
A text critiquing system for Swedish-speaking students of French

Fabian Kostadinov
Department of Informatics

University of Zürich
fkostadinov@gmx.ch

Jonas Thulin
Department of Computer Science

Lund University
jonasthulin@hotmail.com

Abstract

Making objective, quantitative linguis-
tic analyses is a time-consuming and
demanding task. Therefore, we have
developed a language analysis system,
which can be used for counting oc-
curences of any given pattern. Rule
trees and external dictionaries are sup-
ported. The program is written in 100 %
Java 2 and Swing. Its strength is that
rules can be easily added or modified
and the main weakness is that it cannot
assess language as well as a human can,
since only quantitative criteria, and not
semantic ones, are taken into account.

1 Introduction

Ever since people have been learning new lan-
guages besides their mother tongue, it ha been a
question of interest of how to approach the target
most efficiently. A number of different approaches
and recommendations has been developped by lin-
guists for support purposes. Interested in how
to define reliable measures, which empower any
teacher to state the language level of his pupils,
some linguists over time developped such mea-
sures. They found out that the active and passive
ability of speaking a language by a student, is re-
flected astonishingly well by certain grammatical
indicators (besides, of course, the richness and va-
riety of the student’s vocabulary). So they gener-
ated rule sheets that can be applied to a text writ-
ten by a student and return an indicator number,

stating the student’s level. Rules may include for
example. . .

• how many times certain advanced verb tenses
are being used throughout the text,

• how often the same substantial grammatical
mistakes, as using a pronoun followed by a
wrong verb form, are repeated,

• the average sentence length,

and much more.

However, the task of manually applying these
rules to a text is time consuming and requires
a profound understanding of grammatics, inflec-
tions and text analysis in general. As in today’s
world where one teacher often has to supervise
several dozen students at the same time, such anal-
ysis cannot be done regularly; it is simply too de-
manding in terms of time and knowledge.

With the program we have written, we tried to
develop a prototype of an analysis tool, that should
be able to commit linguistic analysis based on a
rule sheet automatically. We believe that there is a
real need for such a program since it would allow
both the student and the teacher to keep track of
the student’s changing language level in an easy
and uncomplicated manner. The aim of the pro-
gram is to provide one with an easily understand-
able single measure on a scale, but also showing
the mistakes or certain grammatial constructs in
the text.

mailto:fkostadinov@gmx.ch�
mailto:jonasthulin@hotmail.com�

2 Language learning and linguistic
development

Both children learning their native language and
adults learning a foreign language acquire the lan-
guage step by step (Clahsen, 1986), (Schlyter,
2003), starting with nouns and simple phrases, ad-
vancing via using simple everyday langauge to (in
some cases) using the complex language found in
e.g. magazine and journal articles.

However, there is one substantial difference be-
tween native- and foreign-language acquisition:
in native-language learning, there is no other
“deeply-rooted” language with which the new lan-
guage could interfere, whereas there is in foreign-
language learning. This interference makes it diffi-
cult for Swedish-speaking FLE1 learners to grasp
e.g. word order, elision, complex relatives (e.g.
auxquels) incflecting verbs after person and verb
forms not present in the Swedish, e.g.futur sim-
ple, conditionnel2, gérondif andsubjonctif3 These
parts of the French language are (in general) only
partially comprehended by casual (non-academic
or non-professional) users. Of course, this applies
to Swedish-speaking persons, who have not grown
up in a French-speaking environment.

Below the levels are roughly described:

2.1 Novice (level 1–2, CEF (Common
EuropeanFramework) A1–A2)

Novice users having only “survival-level” lan-
guage skills tend to use mostly noun phrases in
their communication, and do not yet inflect verbs
fluently. Also, negations are usually of the type
<negator> <noun phrase> . Novice-level
students also need a co-operative and patient in-
terlocutor who does not mind the student having
limited fluency and vocabulary as well as needing
to ask aid questions. An example of novice-level
language production isnon, pas en train, en auto-
bus.

1French as a foreign laguage
2In Swedish, the conditional is (usually) constructed with

the modal verbskulle+ infinitive; consider it analogous with
the English would+inf.

3That mode is certainly not used in the same way in
Swedish (or German) as in French.

2.2 Intermediate-level user (level 3–4, CEF
B1–B2

Intermediate-level users possess a basic command
of the standard langauge, and have adequate abil-
ity in coping with day-to-day communication.
About 50 % of their utterances consist of full sen-
tences, and verbs are inflected and negated, but not
always correctly. Swedes at this level often forget
that e.g.auanddesare maps of̀a leandde les, re-
spectively, and therefore frequently use the tauto-
logical constructau l’ or forget mappingde lesto
des. An intermediate-level user would say some-
thing like Non, je ne suis pas venu en train, mais
en autobus.

2.3 Advanced user (level 5–6, CEF C1–C2)

After several years of French studies or stay
in a French-speaking environment one can have
reached the advanced level. This level is character-
ized by full acquisition of typical French-language
constructs and productive use of a significant
amount idiomatic expressions and fixed phrases
(approaching native-speaker quality). Grammati-
cal (syntactic) mistakes are rare and even complex
language, like the one being used in this report, is
(at least partially) mastered. Level 5+ example:Si
je dis quelque chose auquelle je ne suis pas tout
à fait ŝur, ce sera la composistion des rapports
comme celui-ci. En ŕefléchissant, je pense que
traduire ce rapport en français serait un bon exer-
cise pour le lecteur qui se croit vraiment maı̂triser
le français. C’est improbable que personne qui
lise ceci ne puisse le faire,with any mistakes cor-
rected.

3 The program

One of the major goals of our program was the
separation of the above mentioned linguistic rules
from the program logic itself. If we are able to sep-
arate language specific linguistic rules for analysis
from the rest of the program, we are also able to re-
use the same program for different languages. Of
course, rule sheets must exist for every language
to be checked against by our program. This part
has to be done by linguists. The program itself
should be able to load a new text, analyze it using
the rules and show the results during runtime, and

not during compile time as far as possible. We do
not want a poor linguist having to learn the depths
of programming languages before being able to
translate his/her rules to a format, which the pro-
gram is able to handle.

We therefore chose the growing standard XML
to encode the rules. Further, we need a dictio-
nary to look up words in the foreign language to
obtain some grammatical information about every
word. In order to analyze a text we had to split it
up in words and sentences first. We decided to use
Java’s (version 1.4) ability to work with regular
expressions. Although Perl and Prolog at the mo-
ment still tend to be the standard languages, their
not providing one with integrated features for cre-
ating user interfaces like Java’s Swing classes do is
a severe disadvantage. It would certainly be possi-
ble to use e.g. Prolog for the parser, but since our
program is likely to be used mostly on Windows
machines target and non-programmers would pre-
fer not having to install Prolog just for our pro-
gram, we decided to do it entirely in Java.

The program on a high-level user perspective is
relatively simple. Fist, the user chooses a file to
load into an editor pane (or types or pastes4 it di-
rectly into the editor), presses the “Analyze” but-
ton and then receives back another window, where
grammatical mistakes are marked up and his/her
language level is shown on a scale5

Looking deeper into the program, as soon as the
analyze button is pressed by the user, the input text
is sent to the coreAnalyzer as a string and the
Analyzer begins its work. If it has not done it
before, it loads the XML-encoded rules, splits up
the text into tokens and applies the rules one after
another to the tokens. Grammatical information
about the words is found in a dictionary. In our
case the dictionary is contained in a hash table, but
better alternatives as using a database or a letter
tree could be thought of.

When the analysis is done, theAnalyzer re-
turns the text to the GUI part of the program,

4Pasting is OS native and allows the user to analyze e.g.
Word documents by opening them in Word, copying the text,
and pasting it into the editor.

5We have not yet agreed how to report a preliminary lan-
guage level using the data from the counters, so the table
in (Schlyter, 2003).

but annotated with tags, for instance HTML6. The
GUI then presents the result to the user again.

We will now take a deeper look into the pro-
gram’s different pieces.

4 Implementation concepts

4.1 Implementation language

Our program is implemented in 100 % Java and
should therefore run on any platform supporting
Java 1.4 and Swing GUIs.

4.2 The GUI

The GUI is a multilingual text editor with support
for reading and writing Unicode text file as well as
OS native clipboard handling, e.g. copy from MS
Word and paste into the editor. After the user has
typed, pasted or loaded a text, he/she can press the
Analyze button to obtain a version of his/her text
with XML tags, added by theAnalyzer accord-
ing to the rules specified in the rule file.

4.3 The rule file

The information of how a text has to be parsed by
theAnalyzer is stored in an XML-encoded file.
We will call it the “rule file” or “XML rule file”.
(We assume that the reader has a basic knowl-
edge of the current XML standards, understands
roughly the syntax and semantics of XML and
knows how XML and a DTD are connected one
to the other.)

The strict separation between encoding the rules
on the one hand and theAnalyzer ’s program
logic on the other hand results in a gain of in-
dependency and configurability. The rules them-
selves may be changed easily without any need
of complementary changes to the program logic.
Since all the tags, their possible attributes and car-
dinalities are defined in a DTD file, the user has
clear guidelines to follow when writing new rules.
An invalid XML rule file will result in the parser
throwing an error and writing an error message to
the screen because a flag is set to check the XML’s
validity before parsing.

6In our prototype only the raw XML is shown, but adding
a style sheet would enhance the user’s experience consider-
ably. However, we consider it out of the scope of an 80-hour
project, but may add it in a future version, if it is requested
by the users and either of us finds the time.

As its name indicates, a rule file contains a set of
different rules, each one encoded with valid XML
tags. Each time theAnalyzer is started, the rule
file is read in, parsed by a standard XML DOM
parser, transformed to a set of Java objects, which
are then stored in a hash table. TheAnalyzer
finally works with this hash table.

In the rule file, only valid XML tags, which are
defined in the corresponding DTD, are allowed. A
rule file may contain comment tags (starting with
<!-- and ending with--> , however such com-
ments are simply ignored by the parser.

The rule file starts with the standard XML
header. We used W3C-compliant version 1.0 stan-
dard XML. Currently, no namespaces are in use,
however Xerces-J, our parser, should be able to
handle namespaces correctly, but such functional-
ity has not been tested out.

An important issue not to be forgotten in the
header tag is choosing an appropriate character
set. As we are dealing with French, the character
set must at least contain all French special char-
acters, such aśe or à etc., and the rule file itself
must be stored in the chosen format. Of course
one has also to make sure, especially for unusual
character encodings, that the used parser engine is
able to handle the chosen character set. If an inap-
propriate character encoding set is chosen, there
is a risk that certain words will never be found in
the dictionary or the program will not be able to
successfully match certain words in the text to the
search rules (see below).

Further, the rule file consists of a set of “counter
tags”, two special rules and finally a set of the
common or core rules.

4.3.1 The counters

The tagcounters embraces a set of empty
tagscounter . These counters can be specified
to be the holders of search information, in other
words how many times certain grammatical forms
are met by theAnalyzer .

4.3.2 The Sentence Tokenize Rule

The first special rule is called the
sentenceTokenizeRule . It looks like:

<sentenceTokenizeRule>
<regex>[.;:!?]</regex>

</sentenceTokenizeRule>

Each Sentence Tokenize Rule contains exactly
one “regex-tag” which encloses a regular expres-
sion. The text will be split up into sentences using
this regular expression as a delimiter. Therefore
one has to be aware of blank characters, spaces
and so on. (This is valid for all the tags containing
regular expressions in the rule file.)

4.3.3 The Word Tokenize Rule

The second special rule is called the
wordTokenizeRule . It is nearly the same as
thesentenceTokenizeRule and looks like:

<wordTokenizeRule>
<regex>[a-zA-Z0-9]+</regex>
</wordTokenizeRule>

This rule is used for tokenizing a sentence into
words.

4.3.4 The common rules

Following the two special rules come the com-
mon rules (or core rules). There must always exist
at least one rule, which at the same time is the root
or initial rule.

Each rule consists of two parts: Thesearch
and the action . A rule is applied by first
searching in a sentence for an occurrence of the
search criteria and then, dependent on whether
a construct in the sentence (e.g. a word which)
matches it or not, theaction ’s found respec-
tively notfound part is executed.

The rule tag contains an attribute id, which is
its unique identifier in the XML document (“is of
type ID ”). Additionally, each rule tag must spec-
ify a framesize value, indicating the number of
words that the rule should be applied to. The start
position for a rule’s word frame to be opened is al-
ways the current position of theAnalyzer (the
left index) counting as many words to the right as
the frame-size’s value specifies or to the end of a
sentence.

The Search A search can contain three differ-
ent search criteria or any combination of the three.

• <regex>apprends?</regex> searches
for regular expressions such asapprend or
apprends

• <lemma>apprendre</lemma> searches
for every word that has a lemma equal to the
stringapprendre, for instanceapprendraitor
appris

• <inflection
category="verb">...</inflection>
is able to search for certain grammatical con-
structs, here for instance for a verb.

The attributecategory represents a word
category and may take one of the following
values: noun , verb , adjective , pronoun ,
int pronoun (interrogative pronoun),
determiner , adverb , preposition ,
conjunction , numeral 7, interjection ,
abbreviation , residual (any word that
does not fit into one of the other categories).

Depending on the category, different combina-
tions of tags may be added to the inflection tag.
The program does not check whether a given com-
bination of tags makes sense or not, it simply
searches for this very combination (thus search-
ing for a noun with a third person singular tag will
of course never return any result). Basically, ev-
ery word may have a combination of the following
grammatical information:

1. gender : Possible values arefeminine or
masculine .

2. number : Possible values aresg (singular)
or pl (plural).

3. person : Possible values are1, 2 or 3.

4. tense : Possible values arefuture ,
present , imperfect or past .

5. mode: Possible values areindicative ,
conditional , infinitive ,
participle or subjunctive .

All these have a common empty tag format as
<tense value="present"/> .

By writing these categories we oriented our-
selves not only on purely grammatical and linguis-
tic knowledge but tried to find a compromise with
the needs of programming purposes too. Further,

7 Numerals are rarely used in the dictionary. Our program
will treat them as Residuals.

Category ge
nd

er

nu
m

be
r

pe
rs

on

te
ns

e

m
od

e

noun X X - - -
verb (ordinary) - X X X X
verb (participle) X X X X X
adjective X X - - -
pronoun X X X - -
int pronoun X X X - -
determiner X X - - -
adverb - - - - -
preposition - - - - -
conjunction - - - - -
numeral - - - - -
interjection - - - - -
abbreviation - - - - -
residual - - - - -

Table 1:Possible tag combinations for given word
categories

be aware of the order! The XML parser does only
accept tags appearing in this specified order, thus
for any rule you do not specify a gender, tense and
mode, you have to assure that the number tag ap-
pears above the person tag.

It is also easy to recognize that in the rule
file combinations of these tags can be specified
that have no connection to real grammatical word
forms at all. The program will not show any er-
ror message to the user but simply not return any
result. Table4.3.4 indicates the use of word cat-
egories and the corresponding grammatical infor-
mation that may be specified.

Some comments have to be made:

1. In verbs, the grammatical information to be
specified varies heavily. Whereas “normal”
verb forms do not have any gender, partici-
ples may indeed have a gender. Imagine the
feminine plural past participle of the French
verb ouvrir (= to open)ouvertes. To have
appropriate knowledge about this word, one
needs to be able to specify a gender (femi-
nine), a number (plural), a tense (past) and
a mode (participle). On the other hand,
of course a word like third person singular
present ofrire (= to laugh) does not have any

gender at all.

2. For many European languages, there are no
participles with forms other than present or
past.

3. Some pronouns do have a gender such ashe,
she, his, herwhile others, such asI, you, we,
my, yours, do not. The same applies to inter-
rogative pronouns.

4. Determiners that have a gender and/or a num-
ber are for example the French wordssa, son,
ses, seize(sixteen) and others.

Every word has at least a regular expression that
may be searched for, namely the word itself, and a
lemma. If one would like to look for a verb with-
out further grammatical information, then at least
a category can be specified.

Word categories are a subject of debate through
the field of linguistics; often they are simply more
or less given by the dictionary one uses.

An example:

<rule id="myRule" framesize="max"/>
<search>
<!-- <regex>(ouverte)|(ouvertes)
</regex> -->commented out!!
<lemma>ouvrir</lemma>
<inflection category="verb">
<gender value="feminine"/>
<number value="pl"/>
<tense value="past"/>
<mode value="participle"/>
</inflection>
</search>

These criteria will look in a frame of 4 words for
the first occurrence of a word that hasouvrir as its
lemma, is a verb and a feminine plural past par-
ticiple. In the sentenceIl a fermé toutes les portes
ouvertesthe wordouverteswill be found, but if
the frame size is reduced to only 4, even though
starting at the beginning of the sentence, applying
the rule once to the sentence will result in nothing
being found.

The action part specifies mainly three things:

1. Whether any counter should be incremented,

2. Whether tagging of current frame should be
done and which tag should be used,

3. Which rule should be the next one to take

The rule usesnextrule ’s value, which must
point to an existing rule’sid , to detect which rule
to take next. This next rule does not need to be
specified as child tag insidefound/notfound .
The only reason for which rules can be specified
inside thefound/notfound tags is the higher
readability of the XML file. The program will al-
ways identify the next rule to take using the ref-
erence thatnextrule points to, but disregard
where in the XML file it is specified. If no next
rule is set, then the initial or root rule will be the
next one to be applied again.

If tagging is set toyes but no tag name is pro-
vided, the program will tag the output text with the
current rule’sid .

action always specifies what has to be done,
if the search delivers a result, this is called the
found and what has to be done if it does not find
any result, simply called thenotfound .

Such a structure makes it possible to search for
multi word constructs or to compare words. For
instance, one could specify asearch that is look-
ing for first person singularje, then specify an
action found to go to another rule that then
looks for a verb in a specified frame that also has a
first person singular ending. On the other hand,
if je is not found, then simply the word should
be skipped and the second rule should never be
called. This can be specified by not providing
notfound with and next rule.

An example:

<action>
<found inccounter="fem_pl_pp_ouvrir"
nextrule="rule2"
dotagging="yes"
tagname="fem_pl_pp">
<rule id="rule2">...</rule>the next rule
</found>
<notfound dotagging="no">
</notfound>
</action>

These instructions will, if something is found by
the search , cause theAnalyzer to increment

the counterfem pl pp ouvrir , tag the frame
with the tag<fem pl pp>...</fem pl pp>
and then go torule2 . If nothing is found, the
Analyzer simply goes to the next rule, which is
not specified here, thus making the initial rule be
applied again.

Overview
On the next page is an overview of all the possible
tags, their attributes and possible child tags.

Tagname Attributes (Direct) child tags

Action found

notfound

Counters counter*

Counter id::ID # Required

Found inccounter::IDREF # IMPLIED rule?

nextrule::IDREF # IMPLIED

dotagging::(yes | no) "no"

tagname::NMTOKEN # IMPLIED

Gender value::(feminine|masculine) # REQUIRED

inflection category::(noun|verb|adjective| gender?

pronoun|int pronoun|determiner| number?

adverb|preposition|conjunction| person?

numeral|interjection| tense?

abbreviation|residual) # REQUIRED mode?

Lemma::# PCDATA

Mode value::(indicative|conditional

|infinitive|participle|

subjunctive) #REQUIRED

Notfound inccounter::IDREF # IMPLIED rule?

nextrule::IDREF # IMPLIED

dotagging::(yes|no) "no"

tagname::NMTOKEN # IMPLIED

Number value::(sg|pl) # REQUIRED

Person value::(1|2|3) # REQUIRED

Regex::# PCDATA

Rules counters?

sentenceTokenizeRule

wordTokenizeRule

rule+

Rule id::ID # REQUIRED search

framesize::CDATA # REQUIRED action

(can take the value "max"

for a frame as big a possible,

or a numer > 0 alternatively).

Search regex?

lemma?

inflection?

SentenceTokenizeRule regex

Tense value::(future|present|

imperfect|past) # REQUIRED

WordTokenizeRule regex

Table 2:All possible tags, their attributes and possible child tags

All tags that do not embrace child tags are by
definition empty tags. Exceptions are the two tags
regex and lemma, which simply only embrace
PCDATA.

This table is to be read as: “There is a tag called
gender that has exactly one attribute called
value . A value ofvalue is required and must
be eitherfeminine or masculine . The tag
gender contains no further tags, therefore it is
an empty tag.”

REQUIREDand # IMPLIED are used in
their original XML-standard meaning. Child tags
followed by a question mark? indicate that the
current tag may have 0 or 1 of this child tag, a plus
+ that it may have 1 or more child tags of this kind,
and an asterisk* that it may have 0 or more child
tags. If no sign is specified, then exactly 1 child
tag has to be added.

4.4 The Analyzer

TheAnalyzer carries out the core functionality
of the program. Generally said, it holds a hash ta-
ble of rules, as specified in the rule file, and simply
applies one after the other sequentially to the text.
It always starts by applying the initial rule and then
following the rule’s references (as specified by the
nextrule attribute of thefound/notfound
tags). Also, as specified by the rule file, it incre-
ments counters if needed that may later on be read
out and used for further purposes.

An Analyzer must implement the
IAnalyzer interface, which only provides
one method:
public String analyze(String
input) analyze() takes the text to be
parsed as an inputString and returns a pseudo
HTML-annotated String if some rules are
specified to do some annotation tagging. This
returnString may in a further step be displayed
by a web browser or processed further.

The classAnalyzer implements this inter-
face. Further, it provides a method
public Map getCounters() that returns a
(Java)Map containing the counters. The key to
the Map is simply the name of the counter (thus
a String), while its value is of typeInteger .
The Integer object can simply be read out by
usingintValue() to receive anint .

The basic text analyzing algorithm works as
follows:

1. Split up the input string into sentences by us-
ing sentenceTokenizeRule .

2. The basic algorithm to analyze a text is the
following:

3. Split up every sentence into words by using
wordTokenizeRule .

4. Repeat as long as there are more sentences:

(a) Repeat as long as there are more words
in a sentence:

i. Go to the next word in the frame.
ii. Try whether the current word

matches the search criteria of the
current rule.

iii. If there is a match, then process the
found part of theaction .
Otherwise, check whether there are
still more words in this frame to be
considered. If there are, choose the
next one and go to4a. If there
are no more words in this frame,
then thesearch was not success-
ful. Process the not found part of the
action in this case.

iv. Eventually: Increment counters now
and annotate the current frame with
annotation tags if specified.

v. Check for the next rule.
If no such next rule is specified ex-
plicitly at this moment, then choose
the initial rule again. The initial rule
should be applied now to the first
word in the sentence after the cur-
rent word.
Otherwise, apply the next rule to the
current word.

(b) Save the return value of applying the
rule. This value now indicates the index
position of the next word to be analyzed.
This is now your current word. Go to4a

5. Put all the possibly annotated/tagged words
together to a single text again and return the
final result string.

As we can see, this algorithm simply applies the
initial rule sequentially to all words and if it once
is successful, then it tries to process the next rule
in the engine/rule tree to the word.

The Analyzer always works with word
frames of a certain size that must be given in the
rule tag. The frame’s size should be set with care.
If a frame is too small, certain grammatical con-
structs in a sentence, for instance words that are
separated through other words but belong together,
may not be found. Imagine the sentenceI have of
course never seen something like this before.If the
frame size is set to a size of 3, theAnalyzer is
not able to connect logically the participleseento
the earlier encountered main verbhave. On the
other hand, if the frame size is too big, certain
nonsensical forms may be believed to match the
search criteria perfectly, although of course they
do not.

4.5 The dictionary

We use a French dictionary8 to look up inflections
and lemmas of words. At program start, the whole
dictionary is loaded into the computer’s memory
and stored in a simple hash table, which then is
being used by thesearch . Each word in the
text builds a key; the corresponding value is an
object that is holder of all possible inflections of
the word.

Due to the fact that a dictionary can never con-
tain every possible word of a language and also
depending on the tokenizing rules, it might be that
certain words in the text are not found in the dic-
tionary. TheAnalyzer will simply ignore this
word and continue with the next word, thus never
recognizing it as a match for thesearch . Such
a behaviour should be tolerable as long as only a
small percentage of the text’s words are not con-
tained in the dictionary.

5 Summary

Our program is surely not thought as a commercial
product, but this has never been our goal. Indeed,
with our prototype we have shown that basically it
is possible to encode the linguists’ rule sheets in a
way, that they can more or less easily be changed

8The dictionary is freely available for non-commercial
purposes athttp://abu.cnam.fr .

independently of the rest of the source code with-
out the need of recompilation. We used XML for
this purpose.

The program needs a French dictionary to work
with. At the moment, the availability of such dic-
tionaries is not exactly the same as for English lan-
guage. As our time resources were limited, we
chose the easiest possible way to extract informa-
tion from the dictionary. Of course, there is variety
of better, but more complicated approaches from
using databases to letter trees that improve mem-
ory usage9 very significantly without great losses
of performance.

A question still open is about the quality of
analysis, which our program can reach. On the
one hand, the more sophisticated the rules get, the
more precise the results are. On the other hand,
there will always be certain problems that cannot
be answered fully either by the programmer or the
linguist. What is the optimal word frame size for
each rule, for example? An important point is
that our program does not take into account any
semantical information at all about the text to be
analyzed, nor is a corpus illustratingle bon us-
age (of today) being used. However, we believe
that extending our program to a semantical level
too would be a much more demanding task, and
it is dubious whether a semantical analysis would
honour our huge efforts implementing it with any
remarkably higher feedback quality.

Although our idea of splitting up the analyza-
tion of repeatedly taken newsearch es and then
action s, it is unceratin that such an approach
really can cover the complexity of all linguistic
rules. It was merely hard to find a least common
general structures behind all rules. Of course, this
structure now could be improved. One could think
of adding severalsearch parts to a single rule
in the XML file, that then could be linked log-
ically using an AND or an OR operator (“The
whole search is only successful, ifsearch 1
AND search 2 OR search 3 are successful”).
It would also be nice to have a graphical user in-
terface for editing those rules.

9At the moment the program uses up to 85 MB of RAM.

http://abu.cnam.fr�

References

[Clahsen1986] Harald Clahsen. 1986.Die Profilanal-
yse, volume 1. Springer-Verlag, Berlin, Germany.

[Schlyter2003] Suzanne Schlyter. 2003. Stades de
dveloppement en français l2. Avaliable athttp:
//www.rom.lu.se/durs/STADES_DE_
DEVELOPPEMENT_EN_FRANCAIS_L2.pdf.

http://www.rom.lu.se/durs/STADES_DE_DEVELOPPEMENT_EN_FRANCAIS_L2.pdf�
http://www.rom.lu.se/durs/STADES_DE_DEVELOPPEMENT_EN_FRANCAIS_L2.pdf�
http://www.rom.lu.se/durs/STADES_DE_DEVELOPPEMENT_EN_FRANCAIS_L2.pdf�

Installation information

A Java prerequisites

Our program makes use of newer Java features to deal with regular expressions extensively. We ourselves
used the J2SDK version 1.4.2, Standard Edition, to develop the program. Sun Microsystems introduced
regular expression handling in version 1.4, so this is the oldest Java version that we can recommend to
the user.

The latest Java 2 Software Development Kit and Java Runtime Environment can be downloaded from
http://java.sun.com/ .

B Insufficient initial heap size

Our program uses lots of memory! Be aware that if you start the program without defining special
options for the Java Virtual Machine to increase the maximum heap size, the program might start to save
information from the dictionary to the hard disk drive temporarily, not ending to write data to the disk.
Under Windows implementations, you should therefore start the Java Virtual Machine as:
java -mx90M ...
This will set the JVM to use a maximum heap size of 90 megabytes which will be enough for our program
to run. In our experiences, the program never used more then 86 MB or memory.

C Working with the Xerces-J XML DOM Parser

To parse the XML file, we used the freely available Xerces-J XML DOM parser. The program works
fine with version 2.6.0. It can be found under:http://xml.apache.org/xerces2-j/index.
html It is easiest to start your program, adding the corresponding paths by using the-classpath
option. You need to add both the filesxercesImpl.jar andxml-apis.jar to yourCLASSPATH.
Be aware that as soon as you set you these options, it might be that you have also to add the current
working directiory (where your program source is located, for instancese/lu/rom/sources) and
perhaps also the directory, where your binary runtime executables (java.exe under Windows), for
instanceC: \Program files \jdk1.4.2 , are located.

java -classpath C:\...\Xerces-J\xercesImpl.jar;
E:\...\Xerces-J\xml-apis.jar;
[C:\...\jdk1.4.2\bin;
C:\...\se\lu\rom\sources;]
se.lu.rom.sources.MyMainClass

D Usage of the program classes

There is the central interface IAnalyzer and the implementing class Analyzer. Always use these two to
get an instance of the Analyzer, as in:

/* Get the path of the rules file, e.g. from args[0] */
String rulesFilePath = args[0];

/* Get the dictionary to look up words as a Map, e.g. a Hashtable. Imagine the path of where to find the dictionary file is stored in args[1]. */
ImportDictController idc =
new ImportDictController(new File(args[1]));
Map dictionary = idc.importDictionary();

/* Instantiate your analyzer */

http://java.sun.com/�
http://xml.apache.org/xerces2-j/index.html�
http://xml.apache.org/xerces2-j/index.html�

IAnalyzer myAnalyzer =
new Analyzer(rulesFilePath, dictionary);

/* Now do the analyzation and catch the result */
String outputText = myAnalyzer.analyze(inputText);

Now use the HTML annotated outputText to be displayed in your output window, for instance your
browser.

