
A part-of-speech tagger for Swedish using the Brill transformation-based
learning

François Marier
Lund Institute of Technology
fmarier@uwaterloo.ca

Bengt Sjödin
Lund University

bengtsjodin@hotmail.com

Abstract

This paper describes an implementation of
a Brill Part-of-Speech tagger for the Car-
Sim project. It introduces the concepts
of part of speech tagging and Brill tag-
gers and presents some results measured
with the given implementation. Given the
high running time of the Learning algo-
rithm, very few results are available and
these limitations, along with some partial
solutions, are discussed.

1 Introduction

1.1 Goal

Our task was to implement a Brill part-of-speech
(POS) tagger for Swedish using Java as the program-
ming language. The focus was on the learner part of
the algorithm as it is the most complex part of such
a tagger.

1.2 The CarSim Project

The CarSim project1 is an attempt to visualize writ-
ten accident reports. The report is translated into a
symbolic template, which is then used to generate
a three-dimensional animation. Our tagger is sup-
posed to be used in the translation part of the Car-
Sim.

This is an important part because the texts are to
be processed automatically, and as such the tagging
of the words is vital for the information to be ex-
tracted correctly. Since all language are essentially

1See http://www.lucas.lth.se/lt/carsim.shtml

an encoding of information, the program needs to
decipher and reform it in meaningful ways so that it
can be further processed into the final state.

For example the program must find the nouns and
pronouns in the text and properly realize which of
the words refer to separate entities and whether they
are static or moving objects. This is done by split-
ting the text into sentences where the words then are
tagged with their part-of-speech. The result is then
used both for detecting road objects and clauses,
which are used to fill event structures. These two
things are what is needed to fill out the template.

1.3 Part-of-Speech Tagging

Part-of-speech (POS) tagging is also called gram-
matical tagging. It is one of the most common forms
of corpus annotation. The labeling of the words in a
sentence with their lexical or word classes is called
tagging. The POS is divided between the open and
the closed classes: The open class words are Nouns,
Adjectives, Verbs and Adverbs whereas the closed
are Determiners, Pronouns, Prepositions, Conjunc-
tions, Auxiliaries and Modals.

Some morpho-syntactic information can also be
provided, marking the word as a proper plural noun
or a singular comparative adjective. This captures
most of the information that a word contains.

One of the biggest problems with labeling a word
correctly is disambiguation, meaning to find the in-
tended form of the word, e.g. the word “can” could
be a modal or a noun. An annotated text may be used
to improve lexicons and otherwise help with the un-
derstanding and learning of languages.



1.4 Kinds of Taggers

The progress of automated part-of-speech taggers
has gone from handwritten rules to Markov prob-
ability chains and on to machine-built rules. The
early attempts required a large amount of repetitive
work. Even the taggers that use Markov chains,
though they achieve a high correctness probability,
nest their rules inside a large set of such chains mak-
ing them unreadable by humans.

The main advantages of the Brill tagger, with its
machine-built rules, is that its rules can be easily
transformed into a readable form and thus increase
the human knowledge base. Also, it can be trained
on top of a more complex pre-existing tagger to help
improve its accuracy.

2 The Brill Method

A POS tagger that uses a transformation-based
error-driven learner technique is called a Brill tag-
ger.

Such a tagger must initially be trained to be able
to tag a text correctly. A manually annotated corpus
is used as a training reference. An initial state anno-
tator first processes the same text without the tags.
This annotator can be slightly complex, using statis-
tics derived form the corpus, or very simple, merely
tagging everything as nouns.

The machine-annotated text will then be com-
pared with the reference noting the differences as
errors. The algorithm will then try to find the most
effective tag transformation rule, based on the cur-
rent errors.

The rules are based on a number of templates that
contain the structures and variables. For every error
one instance of each type of rule is created. The
most efficient rule is the one that corrects the most
errors, and that one is found by letting all the various
rules be applied to the text, remembering the best
one.

The resulting text is, in each step of the learning
algorithm, what is used as a base in the next thus al-
ways reducing the number of errors until a threshold
is reached. The resulting set of rules is ordered by
the amount of errors they correct.

Here is some pseudo-code describing the learning
algorithm:

Annotate every word in the text

with the most likely tag.

DO
Create index of errors in

annotated text.

FOR every value in error index.
Create all possible rules.

Discard duplicate rules.
Find rule with the largest

error reduction.
Store the rule.
Apply the rule to text for

the next iteration.

WHILE best rule fixes at least
(some threshold value) errors.

2.1 Error Threshold

The Learner has to consider rules that fix more errors
than a certain threshold. We have set this value to be
2 after performing a few tests on a very small train-
ing corpus. It appeared as if increasing this number
would decrease the accuracy of the tagger since it
discarded too many rules. However, bringing this
number down to 1 also decreased the accuracy of
the tagger.

We believe that this is due to the fact that the
Learner would learn too many “bad” rules that might
fix 1 error in the training corpus but would introduce
many more in the test corpus. After all, a rule that
fixes only 1 error overall on a large corpus can hardly
be considered as representing a linguistic feature.

3 Implementation Overview

Here is a description of all the classes (see Figure 1)
contained in our implementation.

Note that all of these classes are part of the
se.lth.cs.BrillTagger Java package.

3.1 Main Programs

• Tagger: Class that does the actual tagging
given an input file and a list of rules.

• Learner: Learns rules from the corpus.

• FrequencyExtracter: Extracts the tag fre-
quency of each word from the corpus



Figure 1: Class Diagram

• InitialAnnotator : The initial annotator takes a
list of tokens and assign to them the most fre-
quent tag.

3.2 Utility Classes

• CorpusReader: This class goes through the
corpus, calling the ParseAction each time a
word is encountered.

• ParseAction: Action to perform each time a
new word-tag pair is extracted from the corpus
by the CorpusReader. A typical action is to cre-
ate a Token object containing the word and the
tag.

• RuleList: Container for all instantiated rules
learned by the Learner.

• Token: Basic unit of an annotated text.

• Tokenizer: Tokenizes a file into its grammati-
cal components.

• TokenList: Basic data structure for manipulat-
ing an annotated text as a list of tokens (word
and tag).

3.3 Rule Templates

• Rule: Base class for all the learned non-
lexicalized rules.

• RuleNotInstantiatable: Exception thrown
when there are not enough information to in-
stantiate the rule. For example when trying
to instantiate the PrevTagRule on the very first
word of the corpus.

• NextTagAndTwoBeforeRule: Changes the
current tag from source to destination if the
next and second previous words are tagged in
a certain way.

• NextTagRule: Changes the current tag from
source to destination if the next word is tagged
in a certain way.

• NextTwoTagsRule: Changes the current tag
from source to destination if the next two words
are tagged in a certain way.

• OneOrTwoAfterRule : Changes the current
tag from source to destination if the next word
or the one after that is tagged in a certain way.

• OneOrTwoBeforeRule: Changes the current
tag from source to destination if the previous
word or the one before that is tagged in a cer-
tain way.

• OneOrTwoOrThreeAfterRule : Changes the
current tag from source to destination if the
next word or the one after that or two words
after is tagged in a certain way.

• OneOrTwoOrThreeBeforeRule: Changes the
current tag from source to destination if the pre-
vious word or the one before that or two words
before is tagged in a certain way.

• PrevTagAndTwoAfterRule: Changes the cur-
rent tag from source to destination if the pre-
vious and second next words are tagged in a
certain way.

• PrevTagRule: Changes the current tag from
source to destination if the previous word is
tagged in a certain way.

• PrevTwoTagsRule: Changes the current tag
from source to destination if the previous two
words are tagged in a certain way.



• SurroundTagsRule: Changes the current tag
from source to destination if the previous and
next words are tagged in a certain way.

• TwoAfterRule : Changes the current tag from
source to destination if the second next word is
tagged in a certain way.

• TwoBeforeRule: Changes the current tag from
source to destination if the second previous
word is tagged in a certain way.

4 User’s Manual

4.1 FrequencyExtracter

The initial annotator must be run one time in order
to generate thetagfreq.dat file that contains a
hash of each word encountered in the corpus along
with the statistically best tag. It is run in the follow-
ing way:

java se.lth.cs.BrillTagger.
FrequencyExtracter training

where “training” is the directory containing the
files from the training corpus.

The program will display the number of words
added to the hash table.

4.2 Learner

The Learner must also be run once before the Tagger
can be applied to a text. It will output a list of rules
into therules.dat file. It is run in the following
way:

java se.lth.cs.BrillTagger.Learner
training

where “training” is the directory containing the
files from the training corpus.

The program will initially display the corpus size
and the baseline on the training corpus. Then it will
display the selected rules along with the number of
errors that they fix. Finally the program will print
out the number of errors remaining as well as the
number of rules that were learned and the accuracy
on the training corpus.

4.3 Tagger

There are two ways to use the Tagger. One can run
the tagger as a stand-alone program by passing the
name of the file to tag:

java se.lth.cs.BrillTagger.Tagger
test.txt

The program will then print each word along with
its tag on the same line. There will only be one word
(or token) per line.

The alternative is to call the Tagger from within a
Java program. The Test.java class, distributed with
the implementation, gives an example of such thing.

Basically, one has to use the
Tagger.tag(Reader reader) method
in order to have the Tagger read and tokenize the
input text. The result is a TokenList which has a
similar interface than ArrayList. Each token can
then be extracted and used by a larger program.

5 Results

All of these results were gathered by running the
actual Learner discarding rules having fixing less
than 2 errors. The baseline on the test corpus was
82.542%.

In the first experiment, the full 13 non-lexicalized
templates were used. The results follow:

nb nb nb training tagging
words files rules accuracy accuracy
2336 1 25 96.147 83.032
4849 2 58 96.02 84.07
7136 3 82 96.118 84.212

Another experiment was performed where we
only used the NextTag rule template. The results of
this second experiment follow:

nb nb nb training tagging
words files rules accuracy accuracy
4849 2 47 94.839 83.954
24345 10 123 95.046 84.544

6 Evaluation

We have implemented the Brill learning and tagging
algorithms entirely. The initial annotator we are us-
ing is the one that derives the initial tags statistically.
We have also implemented all 11 non-lexicalized
rule templates mentioned in the original Brill paper,
as well as two other ones mentioned in the Roche
and Schabes paper (“previous bigram” and “next bi-
gram”).

Our implementation does not include the un-
known word tagging rules nor the lexicalized rule
templates.



6.1 Running Time of the Learner

The learning algorithm takes a very long time to run.
Because of the way the algorithm works, there is no
easy way out of this excessive run time. Here is a
table of the training time for very small corpus sizes.

nb words nb files training time
2336 1 6 min
4849 2 55 min
7136 3 157 min

All tests were performed on a Pentium III 650
MHz with 256 MB of RAM.

7 Enhancements

We have considered two enhancements in order to
cut down on the learning time. Without having ac-
cess to a profiler, we decided to attempt to speed up
the Learner by attacking one at a time the two sus-
pected bottlenecks. More work on the learner will
be necessary to identify other bottlenecks that might
explain the performance of the implementation.

7.1 String Comparisons

The first attempt involved speeding up tag compar-
isons by converting string comparisons to pointer
comparisons. We used the “intern()” method of
the String class in order to achieve that. However,
simple tests revealed that this modification had in-
creased the learning time by approximately 40% on
a very small training corpus.

After thinking about this surprising result, we
came to the conclusion that string comparisons were
probably quite fast in most cases since for the vast
majority of tag comparisons, only 1 or 2 charac-
ters would have to be compared before the two tags
would be deemed different. Hence the overhead
involved in creating a hash table of String objects
would increase the running time of the algorithm.

This modification is not part of the final imple-
mentation.

7.2 Corpus Cloning

In order to apply all rules to the same corpus,
we decided to provide the TokenList class with a
clone() method. That way, we do not have to
undo a rule before applying the next one. Unfortu-
nately, this also means that a large data structure is
copied quite often.

So we decided to make the Token class im-
mutable. This slows down some aspect of tag-
ging/learning since modifying the tag of a Token
now requires the program to create a brand new To-
ken object. However, it also means that the cloning
method of TokenList does not have to perform a
deep copy anymore. It can just reuse the same Token
instances instead of calling their copy constructor.

This modification has reduced the learning time
by 20%. It is part of the final implementation.

8 Conclusions

Our initial tests revealed that the algorithm does
bring an improvement over the baseline, but its run-
ning time is excessively large and it is hard to predict
what accuracy we would get if the Learner was al-
lowed to run on the entire corpus.

We were surprised by the slow learning rate of
the algorithm since we were expecting a few rules to
significantly improve the accuracy of the tagger on
the test corpus.

More testing on a larger training corpus needs to
happen before the tagger can be used effectively.

We can hope that the preliminary results that we
have presented here will scale well with an enlarged
corpus and will deliver the kind of accuracy that
Brill claimed to get in his paper.

9 Acknowledgements

We are very grateful for Pierre Nugues’ insightful
comments and for the weekly meetings with him
that have kept us on track and allowed us to progress
even though we ran into some problems.

References

E. Brill 1995. Transformation-Based Error-Driven
Learning and Natural Language Processing: A Case
Study in Part-of-Speech Tagging. Association for
Computational Linguistics.

Emmanuel Roche and Yves Schabes 1995.Determinis-
tic Part-of-Speech Tagging with Finite-State Transduc-
ers. Association for Computational Linguistics.


