Football Information Extraction System

ESTEVE LLOBERA CIAN DALTON JULIO ANGULO
Lund University Lund University Lund University
e6801661@est.fib.upc.es cian.dalton@student.cs.ucc.ie djjupa@canada.com

results. These stages are explained in detail in
Abstract this article.

We are going to make a program able to The program will deal with texts in two
extract information from sportive texts. languages: English and Spanish. The user has to
We will focus on football texts and the tell to the program what language to use to ana-
program will extract the winner and loser lyze the text because it will not try to identify the
teams, as well as the final score and the language. The default language is set to English,
location where the match has been in case the user fails to choose the language of
played. the article to be analyzed

The program will deal with texts in two
languages: english and spanish. The user 2 Program Implementation
has to tell to the program what language)) o
to use to analize the text because it will The project has been made using a design in lay-
not try to identify the language. ers. It has 5 layers (see figure X): tokenizer, sen-
tence splitter, phrase analyzer, pattern searcher
and table analyzer. We will make an small over-
1 Introduction view of all the stages now, and they will be ex-
plained in more detail later. Each layer generates
This system consists on an informationan intermediate representation of the analyzed
extraction program that extracts relevant infortext. The tokenizer returns an array with the to-
mation from football related articles. Relevantkenized text, the sentence splitter splits the token-
information is considered to be the name of thézed text in sentences, which are just an array of
participating teams, the resulting score of theokenized words. The phrase analyzer is called
match played and the location of the match. Ifor each sentence found, and returns an instance
other words, the program basically analyses thef a class Phrase for each one. The pattern
contents of the article and returns relevant inforsearcher gets the entire Phrase objects and search
mation about the match. for sportive patterns that can provide information
about a football match. If a sentence contains
In order to analyse the article the pro-relevant information, it is stored in a class called
gram follows some stages of development. AlMatch, which contains winner, loser, score and
each stage the text is analyse in a different wayocation. Of course, most of those fields will be
trying to obtain the correct result at the endfilled in empty because a sentence usually doesn't
There are five stages of development, tokenizingontain all that information. For each sentence
the text, splitting each sentence, analysing eaahith useful information the pattern searcher will
of these sentences, search for relevant patterrgeate a new Match object with that information.
look for important results, and finally display theFinally, the pattern searcher returns a table with

all those Match objects, and the table analyzer The methodnextSentencef)ses a loop to
will try to merge some of those "matches" in or-go through the input array and firstly checks if
der to get all the possible information (score, loeach character equaled a sentence delimiter (*.”,
cation, etc.) and to return the real match. R e U % or) and considered all char-
acters between the two delimiters a sentence by
adding the sentence to our list (LinkedList) and
2.1 The Tokenizer incrementing thestartindexuntil it is greater than
_ _ . the index of the delimiter so we can move on and
_ The first step on processing the text iing the next sentence. The process then repeats
tokenizing it. The program uses Java’s tokenizing | the end of the input is reached and thus all

mechanism for achieving this task easily. Theenences are split or separated. Each LinkedList
class StringTokenizerreturns each token that is nextSentencés converted to an array and re-

found in the text. This particular program alsoneqd. The list that is returned, and which is

f;?”‘ii,d‘?_r,s ‘the‘.fol‘lc.)yvi‘r\\rgl]’ c‘lcﬁr??t(?r’s %S ‘t)c,)kens: V'supposed to contain one sentence of the text, is
1 . 1 L] = b 1 Cl 1 b b 9 1 1 .

o : _ . furthered analyzed by tHéhraseAnalyzeclass.
Tokenizing the text makes it easier for analysing
each word and each sentence in the later stages3 Phrase Analizer
This is a very simple step that it is very easily
performed with the help of Java classes. The phrase analyzer is called for each
sentence in the text, so it doesn't have any knowl-
At this stage the program already considedge about the sentences before. We would have
ers the difference in language. We found that iiked to have a good phrase analyzer, but it had
was useful to recognize the accented letters at tlgcreased too much the complexity of this layer
beginning of the text and transformed them into and besides, it's not the main objective of this
not accented letter. In Spanish all the vowels caproject. So we decided to use a simple approach
be accented (4, é, i, 6, U) and this can bring conte a full phrase analyzer. For each language
plications at later stages. In general, if there is éEnglish and Spanish) we keep a list of verbs,
word in the text, which contains an accented lefprepositions and conjunctions. The idea is to be
ter, this letter gets transform to its non-accenterbading the sentence until find one of those, that

equivalent. we have called, bounding words. Each group of
. words between two of those bounding words is a
2.2 Sentence Splitter group in the sentence (the subject, the verb, the

, object or any prepositional sentence). The algo-
The constructor for this class takes Wi s the following: we consider the type of a
parameters, the input (String[]) and a Booleagq,y depending on the first word of the group.

value indicating the language of the input textyyhat we find until the first bounding word, is
either English or Spanish. always considered to be the subject of the sen-
The class has two major methodierelsSen- ance Once we find a bounding word, if it is a
tence which returns a Boolean value indicatingery word, this will be the verb of the sentence.
whether or not there are any sentences left in thg his case, we start reading the words after it.
input text, andnextSentencevhich returns the \yhile the word is a verb word. we attach that
next sentence in the input array. The prografyorg 1o the verb of the sentence. This way we
uses a variabletartindexto indicate the index yeal with sentences with a composed verb. If the
position where each sentence starts. This indexsyrd is a preposition, we consider it a preposi-
incremented with each step of the process angnal phrase, and if it's not a preposition, we

was critical to both of the methods. consider it as the object of the sentence. A con-
The methodherels_Sentences)mpIy returns true junction is only used to separate groups.
if the length of the input was greater than the start

Index, i.e. thestartindexhas not reached the endhc we find more than one verb or direct object

of the input array and therefo_re there is still aBnIy the first one is used. The other ones are ig-
least one more sentence to split. nored.

2.4 Pattern Search
So, if we analyze the next sentence:
After the phrase is analysed and divided

10 November 2003 Blackburn Roversinto subject, verb, object, and prepositions the

FC ended a run of five consecutive program searches for relevant patterns on each of
Premiership defeats with a nervy 2-1these fields. To do this the program uses a super
win against Everton FC at class PatternSearch and two subclasses that ex-
Ewood Park tonight. tend it PatternSearchEnglish and PatternSearch-
Spanish in order to deal with the difference in
we get: language. These subclasses basically consist of a
- Subject:10 November 2003 list of words or sentences that are likely to appear
Blackburn Rovers FC ended a in the different fields, we call thenpatterns
run There are patterns related to relevant verbs, to
- Verb: win . .
, relevant words, to locations, to prepositions, and
- Object: [NULL]
_ . : to scores. For example, some relevant patterns
- PP: of five consecutive Pre- . .
miership concerning the name of a team were coded in
with a nerv y 2 - 1 java as an array of patterns elements (i.e. an array
against Everton FC of type Pattern):

at Ewood Park tonight
Pattern[] wordPatternSpa = {

Pattern.compile("[A-Z]\w*"),
Pattern.compile("[A-Z\w* [A-Z]

endedis not in the verb list so it's not considered [A-Z][A-Z]*"),

a verb.

This information is stored in a Phrase}

object, which has the following structure: where the first element of the array will identify
all words starting with Capital letter, the second
element will identify all words starting with capi-
tal letter followed by a space and at least two

public class Phrase{
public Group subject;
public Group verb;

public Group object: capital letters (or initials), therefore it will recog-
public Group[] pp; nize words like ‘Barcelona FC’ or ‘Barcelona
FFC'.
} At this stage the program takes a big step

in determining the winner and the loser of a

class Group{ match, as well as the score and the location. To

public static final int NOUN = 0; determine the winner and loser it considers five
public static final int VERB = 1,
public static final int PREP = 2: types of verbs that can be relevant to a football
public static final int ADVERB - 3 article, verbs about winning and losing in the ac-
public static final int CONJUN = 4; tive form, about winning and loosing in the pas-
sive form, and about drawing. In general,
public int groupClass; depending on the type of verb, either the sentence
public String[] data; before or after it is considered to contain the

name of either the winner or the looser. For ex-
ample, if the phrase being analyzed at the mo-
ment contains a winning verb in the passive (e.g.
has been wonform then the program assumes
Hhat it is likely to find the name of the winner
YZ&tter the verb. In the other hand, if the phrase has
a winning verb in the active form (e.dri-
umphedl then the program considers the winner

The phrase object will represent the an
lyzed phrase, and that's what the phrase anal
gives to the pattern searcher.

to be found before the verb and therefore the user

after the verb. This doesn’t mean that the final All the results found by thePattern-
output of the program depends on finding one o$earch class are considered possible results.
these verbs and concluding we can find the apFhese results are stores in a list bfatches
propriate winner and looser, because there awhich is analyzed at the next stage of the devel-
many phrases to be analysed and the results of albment process of the program.

of them will be compared at a later stage.

To determine the location of the match 2.5 Table Analyzer

the program considers sentences or groups con- . .
taining only two prepaositions related to location he pattern searcher yields a table that contains

‘at” and’in’ (in Spanish there is only one Iore|OO_many Match objects. As we already know, each

sition 'en’. Reading over some corpus we foundvlatCh O.bjeCt represent a match,_ or part of t_he
that it is only after this two words that the Ioca_lnformatgon of a T?;Ch' Ttheh objective of th'st
tion of the match is mentioned in an article. Wéayer IS 10 merge all (e matches, So we can get a

can encounter sentences Fse match was won match with all the information given in the text.
by Barcelona in Camp Nowhere it is very sim- The reason for this is because, as we analyze sen-

ple to detect the location. In the other hand afgnce per sentence, each Match object created

article might have the sentendée match was only contains the information about the match
won by Barcelona in Septembéor this reason that appears in that sentence. But in most of the

we decided to have a list of words that the proS@Ses: the information of a match is given in mul-

gram might misinterpret as important, we callei'ple sentences. FOF example you can say the
this list the unwanted patterns and it include eam A_/von team B in one sentence but the score
names of months, days of the week, capitalize‘éian be in a_mother one. For this reason, the tal_JIe
prepositions, etc. and it helps the program to gé}nalyzer W”.I merge a_II th_e matches together, in
rid of words that are not likely to appear in thea” the possible combinations. Two matches will

final result. A text can also contain the sentencBe m_erged only if there is not contradiction when
The team won the game at the beautiful city oferding them.

Bristol and again by taking only the relevant pat-
terns the program gets rid of the unwantie
beautiful city ofto conclude that the relevant lo-
cation isBristol.

The table analyzer works in 2 steps.
First it gets all the team names it finds on all the
matches. Second, it merges the matches consider-
ing the team names found.

The process of determining the scores is

slightly different. First the program tokenizes When the pattern searcher creates a

- tch object, it doesn't take care about the team
each of the groups in the phrase to look for a pat’' & ’ ;
group P P names. It only knows that the subject or the ob-

tern of the formNumber Union Numbemnwhere .
Numberis any integer andJnion is a word or Ject O.f the sentence may refer to a team name,

character that appears between the two numb t tches. f I th
which is commonly use to display a result, sucff/nen we get two maitches, for example one wi

as -, ‘to’, ‘against, ‘by’, ‘7" If a pattern of this a winner called "The great FC Barcelona team"
type is found, then the program considers thes%noI another one with a winner “"The Barcelona

two numbers to be a possible score. However, t gam’, we must tell the syste.m that those tWO,
numbers found can happen to be only a part ams refer to the same team: Barcelona. That's

result or the result of another match. We found 4'¢ objective of the first step in the table analyzer
big difficulty in finding the correct final score ayer. Once we have all the team names that ap-

when the text presents more than one on thef&ar I the text, it is easier to know when two
Number Union Numbepatterns. For this reason matches can be merged using the real team name

we implemented the program so that it assumeasnOI not all the expression.
that the pattern with the highest integer numbers

is indeed the final score of the match. The method we have used to get the

team names is quite intuitive: we look for team

patterns in all the winner and loser field of all thereduced by approximately 30%, which is a big

Match objects. There are not many teams’ patlecrease in performance.

terns, but the problem is that it's very difficult to

distinguish team names from football players. Error handling was not developed in de-

For example FC Barcelona is a team, but Javidgailed, however we assure that the program never

Saviola is a football player, and both will be con-terminates abruptly for any reason. If the input is

sidered as team names. not correct and the language is selected badly the

program might display merely garbage (we said

Once we have the team names, thearlier that the program is not concern with

program starts to merge all the possible matcheshecking the language of the input text), but it

Two matches will be merged if no contradictionwill not create exceptions, freeze or terminate.

appears when merging them. Contradictions adestead, the user is given a chance to clear the

the winner and the loser would be the same teartext area and try analyzing the text again.

different score or location, or different winner or

loser. For example if a match with a winner Bar-))

celona and a match with a winner Madrid cannof Conclusions, Observations and Future

be merged. But a match with the winner null and Improvements

the loser Madrid and another match with the))
winner Barcelona and the loser null can bdfom developing this program we found many

merged. The resulting match will have winnephteresting facts and difficulties about processing

Barcelona and loser Madrid. This resulting matcfgnguages with machine instructions. We also

will be added to the list of matches. so it can b&€alized about the differences and similarities in
used to be merged again. ' processing two distinct languages, but fortunately

we found it easy to separate the implementation

When we have merged all the matches?f the two.
we need to select the match the text is talking)
about. For that reason, each match object is aug- There are many things that could have
mented with a counter. When the pattern search&pProved in the program. The following is a list

creates a match, if the fields winner and loser aref Some important observations and future im-
both null, the counter is 1, if either the winner orProvements that we were aware of, but because

the loser is not null, the counter is 2, and if botdack of time couldn’t be implemented in this ver-

winner and loser are not null, the counter is 350N
When two matches are merged, the counter of the
resulting match will be the addition of the two ~ 1- A better phrase analyzer. A bad one ac-

original counters. At the end, we return the match cumulates too much garbage for the
with the higher counter. TableAnalyzerto analyze. Statistically

the names of the teams the match talks
about are more likely to appear more

3 Measures of Performance times in the text, therefore the counter
should be enough to get the correct name
We were confident that the precision and recall of the teams, but in the real life it's not
of the program in general were fairly good. We so0. This could definitely be improved by
tested the system with approximately 30 Internet removing the garbage generated due to
articles narrating football matches and we esti- the bad phrase analyzer.
mated a recall and precision between approxi- 2. Optimally the analyzed text only talks
mately 40% and 60%. In the case when one about one match, however texts relating
article mentioned more that one match this per- multiple matches can also be analyzed.
centage of recall and precision dropped consid- The match with more references made on
erably. Also, when the text was extremely large, the text should be the final result, al-
the displayed result was usually not the correct though the program will not always re-

one, and therefore precision and recall also were turn this as the correct result. In general

the program performs much better if thesince the accuracy and precision were beyond our
article only talks about one football, bothexpectations
precision and recall are higher in this
case. References
3. An improvement in the user interface is
the liberty for the user to choose a text
file located in his machine, instead ofPierre Nugues,2003. Assignment #2: Information

having to copy/paste the article into the EXxtraction. _

text field. http://www.cs.Ith.se/Education/Courses/EDA171/c
4. The order of the patterns in the array of w2.html

patterns could be sorted in a way that th&ierre Nugues2003.Corpus Processing Tools

most likely pattern appears in the ﬁ_rStErik Lindvall and Johan NilssorExtracting informa-
index of the array, the second most im- " tion from Sport Articles in Swedish using Pattern
portant in the second index and so on. In RecognitionLund University

this way the performance of the system
will improve since it doesn’t have to go

through many elements of the array. In
other words, we could have carried out a
statistical study to find out the likelihood

of occurrence of each of the patterns. In
this way we can place the most likely oc-
curring patterns at the beginning of the
array of patterns so that the program
doesn’t have to go through the whole ar-
ray.

5. Java was a useful tool in the develop-
ment of the program, since it has build in
classes that are very useful for language
processing, such as string and stream to-
kenizer and a Pearl like pattern function-
ality.

6. The differences in the language were
handled by having subclasses for each
language that extended a superclass with
the majority of the functionality. The
subclasses included mostly the relevant
vocabulary that can be found in the two
different languages.

7. The handling of errors was not done with
too much care. Handling all exceptions
and possible technical errors could make
the system more robust and trustful.
However, we made sure that the program
never crashes, as mention above.

Like every software development proc-
ess, there are still some things that we could have
done better, but because lack of time, tools and
some knowledge we were not able to implement
it as good as we would like to. However we were
very satisfied with the final result of the system

