
Finite state clause segmentation

Anders Berglund
Lund Technical Highschool
d98ab@efd.lth.se

Abstract

This report describes an attempt to per-
form clause segmentation in Swedish
using a method published by Eva Ejer-
hed in (András, 1999) pp. 140-151.

1 Credits

The method I used is basically the method devel-
oped and published by Eva Ejerhed, the grammar
I use is hers entirely and this very project wouldn’t
have been possible without her paper.

2 Introduction

Ejerhed’s idea was to use a finite state automaton
that triggers on certain patterns of word tags and
inserts clause boundaries. The automaton is easy
to specify and easy to implement, the algorithm
isn’t too computationally intensive and the results
good, Ejerhed reports a degree of correctness of
96% with the method applied to manually tagged
text.

3 Basic Overview

The finite state automaton in my implementation
takes a tagged text as input, metaclassifies the tags
(the automaton has a metatag “FIN” meaning a fi-
nite verb, all words classified as verbs being in a
finite form gets metaclassified as “FIN”) as a first
step, then runs the rules given in the automaton us-
ing simple pattern matching (the automaton rules
can be found in the appendix).

The metatags are quite few, around 10, and they
do not overlap. As they are that few, a simple solu-
tion is giving each an integer value of its own and
using those integers in the computations, making
it possible to avoid string compares in the second
step.

In the second step my pattern matcher simply
runs “are the next n tags (tag x tag y tag z)? then
tag c after tag x” in a long loop with different pat-
terns of different length, advancing the automaton
one step after each iteration of the loop.

4 Results

Eva Ejerhed remarks in her paper that there are
many open questions concerning the definition of
the clause units to have as targets for clause seg-
mentation. One aspect she notes is whether a
clause should have at most or exactly one finite
verb per clause.

Eva Ejerhed chooses to have at most on finite
verb per clause, and this leads to a clause seg-
mentation that looks sometimes looks odd. An
example of sentence from the aa01 text from
the SUC1A-corpus tagged with clause delimiters
given by the state machine (quite thoroughly de-
bugged, it does follow the rules):

<C1A> Don Kerr , en av de
politiska tänkarna pá det ansedda
analysinstitutet IISS , <C1C> är
inte páfallande optimistisk
<C2Bg> när han talar om saken .

The <C1C>-clause segmentation is strange

(<C1C> means a cl ause segmentation marker
that was produced by rule 1C). In my book the
entire sentence is a single clause (at least the part
before the <C2Bg>-tag (the entire part before the
<C2Bg> constitutes the subject of the phrase)),
the automaton “overrecognizes” when it encoun-
ters something that fits rule 1C. A solution might
be having a “flag” in the automaton that keeps
track of whether the preceding stretch of words
starting with the last DL MID-tag contained any
verb, if not, then rule 1C shouldn’t be applied.
This flag would be set to false at every encounter
of a delimiter and set to true when encountering a
verb.

Such a change would mean a change of focus
to having exactly one finite verb per clause. Eva
Ejerhed reports very few overrecognized clauses,
using a manually annotated corpus (which the
SUC1A-corpus is) she finds zero overrecognized
clauses. The Swedish construct above, what in
(at least) Swedish grammatic terminology for Ger-
man is called an apposition 1, is quite common,
and I think it has been overrecognized in this case.

This is directly at odds with Ejerhed’s results
(she: zero overrecognizations, I: common con-
struct overrecognized), but I’m reluctant to take a
stand and I choose to leave the question of who is
right as an exercise to the reader.

5 Conclusion

The complaint above apart, the method works very
nicely for most cases, is easy to implement (and
debug!) and not very computationally expensive.
The performance attained with such simple func-
tionality is quite impressive.

References

András Kornai (Ed.) 1999. Extended finite state mod-
els of language. Cambridge University Press.

1An example of an apposition: Berlin, the German cap-
ital, is big. The string the German capital is an attribute to
the preceding noun Berlin, an attribute without a verb written
between commas. As there is no verb it is not a clause of its
own, and it should be treated as were it an adjective on the
top-level.

Appendix: The automaton rules from Ejer-
hed (András, 1999) pp. 140-151

Clause segmentation rules

1 PUNCTUCATION
1a1) <h>XX -> <h><c>XX
1a2) <p>XX -> <p><c>XX
1b) DL-MAD XX -> DL-MAD <c> XX,
where XX is not end tag
1c) DL-MID FIN -> DL-MID <c> FIN
1d) DL-MID XX FIN -> DL-MID <c>
XX FIN, where XX=PN, NN, PM or AB

2 COMPLEMENTIZERS
2as) XX KN SN -> XX <c> KN SN
2ag) XX SN -> XX <c> SN
2bs) XX KN HX -> XX <c> KN HX
2bg) XX HX -> XX <c> HX

3 KN + FINITE VERB
3s) XX KN FIN -> <c> XX KN FIN,
where XX is a closed class of
finite forms of the verbs be, go,
stand, sit
3g) XX KN FIN -> XX <c> KN FIN

4 KN + XX + FINITE VERB, where
XX=PN, NN, PM or AB
4s) YY KN XX FIN -> <c> YY KN XX
FIN, if YY=XX
4g) YY KN XX FIN -> YY <c> KN XX
FIN, if YY!=XX

5 SEQUENCES OF FINITE VERBS
5a) CASE: 0 WORDS BETWEEN FINITE
VERBS
FIN FIN -> FIN <c> FIN
5b) CASE: 1 WORD BETWEEN FINITE
VERBS
FIN XX FIN -> FIN XX <c> FIN
5c) CASE: 2 WORDS BETWEEN FINITE
VERBS
5cs) FIN YY XX FIN -> FIN YY <c>
XX FIN, where XX=PN, NN or PM
5cg) FIn YY XX FIN -> FIN YY XX
<c> FIN

ABBREVIATIONS
<h> = head
<p> = paragraph
</h> = end head
</p> = end paragraph
DL MAD = major delmiter (.?!)
DL MID minor delimiter (,-:)
FIN = finite verb; VB PRS AKT, VB
PRS SFO, AB PRT AKT, VB PRT SFO,
VB SUP AKT, VB SUP SFO, VB IMP
AKT
PN = PN ... SUB, PN ... SUB/OBJ
(subject forms of pronouns)
NN = NN ... NOM (nouns)
PM = PM NOM (proper nouns)
AB = AB, AB POS, AB KOM, AB SUV
(adverbs)
KN = conjunction
SN = subjunction
HX = HA, HD ..., HP ..., HS
... (Wh: adverbs, determiners,
pronouns, possesives)

