
 1

Why use buttons when natural language dialogue makes
interaction easier: the Winamp Project

André Hellström, Nabil Benhadj, & Johan Windmark

Lund University, 2003

Abstract

This project was intended to show the
possibility of using natural language
dialogue with standard software in a
typical PC environment. The prototype
system integrates spoken language with
the Winamp media player. As a result
of this Winamp will be totally
controlled by spoken English.

1 Introduction

The aim of the project is to create a spoken
agent to control Winamp. Winamp is a leading
media player that is easy to manipulate and
control, making it well fit for the purpose. The
interaction between the user and the agent is
through voice recognition and speech
feedback. The system should be easy to
understand, even for a first time user. Another
goal is to make the system robust enough so
that it responds correctly with a high
probability.

2 System overview

The system code is implemented in C++ using
Microsoft Speech SDK (SAPI 5.1). The
tutorial coffee0 that came with the SDK was
the starting point of the project and was
expanded to contain the state machine
described below. Microsoft Speech can work
in two modes: dictation mode and command
mode. In the dictation mode, whole sentences

are parsed. In dictation mode, the possible
utterances are predefined in a grammar and
each utterance is matched to a specific rule.
The grammar for the rules is defined in an
XML-file.

3 Implementation

The system code is implemented in C++ using
Microsoft Speech SDK (SAPI 5.1). The
tutorial coffee0 that came with the SDK was
the starting point of the project and was
expanded to contain the state machine
described below. Microsoft Speech can work
in two modes: dictation mode and command
mode. In the dictation mode, whole sentences
are parsed. In dictation mode, the possible
utterances are predefined in a grammar and
each utterance is matched to a specific rule.
The grammar for the rules is defined in an
XML-file.

4 State-machine

The flow of the system is:

1. The user gives a command to the system.
2. The system gives feedback on the

command
3. Possibly gives a command to Winamp.
4. Go back to 1

To constrain the number of different
commands available to the user at a given
time, a state machine is used.

 2

Begin

List Playing

lis
t(a

rti
st

)
cl

e
ar

()

play(artist)

stop()

play(*)

play(..), list(artist), remove()remove, list(artist)

Clear()

Figure 1

The state machine uses following concepts:

States, i.e. Begin, Playing
Transitions, i.e. Begin->Playing
Actions, i.e. play(Artist)
Rules, i.e. Rule7 triggered by ”* Play
Madonna”

Let’s start by looking at the message handling
code, suppose we’re in state Begin and have
received a message from rule7.

messageHandler(message)
 switch(STATE)
 case Begin:
 switch(message)
 case RULE1:
 transitionBeginPlaying1(message);
 case RULE7:
 transitionBeginPlaying2(message);
 case RULE3:
 case RULE2:
 transitionXZ1(message);
 default:

 ”Error: Unhandled rule!”
 case Playing:
 switch(message)…
 case RULE7:
 transitionYY(message);
 default:
 ”Error: Unknown state!”

Depending on the state, different transitions
can be called for the same rule, that is, the
same rule can trigger different transitions. Also
note that different rules can call the same
transitions, within the same state. Let’s look at
the transition code:

transitionXY2(message):
end_X()
visual and/or audio feedback code()
action_play(message.argument1)
begin_Y()

First a stop code is called for the state X. It
will turn off all rules. Then some feedback is
given to the user and the appropriate action is

 3

called. Finally the start code for Y is called. It
will turn on all the Y-rules, the same rules that
can be caught in the message handler under
state Y, and set the current state to Y. In this
case action_play(...) means load a Madonna
playlist and start playing it, as a command to
Winamp.

To summarize: The active rules depend on the
current state. When a rule is triggered by the
speech recognition system, it’s triggering a
transition. The transition calls the appropriate
action and changes the state, thereby changing
the set of active rules.

5 Grammar and rules

The speech recognition system divides the
input into phrases, where each phrase is
surrounded by silence. Consider the case that a
playlist is loaded and the user wants to hear a
specific song. The rule to catch this looks like
this:

<RULE ID="VID_PlayNumber"
TOPLEVEL="ACTIVE">
<O>
 <L>

<P>could you</P>
<P>will you</P>
<P>I want to</P>
<P>the song I want to hear</P>
<P>I need to</P>

 </L>
</O>
<O>please</O>
<O>
 <L>

<P>Play</P>
<P>Start</P>
<P>Hear</P>

 </L>
</O>
<O>
 <L>

<P>song</P>
<P>piece</P>
<P>track</P>
<P>tune</P>

 </L>
</O>
<RULEREF REFID="VID_Number"/>
</RULE>

The most important words for this rule is the
number, last in the grammar. VID_Number,
here defines one of the numbers 1 to 10 and is
the sub rule that actually activates the
VID_PlayNumber rule. The rest of the rule is
only a list of optional padding so that the rule
is triggered not only by an utterance like
“Number one” but also by “Could you please
play track number one”. The example pretty
well catches the structure of all rules.

6 Future possibilities

Some interesting and important details of
improvement would be to make the program
more stable and increase flexibility. Below are
a couple of suggestions of how this could be
accomplished.

An easy way of making to program more
dynamic is to provide an easy tool for
automatically adding new artists and songs to
the play list. One way of doing this is by
having a parser read all music files in the
designated catalogue and then adds whatever
artist/song is missing in the XML-file each
time the program is executed. Some system
parameters would then have to be added into a
text file for the program to read at start up.

Further improvement on the voice recognition
would be preferable to increase stability of the
speech-to-text input. A first and an easy way of
enhancing the voice recognition input in the
interface would be by providing a high quality
microphone or possibly a headset.

Other possibilities would be to make a system
that works as a speech user interface for
programs in general. The only change required
would be to change the grammar file (XML-
file).

 4

7 Evaluation

The system was tested continuously during
development. After each test, the grammar and
state machine was altered to enhance
performance. The problems encountered were
that user commands were not recognised or
that rules were triggered without proper
reason. In the final state of the project, a user
knowing the system architecture can go
through all actions with very few incorrect
system responses. The problem with rules
triggered without the correct corresponding
user input still remains.

8 Conclusion

The Winamp project offers a good suggestion
of the possibility’s in speech recognition today.
Use of natural language dialogue interfaces to
standard software is far from perfect. The
project did however show that the technical
part of voice recognition has come far and will
probably be good enough for serious general
usage in a couple of years. There are however
still the complexity of linguistics, natural
language dialogue, to solve in order to use
speech control in a natural way. Combinations
of words and sentences are close to endless
which makes natural dialogue extremely
multifaceted. The idea of limiting the field of
possible recognition, as in the Winamp project,
has however showed that that natural dialogue
is possible in very restricted domains.

References

Microsoft Research, Lifelike Computer
Characters: the Persona project at Microsoft
Research, 1996

Nugues Pierre, LTH Lecture notes, 2003

Winamp Homepage: http://www.winamp.com

Microsoft SpeechSDK Homepage:
http://www.microsoft.com/speech/download/s
dk51/

9 Appendix

A scenario: using the different features of
the program

When program starts it outputs (speech output)
the following:

Welcome Pierre. This is the Winamp speech
control. The jukebox contains, Madonna,
Sting, Prince, Red hot Chilipeppers and David
Gray. You can choose to list or to play one of
these artists. Have a nice try…

The interaction continues with the following
dialogue:

 5

Command to system Answer from system Action

Help Choose to play a song by an artist or
choose to list available songs by
artist

No action

List Madonna Loading list, Madonna list <displays
(speech) all songs>

List(Madonna)

Play number two Playing Play(2)

Stop Stop playing Stop()

Play next Next song Play(next)

Play previous Previous song Play(prev)

Help Choose to play next son, previous
song, clear list or stop playing

Pause Pause Pause()

Pause Pause Play()

Stop Stop playing Stop()

Erase list Clear list Clearlist()

List artist The artists are <displays (speech)
all artists>

No action

Could you find anything by Prince Loading list, Prince list <displays all
songs>

List(Prince)

Play playing Play()

Erase list Erasing list Clearlist()

I want to hear a song by David Gray Playing, playing David Gray Play(David Gray)

Stop Stop Stop

Erase list Clearing list Clearlist()

