A Classification System Applied to Music Reviews

Carl-Emil Lagerstedt
Department of Computer Science

Lund University
datOlcal@ludat.lth.se

Abstract

This paper describes a system for classifi-
cation of music reviews. The system uses a
clustering algorithm to build a tree out of a
corpus of reviews. Reviews are clustered
together based on the similarity of their
contents, thereby providing a way to make
suggestions of similar artists. Our results
show that this approach has potential and
should be further explored.

1 Introduction

Staying updated in the world of music is not an
easy task. New artists and genres emerges every-
day and the most obvious way of learning about
new artists is by reading articles and reviews. This
can be quite time consuming, and therefore we
wanted a way to classify reviews to support the
selection of the interesting ones.

This paper describes such a system for classifi-
cation based on mutual information.

The classification algorithm computes the inter-
section of two documents and returns a fractional
value between 0 and 1, called document similarity.
The closer the value is to 1, the more the docu-
ments resemble each other. A tree is then built
based on the document similarities.

2 Purpose
The purpose of this paper is to describe a

method for automatically making recommenda-
tions, based on the content of reviews. We believe

Orjan Berglin

Department of Computer Science
Lund University
datOlorb@ludat.lth.se

that such a system could be useful in many cases,
such as in online shopping. A site could keep a
large database of reviews and use them to make
suggestions to customers. The benefits of this sys-
tem is to reduce manual labour.

There is also the possibility that the system will
be able to visualize hitherto unknown or unex-
pected connections between artists, that might not
be visible while using traditional keyword-based
indexing.

3 Background

Often there is a need to find and show informa-
tion that is related to a certain topic, for instance,
many shopping sites on the Internet have some
way of showing recommendations to the customer
based on the item currently viewed. This can make
it easier for the customer to find interesting ob-
jects, and might increase sales.

The methods for producing this information are
often primitive, and are often based on the shop-
ping habits/recommendations of previous custom-
ers/visitors. Many times this approach is adequate,
but the method has obvious drawbacks. Informa-
tion about previous customers might not be enough
or even applicable to this customer. For instance,
while browsing crime fiction, a customer is proba-
bly not interested in the fact that someone else has
bought a cookbook together with the crime novel.

There are also methods that are based on manual
labour, where someone has to enter keywords by
hand.

This is a method that works quite well, but it can
demand a lot of manpower, and due to it’s nature is
error prone.



We will explore three websites that all have
some kind of recommendation system. We do not
claim to have exact knowledge about the systems
that these sites use. This is just our impression of
how the systems work.

3.1 The All Music Guide'

The All Music Guide (AMG) is an online re-
source of artist biographies and record reviews.
They have almost 250,000 reviews in their data-
base.

In the biography for an artist, AMG presents a
list of similar artists. This list is compiled from
data manually entered by AMG’s editors and visi-
tors to the site.

3.2 Amazon.com>

Amazon.com makes recommendations based on
what other buyers of an item has bought. The sys-
tem seems to be based entirely on the sales statis-
tics, and thus the system does not make intelligent
suggestions. Our research shows that this system
works quite well, with two exceptions. The first is
that one might get only suggestions of the same
author. The second is that if an item has not been
bought by anyone, no suggestion is made, since
there is no sales statistics for that item.

3.3 The Internet Movie Database’

The Internet Movie Database describes their
recommendation system like this:

“With over 384,000 titles on the IMDb it isn't

feasible to handpick Recommendations for every
film. That's why we came up with a complex
formula to suggest titles that fit along with the
selected film and, most importantly, let our
trusted user base steer those selections. The
formula uses factors such as user votes, genre,
title, keywords, and, most importantly, user rec-
ommendations themselves to generate an auto-
matic response.”’

! http://www.allmusic.com
? http://www.amazon.com
* http://www.imdb.com

3.4 Background Summary

Even though all the described sites have many
reviews, none of the systems makes use of linguis-
tic methods for producing recommendations. In
fact, we have failed to find any such system.

4 The Music Reviews

Based on the observation that reviews often ref-
erences other artists, we draw the conclusion that
this would be useful in the classification process.
For example, in a review of the album Gold by
Ryan Adams, the reviewer mentions that “...the
album is an impressive exploration of territory
previously covered by Bob Dylan, Neil Young and
other greats before him”. It does not seem far-
fetched that a Ryan Adams fan might also enjoy
Bob Dylan and Neil Young.

It also seems likely that if artist 4 has received
reviews that are similar to those of artist B, then
their work might also be similar.

The corpus of reviews was collected from sev-
eral online resources, as well as OCR-ed from print
magazines. The corpus consists of a few hundred
reviews, selected by us. The reviews cover popular
music from the 1960s up until the present date.
Therefore our personal preferences may have in-
fluenced the selection.

5 Classification Algorithm Overview

We use a clustering algorithm based on inter-
section. Each document is considered to be a set of
words and the intersection of two documents rep-
resents how similar they are.

Each document is considered a node. Each node
is compared to every other node and the pair with
the greatest similarity is selected out. A new node
is created with the two selected nodes as its chil-
dren and reinserted into the set of all nodes, con-
taining all the words from the two nodes.

This is repeated until there is only one node left.
In the resulting tree, nodes that are close should
have similar content.



5.1 Document Similarity

The union of two documents is the base for the
document similarity.

A fractional number between 0 and 1 is returned
by the following equation:

S=[Dy U Ds|/(IDi] + D),

where D; and D, are the documents and S is the
document similarity. A high document similarity
indicates that the two documents have similar
content. The document similarity is used only on
the lowest level of the tree. When compound nodes
are compared, the set of words in each node’s chil-
dren are computed recursively.

5.2 Algorithm Efficiency

Since, in every iteration, each node has to be
compared to every other node, the algorithm has a
time complexity of O(n’), where n is the number of
nodes. Some of the computation could be elimi-
nated by using dynamic programming. Even
though the algorithm is slow, it is not a major im-
pediment, since the tree needs to be built only
once. The only time the tree must be rebuilt is
when additional reviews are added to the database.

6 Prototype Implementation

Our prototype is coded entirely in Java and
makes heavy use of hash tables to store document
content. We use a stop list to remove common
words that provides little or no information. This
reduces the number of comparisons in the algo-
rithm. As a consequence, the algorithm runs faster,
and also more accurate. The reviews are stored as
plain text files. Output is visualized using Graph-
Viz from AT&T Labs-Research®. GraphViz pro-
duces a visual graph that can be zoomed and
panned to study the results. The running time for
building a tree with 240 reviews is about 60 min-
utes on a 2.0 GHz Pentium 4.

http://www.research.att.com/sw/tools/graphviz/

7 Results

Our initial idea, that we could group similar re-
views together, proved to work pretty well. Based
on observations of our implementation, we esti-
mate that about 60-70% of the reviews are clus-
tered correctly.

We saw that one important factor was the qual-
ity of the corpus. If a review is too short, it doesn’t
contain very much factual information, and is
therefore not very usable in the clustering effort.

One other objective would be to produce a more
balanced tree. This way we could easily cut the
tree at an arbitrary level, to produce clusters. With
the current implementation, the tree can become
very unbalanced.

Similar artists do get clustered together. Effi-
ciency is, however, hard to measure, since different
people might have different views on how the art-
ists should be grouped. An example of a succesful
(in our opinion) grouping, is that of Ryan Adams
and Bob Dylan getting grouped together. An ex-
ample of an obviuos grouping is that Bob Dylan
reviews gets grouped with other Bob Dylan re-
views.

However, some reviews get clustered in at a
completly wrong place in the tree. For example,
Velvet Underground has, in our tests, been clus-
tered with Abba as its closest neighbour, which, in
our opinion, feels totally wrong. There should be
better matches for both these bands. We believe
that this bad matching has two reasons. First, in
our implementation, all documents are eventually
put in the tree, regardless of whether they have any
similarity to an other document. Second, we have a
pretty limited corpus. A solution to the first prob-
lem is to have a threshold value for the document
similarity. This would eliminate the insertion of
irrelevant nodes.

8 Conclusion

We are satisfied with our results, even though
they might not seem very impressive. Our proposi-
tion seems to hold, that is, an automated clustering
of reviews is a useful idea.

More work needs to be done, but we are confi-
dent that, given enough time and effort, this could
also turn out to be a useful application.



9 Future Directions

We would like to implement the vector space
model, to compare the efficiency and the results of
the algorithms.

When a review has very little in common with
other review, there is no point in inserting it in the
tree. As previously mentioned, a threshold value
for the document similarity could be used to re-
move those reviews.

The use of an inverted index (where rare words
are weighted up) should be explored.

The ability to detect bold and italicised words
might provide additional clues as to what words in
the review are important.

A name extraction feature would further en-
hance the similarity values, since artist names
commonly are used as references when writing a
review.

To reduce the running time of the algorithm, dy-
namic programming should be utilized to reduce
the number of comparisons that need to be made.

To speed-up the application, distributed data
processing could be used. It would be interesting to
test the algorithm on a distributed system, using a
large corpus, such as The All Music Guide.



