
Football Information Extraction System

ESTEVE LLOBERA
Lund University

e6801661@est.fib.upc.es

CIAN DALTON
Lund University

cian.dalton@student.cs.ucc.ie

JULIO ANGULO
Lund University

djjupa@canada.com

Abstract

We are going to make a program able to
extract information from sportive texts.
We will focus on football texts and the
program will extract the winner and loser
teams, as well as the final score and the
location where the match has been
played.

The program will deal with texts in two
languages: english and spanish. The user
has to tell to the program what language
to use to analize the text because it will
not try to identify the language.

1 Introduction

This system consists on an information
extraction program that extracts relevant infor-
mation from football related articles. Relevant
information is considered to be the name of the
participating teams, the resulting score of the
match played and the location of the match. In
other words, the program basically analyses the
contents of the article and returns relevant infor-
mation about the match.

In order to analyse the article the pro-
gram follows some stages of development. At
each stage the text is analyse in a different way,
trying to obtain the correct result at the end.
There are five stages of development, tokenizing
the text, splitting each sentence, analysing each
of these sentences, search for relevant patterns,
look for important results, and finally display the

results. These stages are explained in detail in
this article.

The program will deal with texts in two
languages: English and Spanish. The user has to
tell to the program what language to use to ana-
lyze the text because it will not try to identify the
language. The default language is set to English,
in case the user fails to choose the language of
the article to be analyzed

2 Program Implementation

The project has been made using a design in lay-
ers. It has 5 layers (see figure X): tokenizer, sen-
tence splitter, phrase analyzer, pattern searcher
and table analyzer. We will make an small over-
view of all the stages now, and they will be ex-
plained in more detail later. Each layer generates
an intermediate representation of the analyzed
text. The tokenizer returns an array with the to-
kenized text, the sentence splitter splits the token-
ized text in sentences, which are just an array of
tokenized words. The phrase analyzer is called
for each sentence found, and returns an instance
of a class Phrase for each one. The pattern
searcher gets the entire Phrase objects and search
for sportive patterns that can provide information
about a football match. If a sentence contains
relevant information, it is stored in a class called
Match, which contains winner, loser, score and
location. Of course, most of those fields will be
filled in empty because a sentence usually doesn't
contain all that information. For each sentence
with useful information the pattern searcher will
create a new Match object with that information.
Finally, the pattern searcher returns a table with

all those Match objects, and the table analyzer
will try to merge some of those "matches" in or-
der to get all the possible information (score, lo-
cation, etc.) and to return the real match.

2.1 The Tokenizer

The first step on processing the text is
tokenizing it. The program uses Java’s tokenizing
mechanism for achieving this task easily. The
classStringTokenizerreturns each token that is
found in the text. This particular program also
considers the following characters as tokens: ‘!’,
‘/’, ‘?’, ‘:’, ‘-’, ‘;’, ‘¿’, ‘\n’, ‘\t’, ‘.’, ‘,’, ‘(’, ‘)’.
Tokenizing the text makes it easier for analysing
each word and each sentence in the later stages.
This is a very simple step that it is very easily
performed with the help of Java classes.

At this stage the program already consid-
ers the difference in language. We found that it
was useful to recognize the accented letters at the
beginning of the text and transformed them into a
not accented letter. In Spanish all the vowels can
be accented (á, é, í, ó, ú) and this can bring com-
plications at later stages. In general, if there is a
word in the text, which contains an accented let-
ter, this letter gets transform to its non-accented
equivalent.

2.2 Sentence Splitter

The constructor for this class takes two
parameters, the input (String[]) and a Boolean
value indicating the language of the input text,
either English or Spanish.
The class has two major methods,thereIsSen-
tence, which returns a Boolean value indicating
whether or not there are any sentences left in the
input text, andnextSentencewhich returns the
next sentence in the input array. The program
uses a variablestartIndex to indicate the index
position where each sentence starts. This index is
incremented with each step of the process and
was critical to both of the methods.
The methodthereIsSentence()simply returns true
if the length of the input was greater than the start
Index, i.e. thestartIndexhas not reached the end
of the input array and therefore there is still at
least one more sentence to split.

The methodnextSentence()uses a loop to
go through the input array and firstly checks if
each character equaled a sentence delimiter (“.”,
“?”, “,”, “!”, “;” or “:”) and considered all char-
acters between the two delimiters a sentence by
adding the sentence to our list (LinkedList) and
incrementing thestartIndexuntil it is greater than
the index of the delimiter so we can move on and
find the next sentence. The process then repeats
until the end of the input is reached and thus all
sentences are split or separated. Each LinkedList
nextSentenceis converted to an array and re-
turned. The list that is returned, and which is
supposed to contain one sentence of the text, is
furthered analyzed by thePhraseAnalyzerclass.

2.3 Phrase Analizer

The phrase analyzer is called for each
sentence in the text, so it doesn't have any knowl-
edge about the sentences before. We would have
liked to have a good phrase analyzer, but it had
increased too much the complexity of this layer
and besides, it's not the main objective of this
project. So we decided to use a simple approach
to a full phrase analyzer. For each language
(English and Spanish) we keep a list of verbs,
prepositions and conjunctions. The idea is to be
reading the sentence until find one of those, that
we have called, bounding words. Each group of
words between two of those bounding words is a
group in the sentence (the subject, the verb, the
object or any prepositional sentence). The algo-
rithm is the following: we consider the type of a
group depending on the first word of the group.
What we find until the first bounding word, is
always considered to be the subject of the sen-
tence. Once we find a bounding word, if it is a
verb word, this will be the verb of the sentence.
In this case, we start reading the words after it.
While the word is a verb word, we attach that
word to the verb of the sentence. This way we
deal with sentences with a composed verb. If the
word is a preposition, we consider it a preposi-
tional phrase, and if it's not a preposition, we
consider it as the object of the sentence. A con-
junction is only used to separate groups.

If we find more than one verb or direct object,
only the first one is used. The other ones are ig-
nored.

So, if we analyze the next sentence:

10 November 2003 Blackburn Rovers
FC ended a run of five consecutive

Premiership defeats with a nervy 2-1
win against Everton FC at

Ewood Park tonight.

we get:
- Subject:10 November 2003

Blackburn Rovers FC ended a
run

- Verb: win
- Object: [NULL]
- PP: of five consecutive Pre-

miership
with a nerv y 2 - 1
against Everton FC
at Ewood Park tonight

endedis not in the verb list so it's not considered
a verb.

This information is stored in a Phrase
object, which has the following structure:

public class Phrase{
public Group subject;
public Group verb;
public Group object;
public Group[] pp;

...
}

class Group{
public static final int NOUN = 0;
public static final int VERB = 1;
public static final int PREP = 2;
public static final int ADVERB = 3;
public static final int CONJUN = 4;

public int groupClass;
public String[] data;

...
}

The phrase object will represent the ana-
lyzed phrase, and that's what the phrase analyzer
gives to the pattern searcher.

2.4 Pattern Search

After the phrase is analysed and divided
into subject, verb, object, and prepositions the
program searches for relevant patterns on each of
these fields. To do this the program uses a super
class PatternSearch and two subclasses that ex-
tend it PatternSearchEnglish and PatternSearch-
Spanish in order to deal with the difference in
language. These subclasses basically consist of a
list of words or sentences that are likely to appear
in the different fields, we call thempatterns.
There are patterns related to relevant verbs, to
relevant words, to locations, to prepositions, and
to scores. For example, some relevant patterns
concerning the name of a team were coded in
java as an array of patterns elements (i.e. an array
of type Pattern):

Pattern[] wordPatternSpa = {
Pattern.compile("[A-Z]\\w*"),
Pattern.compile("[A-Z]\\w* [A-Z]

[A-Z][A-Z]*"),
. . .

}

where the first element of the array will identify
all words starting with Capital letter, the second
element will identify all words starting with capi-
tal letter followed by a space and at least two
capital letters (or initials), therefore it will recog-
nize words like ‘Barcelona FC’ or ‘Barcelona
FFC’.

At this stage the program takes a big step
in determining the winner and the loser of a
match, as well as the score and the location. To
determine the winner and loser it considers five
types of verbs that can be relevant to a football
article, verbs about winning and losing in the ac-
tive form, about winning and loosing in the pas-
sive form, and about drawing. In general,
depending on the type of verb, either the sentence
before or after it is considered to contain the
name of either the winner or the looser. For ex-
ample, if the phrase being analyzed at the mo-
ment contains a winning verb in the passive (e.g.
has been won) form then the program assumes
that it is likely to find the name of the winner
after the verb. In the other hand, if the phrase has
a winning verb in the active form (e.g.tri-
umphed) then the program considers the winner

to be found before the verb and therefore the user
after the verb. This doesn’t mean that the final
output of the program depends on finding one of
these verbs and concluding we can find the ap-
propriate winner and looser, because there are
many phrases to be analysed and the results of all
of them will be compared at a later stage.

To determine the location of the match,
the program considers sentences or groups con-
taining only two prepositions related to location
’at’ and ’in’ (in Spanish there is only one prepo-
sition ’en’. Reading over some corpus we found
that it is only after this two words that the loca-
tion of the match is mentioned in an article. We
can encounter sentences asThe match was won
by Barcelona in Camp Nouwhere it is very sim-
ple to detect the location. In the other hand an
article might have the sentenceThe match was
won by Barcelona in September, for this reason
we decided to have a list of words that the pro-
gram might misinterpret as important, we called
this list the unwanted patterns and it includes
names of months, days of the week, capitalized
prepositions, etc. and it helps the program to get
rid of words that are not likely to appear in the
final result. A text can also contain the sentence
The team won the game at the beautiful city of
Bristol and again by taking only the relevant pat-
terns the program gets rid of the unwantedthe
beautiful city ofto conclude that the relevant lo-
cation isBristol.

The process of determining the scores is
slightly different. First the program tokenizes
each of the groups in the phrase to look for a pat-
tern of the formNumber Union Number, where
Number is any integer andUnion is a word or
character that appears between the two numbers
which is commonly use to display a result, such
as ‘-‘, ‘to’, ‘against’, ‘by’, ‘:’. If a pattern of this
type is found, then the program considers these
two numbers to be a possible score. However, the
numbers found can happen to be only a partial
result or the result of another match. We found a
big difficulty in finding the correct final score
when the text presents more than one on these
Number Union Numberpatterns. For this reason
we implemented the program so that it assumes
that the pattern with the highest integer numbers
is indeed the final score of the match.

All the results found by thePattern-
Search class are considered possible results.
These results are stores in a list ofMatches,
which is analyzed at the next stage of the devel-
opment process of the program.

2.5 Table Analyzer

The pattern searcher yields a table that contains
many Match objects. As we already know, each
Match object represent a match, or part of the
information of a match. The objective of this
layer is to merge all the matches, so we can get a
match with all the information given in the text.
The reason for this is because, as we analyze sen-
tence per sentence, each Match object created
only contains the information about the match
that appears in that sentence. But in most of the
cases, the information of a match is given in mul-
tiple sentences. For example you can say the
team A won team B in one sentence but the score
can be in another one. For this reason, the table
analyzer will merge all the matches together, in
all the possible combinations. Two matches will
be merged only if there is not contradiction when
merging them.

The table analyzer works in 2 steps.
First it gets all the team names it finds on all the
matches. Second, it merges the matches consider-
ing the team names found.

When the pattern searcher creates a
Match object, it doesn't take care about the team
names. It only knows that the subject or the ob-
ject of the sentence may refer to a team name,
and fills in the fields with that information. So
when we get two matches, for example one with
a winner called "The great FC Barcelona team"
and another one with a winner "The Barcelona
team", we must tell the system that those two
teams refer to the same team: Barcelona. That's
the objective of the first step in the table analyzer
layer. Once we have all the team names that ap-
pear in the text, it is easier to know when two
matches can be merged using the real team name
and not all the expression.

The method we have used to get the
team names is quite intuitive: we look for team

patterns in all the winner and loser field of all the
Match objects. There are not many teams’ pat-
terns, but the problem is that it's very difficult to
distinguish team names from football players.
For example FC Barcelona is a team, but Javier
Saviola is a football player, and both will be con-
sidered as team names.

Once we have the team names, the
program starts to merge all the possible matches.
Two matches will be merged if no contradiction
appears when merging them. Contradictions are
the winner and the loser would be the same team,
different score or location, or different winner or
loser. For example if a match with a winner Bar-
celona and a match with a winner Madrid cannot
be merged. But a match with the winner null and
the loser Madrid and another match with the
winner Barcelona and the loser null can be
merged. The resulting match will have winner
Barcelona and loser Madrid. This resulting match
will be added to the list of matches, so it can be
used to be merged again.

When we have merged all the matches,
we need to select the match the text is talking
about. For that reason, each match object is aug-
mented with a counter. When the pattern searcher
creates a match, if the fields winner and loser are
both null, the counter is 1, if either the winner or
the loser is not null, the counter is 2, and if both
winner and loser are not null, the counter is 3.
When two matches are merged, the counter of the
resulting match will be the addition of the two
original counters. At the end, we return the match
with the higher counter.

3 Measures of Performance

We were confident that the precision and recall
of the program in general were fairly good. We
tested the system with approximately 30 Internet
articles narrating football matches and we esti-
mated a recall and precision between approxi-
mately 40% and 60%. In the case when one
article mentioned more that one match this per-
centage of recall and precision dropped consid-
erably. Also, when the text was extremely large,
the displayed result was usually not the correct
one, and therefore precision and recall also were

reduced by approximately 30%, which is a big
decrease in performance.

Error handling was not developed in de-
tailed, however we assure that the program never
terminates abruptly for any reason. If the input is
not correct and the language is selected badly the
program might display merely garbage (we said
earlier that the program is not concern with
checking the language of the input text), but it
will not create exceptions, freeze or terminate.
Instead, the user is given a chance to clear the
text area and try analyzing the text again.

4 Conclusions, Observations and Future
improvements

From developing this program we found many
interesting facts and difficulties about processing
languages with machine instructions. We also
realized about the differences and similarities in
processing two distinct languages, but fortunately
we found it easy to separate the implementation
of the two.

There are many things that could have
improved in the program. The following is a list
of some important observations and future im-
provements that we were aware of, but because
lack of time couldn’t be implemented in this ver-
sion.

1. A better phrase analyzer. A bad one ac-
cumulates too much garbage for the
TableAnalyzer to analyze. Statistically
the names of the teams the match talks
about are more likely to appear more
times in the text, therefore the counter
should be enough to get the correct name
of the teams, but in the real life it's not
so. This could definitely be improved by
removing the garbage generated due to
the bad phrase analyzer.

2. Optimally the analyzed text only talks
about one match, however texts relating
multiple matches can also be analyzed.
The match with more references made on
the text should be the final result, al-
though the program will not always re-
turn this as the correct result. In general

the program performs much better if the
article only talks about one football, both
precision and recall are higher in this
case.

3. An improvement in the user interface is
the liberty for the user to choose a text
file located in his machine, instead of
having to copy/paste the article into the
text field.

4. The order of the patterns in the array of
patterns could be sorted in a way that the
most likely pattern appears in the first
index of the array, the second most im-
portant in the second index and so on. In
this way the performance of the system
will improve since it doesn’t have to go
through many elements of the array. In
other words, we could have carried out a
statistical study to find out the likelihood
of occurrence of each of the patterns. In
this way we can place the most likely oc-
curring patterns at the beginning of the
array of patterns so that the program
doesn’t have to go through the whole ar-
ray.

5. Java was a useful tool in the develop-
ment of the program, since it has build in
classes that are very useful for language
processing, such as string and stream to-
kenizer and a Pearl like pattern function-
ality.

6. The differences in the language were
handled by having subclasses for each
language that extended a superclass with
the majority of the functionality. The
subclasses included mostly the relevant
vocabulary that can be found in the two
different languages.

7. The handling of errors was not done with
too much care. Handling all exceptions
and possible technical errors could make
the system more robust and trustful.
However, we made sure that the program
never crashes, as mention above.

Like every software development proc-
ess, there are still some things that we could have
done better, but because lack of time, tools and
some knowledge we were not able to implement
it as good as we would like to. However we were
very satisfied with the final result of the system

since the accuracy and precision were beyond our
expectations

References

Pierre Nugues,2003. Assignment #2: Information
Extraction.
http://www.cs.lth.se/Education/Courses/EDA171/c
w2.html

Pierre Nugues,2003.Corpus Processing Tools

Erik Lindvall and Johan Nilsson.Extracting informa-
tion from Sport Articles in Swedish using Pattern
Recognition. Lund University

