
A spell checker with a user model for Swedish dyslexics

Marie Gustafsson
Department of Computer Science

Lund University
Sweden

marie@katastrof.nu

Abstract

Dyslexics pose a great challenge to
spelling checking programs. They are
among the ones who need the programs
the most, they make diverse and com-
plicated errors, and they may have trou-
ble picking out the intended word from
a long list of suggestions. The idea be-
hind the program described in this article
is to start with a spell checker based on a
noisy channel model and allow for multi-
ple transformations of deletion, insertion,
substitution and reversal between the typo
and the intended/suggested word. A user
model consists of matrices of how often
the user makes these transformations for
the different letters of the alphabet. When
the user chooses a suggestion from the
spell checker, the typo/correction pair is
used to further update these matrices.

1 Introduction

Dyslexia is a subject of much debate, both regarding
definition and diagnosis. Because spelling is a large
burden for dyslexics, most agree that a spell checker
can be of great advantage. Alas, most spell check-
ers are designed for correcting typing errors, or ty-
pos, made by fairly able spellers. However, dyslexic
spellers make more diverse errors, including com-
pound errors consisting of a sequence of mistakes.
Many dyslexics experience that spell checkers are
not able to suggest words for their misspellings. Fur-

ther, a small number of suggested corrections is im-
portant, since it may be difficult for the dyslexic
to select from a long list (Spooner and Edwards,
1997).

A computer can have a user model for predict-
ing how a user thinks and behaves. Ordinary
spell checkers have minimal if any user model. It
is thought that a user model can improve a spell
checker by being more tuned to the kinds of mis-
takes that a certain user tends to make. For example,
one user might tend to confuse b and d, while an-
other might have problems with p and b. Knowing
about these individual confusions can improve the
suggestions given by the spell checker.

This article will look at the possibilities of apply-
ing a simple user model to a spelling correction pro-
gram presented by Kernighan et al. (1990) , which
is based on a noisy channel model. More specifi-
cally, the possibilities of applying this user model to
Swedish dyslexics.

2 Dyslexia

The definition of dyslexia has been much discussed,
as well as whether or or not dyslexia should be de-
fined at all. Many definitions have focused on a dis-
crepancy between the ability to read and write and
the other intellectual abilities of a person. In 1994,
the Orton Society decided on the following defini-
tion(Hoien and Lundberg, 1999):

Dyslexia is one of several distinct learn-
ing disabilities. It is a specific, language-
based disorder of constitutional origin
characterized by difficulties in single word



decoding, usually reflecting insufficient
phonological abilities.

The causes of dyslexia are disputed, but research has
shown that phonological training in early schooling
can be helpful. While many dyslexics eventually
manage to read at a fairly high level, the troubles
with spelling are more persistent.

3 User modeling

A user model defines the way a computer believes
a person using it will behave. Dynamic user model
generally refers to a set of stored numbers indicat-
ing how a particular person behaves on a number of
scales. The field of user modeling has been around
for about twenty years, starting with student model-
ing in the early eighties. The cognitive processes
that underlie the user’s actions and the user’s be-
havioral patterns or preferences are some things that
user models may wish to describe. Another is the
difference between the user’s skills and expert skills
(Webb et al., 2001).

Among others, the following structures and pro-
cesses are often included in a user modeling system
(Kobsa, 2001):

• the representation of assumptions about user
characteristics in models of individual users,
such as assumptions about knowledge, miscon-
ceptions, goals and preferences;

• the representation of common characteristics of
users, grouping them into subgroups, or stereo-
types;

• the classification of users as belonging to one or
more subgroups, along with the integration of
typical characteristics of these subgroups into
the current individual user model;

• the recording of users’ behavior, especially
their past interaction with the system;

• the formation of assumptions about the user
based on the interaction history.

Observing the user’s behavior can provide exam-
ples for training the user model, which can be used
to make a model to predict future actions. There are
however problems: the need for large data sets; the

need for labeled data; concept drift; and computa-
tional complexity (Webb et al., 2001). Further, if
user modeling profiles are to be created, a sufficient
amount of time is required before they can be of any
use. A solution to this might be the incorporation of
stereotypes. Ideally, these should be used for initial-
izing the user model, until there is more information
about the individual user. Also, it should be regu-
larly checked whether or not the right stereotype is
activated (Virvou and Kabassi, 2002).

4 Approaches to spell checking

The traditional spell checker will go through a text
and for each word check if it is in its dictionary. If
it is, the spell checker moves on to the next word.
If it is not, the spell checker tries inserting, remov-
ing, substituting and swapping (or reversal of) letters
to see if it can find any words from the dictionary.
These four changes represent major error types. A
limitation of this approach is that only words in the
dictionary are considered correct, which may lead
to both false negatives and false positives. Another
limitation is that no account is taken for the sur-
rounding words. Further, many spell checkers only
check for errors at one place in the word (or at least
this used to be the case, e.g. (Kernighan et al.,
1990)).

4.1 Levenshtein distance

Levenshtein distance (LD), also called edit distance,
is a measure of similarity between two strings. The
distance is the number of deletions, insertions, or
substitutions required to transform the source string,
s, into the target string,t. For example, ifs is ”thing”
andt is ”thing”, thenLD(s,t) = 0, because no trans-
formations are needed. The strings are already iden-
tical. If s is ”thing” andt is ”think”, thenLD(s,t) = 1,
because one substitution (change ”g” to ”k”) is suf-
ficient to transforms into t. A greater Levenshtein
distance, means more different strings (Gilleland, ).

The Levenshtein distance can be found by (Gille-
land, ):

1. Set n to be the length of s. Set m to be the length
of t. If n = 0, return m and exit. If m = 0, return
n and exit. Construct a matrix containing 0..m
rows and 0..n columns.



2. Initialize the first row to 0..n. Initialize the first
column to 0..m.

3. Examine each character of s (i from 1 to n).

4. Examine each character of t (j from 1 to m).

5. If s[i] equals t[j], the cost is 0. If s[i] doesn’t
equal t[j], the cost is 1.

6. Set cell d[i,j] of the matrix equal to the mini-
mum of: a. The cell immediately above plus
1: d[i-1,j] + 1. b. The cell immediately to the
left plus 1: d[i,j-1] + 1. c. The cell diagonally
above and to the left plus the cost: d[i-1,j-1] +
cost.

7. After the iteration steps (3, 4, 5, 6) are com-
plete, the distance is found in cell d[n,m].

4.2 Noisy Channel Model

The noisy channel model of Shannon (1948) has
been applied successfully to many different prob-
lems, spell checking among them. The models has
two components: a source model and a channel
model. In applying this to the production of natural
language text, it is assumed that a person choses a
wordw to output, but that the noisy channel induces
the person to output strings instead.

Kernighan et al. (1990) describe how probability
scores for candidate corrections can be found using
a noisy channel model. Using a Bayesian argument,
the intended correction,c, can often be recovered
from the typo,t, by finding the correctionc that max-
imizesPr(c) Pr(t|c). The first factor,Pr(c), is a prior
model of word probabilities.Pr(t|c) is a model of
the noisy channel that accounts for spelling trans-
formations on letter sequences, such as insertions,
deletions, substitutions and reversals.

The first step of Kernighan et al. is proposing can-
didate corrections, which means finding words that
differ from the typo t by a single insertion, deletion,
substitution or reversal. These transformations are
named from the point of view of the correction, not
the typo. For example, for the typosimpe, could be
the wordsimpletransformed by a noisy channel by
replacing thel with nothing at position 5.

When a list of candidates have been generated
they are scored as described above.Pr(c) is es-
timated as(freq(c) + 0.5)/N, where freq(c) is the

number of times that a wordc appears in the train-
ing corpus andN is the number of words in that
corpus. The conditional probabilities are computed
from four confusion matrices:del[x,y], the number
of times that the charactersxy (in the correct word)
were written asx in the training set;add[x,y], the
number of timesx was written as xy;sub[x,y], the
number of times thatywas written asx; andrev[x,y],
the number of times thatxy was written asyx. From
these matrices probabilities are estimated by divid-
ing by chars[x,y] or chars[x], the number of times
that xy and x appeared in the training set, respec-
tively.

4.3 General issues for spell checkers

What size should the dictionary be? A larger one
is of course preferred, but with many unusual words
there is an increased risk that they will match a mis-
spelled word. A larger dictionary takes longer to
search, and on smaller devices storage might be an
issue. Compiling a dictionary is not a trivial task, as
possible text sources may contain errors and many
proper nouns.

5 Implementation

This paper will describe the implementation of a
spell checker that uses a noisy channel model, which
allows for more than one deletion, insertion, substi-
tution or reversal between the typo and the correc-
tion (Kernighan et al. only have one), and where the
word chosen as the correction by the user updates
the programs confusion matrices. The spell checker
is written in java, and the interface is Mac OS X’s
cocoa.

5.1 What the user sees

The user is met with a text editor window and a
spell checker window. When the ”check spelling”
button (in Swedish:kolla stavning) is pressed, the
first word that the spell checker considers to be
misspelled is selected (highlighted) and the user
is provided with five suggestions along with the
misspelled word, in the spell checker window (see
Figure 1). To correct a word, the user selects a
word from the list and presses the ”correct” button
(rätta). There are several other buttons in the spell
checker window. Guess (gissa) makes new sugges-
tions based on the word in the text box. This is use-



ful if the user wants to make changes to the original
misspelling and get new suggestions, if the intended
word was not in the list. For more on this, see the
description of the CHECK system in the conclusion.
Ignore (ignorera) adds the selected word to a tem-
porary list of words which will not be regarded as
misspelled. Add word (lägg till ord) will add the se-
lected word to the program’s dictionary. Find next
(sök n̈asta) will skip the selected word and move on
to select the next misspelled word.

5.2 Program structure

The SpellChecker class handles all real spell check-
ing, while the SpellInterface class handles the inter-
action with the interface. The other main classes
are Corrector, Scorer, and Trainer. LevDistance cal-
culates the Levenshtein distance and gives opera-
tions associated with this distance. There are several
classes for holding information about words and cor-
rections: error/correction types (Correction), a word
that is a possible correction (CorrectionWord), and a
typo and its possible corrections (Typo).

When the ”check spelling” button is pressed,
for each word, SpellInterface asks SpellChecker
whether or not it is misspelled. If SpellChecker finds
that the word is not in the dictionary, it asks Correc-
tor for a list of words which are possible corrections
for the typo. Corrector first get a list of words which
are within a certain range of the typo’s length. It
then uses LevDistance to calculate the edit distance
between these words and the typo, and gets a list
of operations necessary to transform the correctly
spelled word into the typo. A CorrectionWord holds
this word and the list of operations. SpellChecker
then sends the list of CorrectionWords it receives
from Corrector to Scorer asking for the n best ones.
Scorer holds the confusion matrices and the charac-
ter matrices described above in section 4.2. For each
CorrectionWord, Scorer calculates a score, based on
the Bayesian argument described in the same sec-
tion. The probability of is taken to be the probabil-
ity of the suggested word times the product of the
conditional probabilities of the operations needed to
transform the suggested word into the typo. The
probability of the suggested word,Pr(c) was es-
timated as(freq(c) + 0.5)/N by Kernighan et al.
(1990). Unfortunately, this prior model cannot yet
be estimated for this program, as a corpus has not

yet been gone through for this purpose. Scorer thus
considers Pr(c) to be 1. This should be rectified.
Scorer returns to SpellChecker a list of n Correc-
tionWords, sorted by score. If there are not five non-
zero scores, words are added to the list according to
edit distance. Finally, SpellChecker makes a Typo
with the misspelled word, its list of all possible Cor-
rectionWords and the list of suggestions that scorer
provided. These suggestions are then displayed to
the user.

The Trainer class is used to initially fill and update
the confusion and character matrices. For the initial
training, a list of common misspellings in Swedish
has been used. The matrices continue to be updated
as the user uses the spelling checker. Feedback is
sent to Trainer every time the user selects a word as
a correction.

6 Evaluation

Unfortunately, this spell checker has yet to be tested
on texts by dyslexics. Hopefully this will be done in
the near future. A corpus for use in calculating prior
probabilities and for enlarging the dictionary should
also be incorporated.

For the initial training of the confusion matrices
more training material is needed, since the program
is of no use if these are not representative of com-
mon errors in spelling in Swedish. However, filling
the matrices is not easily done, since texts or lists
with both typos and corrections are needed, or it has
to be done by hand. Further, it is difficult to obtain
samples of dyslexic writing, since dyslexic people
tend to write less and be less inclined to share their
writing. Getting a lot of text from one person is even
more difficult. And since it cannot be said that all
dyslexics make the same mistakes, a set of matrices
suitable to one dyslexic person might not be suitable
for another.

There are some problems associated with updat-
ing the confusion matrices based on the users’ cho-
sen correction. One is that the user might have cho-
sen the wrong correction, meaning that the matrices
are not updated correctly. However, if this does not
occur very often it should have little impact on the
scores calculated from the matrices, given that the
matrices are well filled. A larger quantity of mis-
takes might actually lead to more efficient training.



Figure 1: The spell checker in action

The approach used here assumes that there is
some consistency to an individual’s spelling pat-
terns. More research should be looked at to decide
whether or not this is actually the case. Also, a major
short coming in this implementation is that it only to
some extent addresses phonetic misspellings. That
is, only phonemes represented by one letter can be
dealt with.

The Scorer always returns a list of n possible cor-
rections. It might be better if it only returned those
who had scored above zero. However, given the lim-
ited confusion matrices in this version of the pro-
gram, this may lead to no suggestions being made.
In a future version, a more sophisticated selection
based on score and variations in scores might be
used.

The dictionary is stored in java’s hashtable. More
efficient methods of storage might be preferred. For
example Stava (Kann et al., 1998) uses Bloom fil-
ters. Other necessary improvements to make the
spell checker useful is to incorporate inflections so
all don’t have to be in the dictionary, and to have
some way to check compound words. Another de-
sirable extension is some kind of context sensitivity.

This work will not address some important as-
pects of spell checkers for Swedish, such as how
to deal with compound words and the inflection of
verbs. Another issue which will not be addressed,
but which is a problem in most languages, is that a

word might be misspelled for the intended meaning
while being in the dictionary as it is a correct word.
For example, ”witch house?” would be viewed as
correct by a spell checker even though the intended
sentence was probably ”which house?”. These mis-
takes are difficult to discover without a grammati-
cal analysis or a more direct listing of words which
sound alike

7 Conclusion

The application of a simple user model for a spelling
correction program based on a noisy channel model
seems promising. While the spell checker is by
no means complete, this rudimentary structure does
surprisingly well. Of course, this said before the
program has been put to a real test. The idea of using
the confusion matrices as a rudimentary user model
is promising, and is not limited to use for dyslexic
people, though they might need an adaptive spell
checker more. The existence of research on whether
or not dyslexic people make different spelling mis-
takes should be looked into.

Ashton describes the CHECK strategy, developed
to help students use spell checkers more effectively
and independently. This strategy makes use of the
”change to” box that many spell checkers have and
that most let the user type in. It should be explained
to the student that they can make changes in the
word in this box and then press the ”guess” button



(or one with equivalent function) to generate a list
of suggestions for the new word. If the new word is
closer to the intended word, it might appear in the
new list. This can be repeated as many times as is
necessary, but it is best if only one type of change is
made at a time. CHECK stands for

• Check the beginning sound of the word

• Hunt for the correct consonants

• Examine the vowels

• Changes in suggested word lists may give hints

• Keep repeating steps one through four

One possibility is to include instructions such as
these in the program, if the user requires extra help.

Right now there are five words in the list of sug-
gested words given to the user. If the intended
word is not in that list, the user has to employ a
method similar to the CHECK strategy. Ideally, the
spell checker should find the target word in the first
pass, but if it does not, a ”more suggestions” button,
which adds five more suggestions to the list, might
be useful.

The user model described by Spooner and Ed-
wards (1997) is derived from a cognitive model of
language production. More complex rules are used,
which intend to describe permutations of errors typi-
cally made by dyslexic writers. The choices the user
makes from the list of suggestions is used as feed-
back to measure and improve the user model’s ac-
curacy. Spooner (1996) claims that an attempt to
extend the methods of checking for the four clas-
sic errors in multiple combinations (i.e. allowing
for an edit distance larger than one) would both take
longer and produce more suggestions. This is ex-
actly, though perhaps not in the most efficient way,
what has been done in this implementation, without
any problems with speed.

Brill and Moore (2000) offer improvements on the
work of Kernighan (1990), by using a more generic
error model of string-to-string edits and so modeling
substitutions of up to 5-letter sequences (e.g. ent be-
ing mistyped as ant, ph as f, etc.) within the frame-
work of a noisy channel model. They find that this
handles phonetic errors better than previous meth-
ods. It does however make residual errors, many

which have to do with word pronounciation. To ad-
dress this, Toutanova and Moore (2002) build two
different error models using the Brill and Moore
algorithm, one letter-based one and one based on
a phone-sequence-to-phone-sequence error model.
Since the better correction phonetic errors is espe-
cially interesting for a spell checker for dyslexics,
their methods should certainly be looked into.

Apart from more support from research on the
kinds of spelling mistakes that dyslexics make, get-
ting a program that handles phonetic errors better
is vital. Having more filled confusion matrices is
also very desirable, so that one might have several
sets that can serve as the beginning for different user
groups, such as ”regular users”, dyslexics, or people
who speak Swedish as a second language, where the
spell checker could be adjusted after mother tongue.

Acknowledgements

Thanks to Pierre Nugues for all advice in developing
this project. Also, I would like to thank̊Asa Wen-
gelin for getting me interested in the subject of spell
checkers to begin with.

References

Tamarah Ashton. Making technology work in the inclu-
sive classroom: A spell checking strategy for students
with learning disabilities.

Eric Brill and Robert C. Moore. 2000. An improved er-
ror model for noisy channel spelling correction.Pro-
ceedings of ACL-2000.

Michael Gilleland. Levenshtein distance, in three flavors.

T. Hoien and I. Lundberg. 1999.Dyslexi fr̊an teori till
praktik. Natur och Kultur.

Viggo Kann, Rickard Domeij, Joachim Hollman, and
Mikael Tillenius. 1998. Implementation aspects and
applications of a spelling correction algorithm.

Mark D. Kernighan, Kenneth W. Church, and William A.
Gale. 1990. A spelling correction program based on
a noisy channel model.Proceedings of the Thirteenth
International Conference on Computational Linguis-
tics, pages 205–210.

Alfred Kobsa. 2001. Generic user modeling systems.
User Modeling and User-Adapted Interaction, 11:49–
63.



Claude Shannon. 1948. A mathematical theory of com-
munication. Bell System Technical Journal, 27:379–
423.

Roger I. W. Spooner and Alistair D. N. Edwards. 1997.
User modelling for error recovery: A spelling checker
for dyslexic users. User Modeling: Proceedings of
the Sixth International Conference, UM97, pages 147–
158.

Roger Spooner. 1996. Dphil thesis proposal a comput-
erised writing aid for dyslexic people.

Kristina Toutanova and Robert C. Moore. 2002. Pro-
nounciation modeling for improved spelling correc-
tion. Proceedings of the 40th Meeting of the Associa-
tion for Computational Linguistics(ACL-2002), pages
144–151.

Maria Virvou and Katerina Kabassi. 2002. Improving
agent control for user modeling.First International
IEEE Symposium on Intelligent Systems, pages 73–78.

Geoffrey I. Webb, Michael J. Pazzani, and Daniel Bill-
sus. 2001. Machine learning for user modeling.User
Modeling and User-Adapted Interaction, 11(1-2):19–
29.


