

Figure 2: GUI: UserPane

GUI

UserPane Search -
ResultPane R
Search HTML
Handler Writer

Figure 3: GUI: UserPane during search

Figure 1: An overview of the architecture

2.2 User Interface

22.1 GuUI el strmion

The GUI is a frame that contains a UserPane............
and a SearchResultPane. A user can change Viejw.  seureuce nex
by clicking on the respective tab that represent
UserPane and SearchResultPane.

sEND | msaT

2.2.2 UserPane . .
) Figure 4: GUI: UserPane after executing search
The UserPane consists of a button group, a text

field, a text area, two buttons, Send and Reset, and
a status label. The button group contains a list of

linguistic methods that a user can choose to ané-2-3 SearchResultPane

alyze the input sentence with. Only one method The SearchResultPane consists of a web page
can be chosen at the same time. These methodsat is generated automatically in the end of every

that are included in the prototype program are N-search. See figure 5. The web page reloads auto-
Gram, Mutual Information and T-Score. The textmatically after every new search and contains all

field is where the user types in the sentence whickhe statistical data gathered.
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net and the number is growing everyday.

i o] | 232 Textinpu

- 32600000 |4.389341984 |- This stage is the very beginning of the program
YouR 201000000 [0.0usosserse | cycle. It is done simply by clicking on the Send
SENTENCE 3200000 |140280535-5 | - button or press "ENTER” on keyboard after enter-
AmE P e ing a sentence in the text field. At the moment, the
et i A Sl ki size of the sentence is limited at 50 tokens. The
— 'lq::"" sentence is then sent to the SearchHandler object.
ENTER YOUR SENTENCE |48 8.988764E-6 I- 2.3.3 Parsing

— 1= i The SearchHandler first applies an error con-

trol on the incoming sentence. The main pur-
pose of the error control procedure is to filter out
the word "the,” which causes overflow in the au-
tomated Google search. The SearchHandler also
checks if the sentence is empty. If any of these

2.3
The data flow chart, figure 6, shows all SeVentwo errors occurs, the program is terminated and

stages of the prototype program. See the corre@n appropriate error message displays at the status

sponding sections for further detail and informa—?bel' The Zen"[ence |s'fthen parsed mt;) un:jgrarrl:s,
tion on each stage. igrams and trigrams if no errors are found. A

N-Grams are stored in an array.
2.3.4 Google Search

Figure 5: GUI. SearchResultPane

Implementation Detail

Text Inputi— Parsing | The SearchHandler traverses the N-Gram array
and performs Google search on every N-Gram.
Calculate Google |4 Google returns an estimated result back and it is
Probability” | Search saved in the corresponding position in a separate
. lh ;erate array for search results.
Motsallnfo/ L] HTML Google’'s own API is used in this program be-
T-Score Page cause Google does not permit automated queries
without an APl account. Communication is
Rffer:jlet“t performed via Simple Object Access Proto-

col(SOAP). For further information about Google
API see (Google API, 2003).

2.3.5 Calculate Probability

No matter which linguistic method is chosen to
23.1 Initiating GUI analyze the input sentence, N-Gram probabilities
i o are always calculated according to formulas pre-
During the program initiation, the total NUMber go e in section 1. The resulting N-Gram proba-

of words that exists on the Internet is estimatedyjjisies are stored in a separate array in the corre-
This is done by calculating the occurring percem'sponding position.

age of words such as "in,” "on,” and "of” in a

fixed size English corpus. This percentage is the®-3.6 ~Calculate Mutual Information/ T-Score
applied on the sum of the Google search results If the chosen linguistic method to analyze the
of these words in order to estimate total numbeinput sentence is Mutual Information or T-Score,
of words. The percentage used in this progranvalues for bigrams are calculated according to for-
is obtained through Jane Austin’s novel "lEmma.”mulas presented in section 1. These values are also
There are around 74.6 billion words on the Inter-stored in a separate array.
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2.3.7 Generate HTML Page a): really like strawberry
After all the necessary values are calculated, i
web page is generated by HTMLWriter object and
loaded into the SearchResultPane. It can also th) I strawberry
viewed by any web browser. The web page con
tains the estimated total number of words on the
Internet, and a table of all N-Grams and their cor- C) I really strawher ry heer
responding N-Gram probability and Information/
T-Score values, if any.

heer

bheer

Figure 7: Search results: The sentence is analyzed
2.3.8 Represent Result by: a) N-Gram b) Mutual Information c¢) T-Score

Depending on which linguistic method is cho-
sen, the corresponding result array is traversed. .
Separate strategies are used to analyze results %113 Conclusion
N-Gram, Mutual Information and T-Score. There In this example, the program demonstrates the
are two ways to represent unusual words, in orability to detect strange or unusual word combina-
ange style and red style. The font of wordstions.
is slightly bigger than default, size sixteen, and
painted in orange. In red style, it is size twenty
font and painted in red.
For N-Gram, if any of the N-Gram probability 3-2.1 ldea
is less than 0.1%, it is marked in orange style. If For most people, the most difficult part of learn-
the N-Gram probability is less than 0.05%, it ising a foreign language is prepositions. In this ex-
marked in red style. ample, the most common prepositions that occur
The bigram that has the highest Mutual Infor-with the word "consist” are "of” and "in,” accord-
mation value is marked in red style and the seconéhg to Oxford Advanced Learner’s Dictionary. The
highest bigram is marked in orange style. goal is that the program should be able to spot and
The marking strategy for T-Score is the oppositgmark the bigram, "consists at” in red style, prefer-
for Mutual Information. The bigram that has the ably, or in orange style because it is grammatically
lowest T-Score value is marked in red style and théncorrect.
second lowest bigram is marked in orange style. 3922 Search Results

3.2 Experiment II: "This project consists of
three parts, and it consists at working”

3 Experiments Figure 8 shows that linguistic methods N-Gram
and T-Score manages to marks the error bigram
3.1 ExperimentI: "I really like strawberry in red style, however, Mutual Information fails to
beer” produce correct results.
3.1.1 Idea

” H niad hi 15 d
The sentence, "I really like strawberry beer,” is ) the J "

used as reference sentence during the developme consists at working
phase because the very rare occurrance/use of tl

. . b This CDnS—iStS Df three parts and
word combination "strawberry” and "beer.” )

it consists at working

3.1.2 Search Results

As figure 7 clearly shows that all three methods
manage to detect the unusual word combination,

strawberry beer. T_h|s IS th? primary reason thatFigure 8: Search results: The sentence is analyzed
the Mutual Information marking strategy is chosen

to mark the highest and the second highest valye™Y: & N-Gram b) Mutual Information c) T-Score

C) This project consists of three parts and it

consists at
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With a closer look on the numerical values of Information only marks "catch” in orange style,
the search result which presents in figure 9, theot in red. It also misleadingly marks the bigram
Mutual Information value of the error bigram is "drops it” in red style, which is grammatically cor-
ranked the sixth highest or the fifth lowest of all rect.
ten bigrams which places it in the middle. There-
fore, the error cannot be spotted by using Mu-a) He catch that ball she
tual Information method with the current strategy,

whether by marking the bigram that has the high- drops it

est or the lowest Mutual Information value. b) e ball after she ArOPS
Search String Search Result | Probability |Mutual Information -I t
This praoject 2450000 0.0050619836 |10.2722845 7 CJ He CatCh that she drops
project consists 49800 0.0010530786 |14.68117 2 it
consists of 1990000 041983122 18.298563 1
SEKeR #4500 D00Z5ETRERA|FS08R2S 8 Figure 10: Search results: The sentence is ana-
three parts 384000 0.0074131275 |14.622448 3 |yzed by a) N-Gram b) Mutua| Information C) T-

parts and 1500000 0.060126584 |12.786431 4 Score

and it 6590000 0.004393333 |5.2354455 0

it consists 398000 9.191886E-4 |11.28439 5

conzists at 2550 5.379747E-4 | 10.633199 6 333 ConCIUSIOn

S 49300 1238693564 |57684106 o The program also has the ability to analyze and
check the verb tense in a sentence. However, it can
Figure 9: Mutual Information values in SearchRe-0nly analyze a sentence at lexical and grammatic
sultPane with additional rankings level, not in semantic level as it does not try to
understand the meaning of the sentence.

3.2.3 Conclusion 4  Further work

This example demonstrates the program’s abilThere are a few further improvements that can be
ity to spot possible incorrect prepositions in a sendone in the program. Breaking up the option N-
tence. However, T-Score and N-Gram method$sram into three different sub-options, unigram,
produce better and more reliable results than Mubigram and trigram and during the parsing stage,
tual Information. the input sentence will only be parsed according
to the linguistic methods, e.g. only bigrams in T-

_ Score and bigram options and trigrams when the
she drops it’ trigram option is selected. This might decrease the
3.3.1 Idea run time a little bit, but not very significantly.

There is an obvious tense error in the sentence. If @ user wishes to analyze the same sentence
It should be "He catches” instead of "He catch.” With different methods in different search, the pro-
With the help of any of these three linguistic meth-gram should be able to use the already existed
ods, hopefully the program is able to detect thissearch results from the previous search and calcu-

3.3 Experiment lll: "He catch that ball after

grammatic error. late new values according to the selected method.
This will decreases the run time significantly, es-
3.3.2 Search Results pecially after the first initial search.

As figure 10 shows that all three methods man- More sophisticated marking strategies can be
ages to spot and mark the error bigram in someleveloped for all the methods instead of the ex-
way. Again, T-Score produces the best results anibting straight-forward approach as in T-Score, the
is still the most powerful linguistic method com- lowest in red style, and in N-Gram, under 0.05%
pared to N-Gram and Mutual Information. Mutual marked in red style.
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5 Conclusion

This paper has clearly showed that it is possible to
implement a language assistance using linguistic
methods without a fixed size corpus. The Inter-
net is without doubt the biggest corpus ever cre-
ated. The number of web pages on the Internet
increases everyday. However, the difference in
quality and the form and use of the language of
these home pages are substantially large. With-
out carefully analyzing and filtering out the un-
wanted information, the results may be mislead-
ing. The search results can very well represent
the most modern, normal-everyday-life, down-to-
earth form of a language.

It has been a great learning experience and chal-
lenge in both applying textbook formulas into real-
life uses and designing a user-friendly program. A
few mistakes has been made and corrected, but the
most important of all, is the satisfaction of enjoy-
ing the final fruit.
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