Sprakbehandling och datalingvistik

Projektarbeten 2002

Handledare: Pierre Nugues

LLUNDS UNIVERSITET

Institutionen for Datavetenskap

http://www.cs.Ith.se

Printed in Sweden
Lund 2004

Innehall

Florian Eisl:
Discovery of Morphemes in Swedish

Patricia Grudziecka, Bjorn Isaksson:
Using salience to rank documents

Jon Hasselgren, Erik Montnemery and Markus Svensson:
HMS: A Predictive Text Entry Method Using Bigrams

Mattias Johansson and Jonas Hikansson:

The Artificial Librarian - A Database Dialogue Systems

Richard Johansson
A Morphological Parser for Estonian

Erik Lindvall and Johan Nilsson:
Extracting Information from Sport Articles in Swedish Using Pattern Recognition

Hossein Motallebipour, August Bering:
A Spoken Dialogue System to Control Robots

Klas Skogmar and Johan Olsson,:

Clustering documents with vector space model using n-grams

Marcus Uneson,
HORACE—an artificial columnist

LUNDS UNIVERSITET

Institutionen for Datavetenskap

http://www.cs.Ith.se

11

16

23

33

43

53

59

65

Discovery of Morphemesin Swedish

Florian Eid

Lund Institute of Technology
Department of Computer Science

Box 118

S-221 00 Lund, Sweden
x02fe@fd.lth. se

Abstract

This document describes an overview of
two methods which allows to discover
syntactic structures form a untagged cor-
pora.

The first part describes the algorithm by
Hervé Déjean — how it works, and shows
the result of the algorithm applied to a
Swedish corpus. A text by Selma Lager-
|6f and a Swedish dictionary.

The second part shows the basics of the
algorithms developed by Patrick Schone
and Daniel Jurafsky.

1 Introduction

The morphological analysis is basicaly the
segmentation of words into components that
form the word by concatenation.
From a practical point of view, the develop-
ment of a fully automated morphology gen-
erator would be of considerable interest, since
we still need good morphologies of many
European languages and to produce a mor-
phology of agiven language by hand can take
weeks or months. With the fact that a lot text

is available online it is of great interest to
develop morphologies of particular stages of
a language, and the process of automatic
morphology writing can simplify this stage,
where there are no native speakers available

2 Hervé Déjean — Mor phemes

The idea of Hervé is based on the approach
by Harris and is characterized by two facts:
(a) the use of corpora and (b) the use of the
notion of distribution instead of the sense of
elements. The distribution of an element is
the set of environments in which the element
occurs.

Only untagged and non artificia corpora
without specific knowledge about the studied
language is used. They try to discover the
structures of a natural language from raw
texts of this language. This kind of discovery
is possible if there are some expectations of
the structure of the Natural Language and
some formal properties are used.

The method relies on structural linguistic
concepts. the morpheme, the chunk and the
linearity of the language, i.e. the corpus is

! Goldsmith, John: Unsupervised Learning of the Morphol-
ogy of aNatural Language

composed of a unidimensional sequence of
elements.”

21 Morpheme Discovery - How

works

The algorithm is based on the number of dif-
ferent letters which follow a given sequence
of letters. The increase of this number indi-
cates a morpheme boundary. For instance,
after the English sequence direc, we only
find, in our corpus, one letter t. After direct,
we find four letters: i, |, 0, and e (directly,
director, directed, direction). This increase
indicates a boundary between the root (direct
and the suffixes (-ion, -ly, -or and -ed). The
algorithm works well when the corpus con-
tains enough occurrences of a stem family.
But, it may generate wrong segmentations.
For example from the list started, startled,
startling, the agorithm outputs this segmenta-
tion: start-ed, start-led, start-ling. The errors
occur when two kinds of stem families are
used for the segmentation.®

The new idea for improving the segmentation
now is to divide this operation into three
steps. The first step computes the list of the
most frequent morphemes. The second step is
to extend this list by using the discovered
morphemes already generated. And the third
and last step is the segmentation of the words
using the before produced morphemes. The
illustration is only done for the segmentation
of the suffixes but to get the prefixes the
same algorithm can be used just with the re-
verse |etters of the words.

2.1.1 Discover the most frequent mor-

phemes

The aim is to find beginnings or endings of
words which have the following property:
after a given sequence of letters, we count the
number of different letters. If this number is
higher than athreshold (e.g. half the |etters of

2 Déjean, Hervé: Morphemes as Necessary Concept for
Sturctures Discovery from Untagged Corpora
3 Déjean, Hervé: Morphemes as Necessary Concept for
Sturctures Discovery from Untagged Corpora

the aphabet), we got a so called morpheme
boundary, expect in the case that we are in
the sequence which corresponds to another,
to a longer morpheme, a case which can be
detected. This can be illustrate by simple
example, before the sequence “on” we found
20 different letters therefore “on” may be the
morpheme. But 154 of these words in the
used corpus end with “ion” out of 293 which
and end with “on”. Now it can be seen that
the longest sequence “ion” represents more
then 50% of the words ended by “on” and
due to this it can be considered that the mor-
pheme is not “on”. “on” is only a part of the
morpheme “ion”.

The most frequent morphemes of the English
and German language can be seen in the fol-
lowing table:

| English German
-e -en
-S -e
-ed -te
-ing -ten
-a -er
-ation -es
-ly -lich
-ic -el
-ent

Table 1: The most frequent morphemes of Eng-
lish and German”

4 Déjean, Hervé: Morphemes as Necessary Concept for
Sturctures Discovery from Untagged Corpora

The most frequent morphemes of the Swed-
ish language:

| Swedish (selma) Swedish (dictionary) |
-ar -erna
-er -ningarna
-en -ade
-ar
-ligt
-ligast
-ningarnas
-ernas
-ades
-nings
-ens
-ers
-ets
-ad
-ning
-en

Table 2: The most frequent morphemes of the
Swedish language

The first column is the result of text written
by Thelma Lagerlof. This corpus consists out
of about 1.000.000 words.

The result in the second column is received
using a Swedish dictionary as the corpus. The
dictionary consists of about 120.000 words.

2.1.2 Discover other morphemes

After the most frequent morphemes of a lan-
guage are found this morphemes can be used
to find out other morphemes. This can be
done using the following rule: For a given
sequence of letters it can be checked if the
next sequences of letters correspond to mor-
phemes aready found. If haf of them be-
longs to the morphemes found, then the
others can aso be considered as morphemes
of the language. This can be seen in the fol-
lowing table for the English language:

Morphemes |words New

found Morphems
light

-S lights

-ed lighted

-ing lighting

-ly lightly

-er lighter
lightness -ness
lightest -est
lighten -en

Tabsle 3: Table of other morphemes of the Eng-
lish

This dgorithm is not perfect and aso wrong
morphemes are generated, but their frequency
is very low. To make sure that we get only
correct morphemes we use a threshold (five
in practice). The morphemes with a fre-
guency lower than the threshold are not
found. The list of the received morphemes
may greatly depend on the type of corpus
used. The number of morphemes depends on
the morphology of the language. What can be
found out is, that morphemes have a similar
behavior as words, a small number of them
possesses a high frequency and corresponds
to the mayor occurrences of the corpus.

2.1.3 Segmentation of the words

After al morphemes are found we use this
morphemes to segment all the words in the
corpus. The segmentation is done be using
the longest match algorithm. This means that
we segment each word with the longest mor-
pheme that matches the beginning or ending
of the word.

3 Patrick Schone and Daniel Jurafsky -

M or phemes

A knowledge free agorithm which automati-
cally induce the morphology structures of a
language. The agorithm takes as input a

5 Déjean, Hervé: Morphemes as Necessary Concept for
Sturctures Discovery from Untagged Corpora

large corpus and produces as output a set of
conflation sets indicating the various in-
flected and derived forms for each word in
the language. An example for this can be the
word “abuse”. The result would contain the
following words: “abuse”, “abused”, “abu-
ses”, “abusive”, “abusively” and so on. The
algorithm extends earlier approaches to
morphology induction by combining various
induced information sources: the semantic
relatedness of the affixed forms using a La
tent Semantic Analysis approach to corpus-
based semantics, affix frequency, syntactic
context and transitive closure. The algorithm
achieves an F-score of 88.1% on the task of
identifying conflation sets in English. The
algorithm is also applied to German and
Dutch and evaluated on its ability to find pre-
fixes, suffixes and circumfixes in these lan-

guages.’®

3.1 Morpheme Discovery — How

works

In the picture below an overview over this
approach is shown.

(1) Identify pairs of potential
morpholegical variants
I
(2)Deatarmine semantic vectors
for each word

|
(3) Correlwic semantic vectors and
build conflwtion ects
[
(4) Augment with frequency
information

[
(5) Consider locel context
for part of speech infa

(6) Add words using
tranaitive closure
™, NE

{7) Evaluatc using CELEX

Figure 1: Overview how the algorithm works’

® Schone, Patrik and Jurafsky, Danidl: Knowledge-Free
Induction of Inflectional Morphologies
7 Schone, Patrik and Jurafsky, Daniel: Knowledge-Free
Induction of Inflectional Morphologies

311
logical variants

The first goal is to find word endings which
could serve as suffixes. A useful tool to find
these suffixes is the so called character tree.
Yet using this approach, there may be cir-
cumfixes whose endings will be overlooked
in the search for suffixes unless we first re-
move all candidate prefixes. Therefore a lexi-
con of al the words in the corpusis built and
al word beginnings are identified with fre-
guencies in excess of some threshold (T1), so
caled pseudo-prefixes. All the pseudo-
prefixes are stripped and the word residuals
are added back to the lexicon. To show how
the search for the suffixes works consider the
following example. The following words are
contained in the lexicon: align, rea, aigns,
realign, redigned, react, reacts, and reacted.
Due to the high frequency occurrence of “re-
it is supposed to be a pseudo-prefix. If al the
words are stripped of the “re-<“ and the re-
siduas are added to a character tree the
branch of the tree of words beginning with
“a’ can be seeninfigure 2.

Figure 2: Character tree®

Out of the generated character trees rules can
be received, but not all of these rules are cor-
rect and in the next step, incorporating se-
mantics can help to determine the validity of
each rule.

8 Schone, Patrik and Jurafsky, Daniel: Knowledge-Free
Induction of Inflectional Morphologies

Identify pairs of potential morpho-

3.1.2 Dertermine semantic vectors for

each word

In order to obtain semantic representations of
each word a singular value decomposition
SVD is performed to a N*2N term-term ma-
trix. The N represents the N-1 most-frequent
words as well as a glob position to account
for al other words not in the top N-1. The
matrix is structured such that for a given
word w’s row, the first N columns denote
words that precede w by up to 50 words, and
the second N columns represent those words
that follow by up to 50 words. Then the SVD
is computed and the top 300 singular values
to form semantic vectors for each word are

kept.?

3.1.3 Correlate semantic vectors and

build conflation sets

To make a correlation between these seman-
tic vectors normalized cosine scores NCS are
used. Out of these scores it is possible to get
the probability that an NCS is random or not
and it is possible to estimate the distribution
of true correlations and number of terms in
that distribution. These numbers are needed
in the following step.

3.1.4 Augment with frequency informa-

tion

If just a purely semantic-based approach is
used the tendency is to select only the rela-
tionships with contextually similar meanings.
To overcome this weaknesses of the seman-
tic-based morphology induction the anaysis
can be improved by supplementing semantic
probabilities with orthographic-based prob-
abilities.

The moativation is now to use an approach
based on minimum edit distance MED.
Minimum edit distance determines the mini-
mum-weighted set of insertions, substitutions
and deletions required to transform one word

% Schone, Patrik and Jurafsky, Daniel: Knowledge-Free
Induction of Inflectional Morphologies

into another. For example, only asingle dele-
tion is needed to transform rates into rate
whereas two substitutions and an insertion
arerequired to transform it into rating.

If this method for achieving the task is used
the number of correct pairs of potential mor-
phological variants PPMV can be increased
by 3% than semantics alone had provided for
the—srule.’?

3.1.5 Consider local context for part
speech info

There is no guarantee that two words which
are morphologica variants need to share
similar semantic properties. Due to this it is
possible to improve the performance if the
induction process took advantage of local,
syntactic contexts around words in addition
to the more global, large-window contexts
used in semantic processing.

There is an added benefit from following this
approach. It can be aso be used to find rules
that though different, seem to convey similar
information. This could be clearly be of use
for part-of-speech induction.™

3.1.6 Add words using
sure

The agorithm contains semantic, ortho-
graphic and syntactic components but there
are still valid pairs of potential morphological
variants which may seem unrelated due to the
corpus choice or weak distributional proper-
ties. In Figure 3 this property is demonstrated
in greater detail.

By semantics only eight connections can be
found starting at Abuse, abuse, abusers, abus-

ing, ...

10 Schone, Patrik and Jurafsky, Daniel: Knowledge-Free
Induction of Inflectional Morphologies
11 Schone, Patrik and Jurafsky, Daniel: Knowledge-Free
Induction of Inflectional Morphologies

of

transitive clo-

g P b
.
- Q0 A\rs
- = 13
e af4- E’? ' l'n
Jh;,--.‘éﬁ _____ abusas |
187 |
£ |
abured—————
Lo
e

Figure 3: Semantic strengths'

3.1.7 Evaluateusing CELEX

The algorithms are only applied to the words
out of the corpus which have a frequency
higher then 10. This cutoff dightly limits the
generdity of the results but it also greatly
decreases processing time for all of the algo-
rithms tested against it.*®

4 Conclusion

Using Déjean’s algorithm it is very important
of which type the corpusis. Asit can be seen
in Table 2 two completely different results
are archived using tow different corpora.

The corpus should be balanced and the result
is becoming better the bigger the corpusis.

12 Schone, Patrik and Jurafsky, Daniel: Knowledge-Free
Induction of Inflectional Morphologies
13 Schone, Patrik and Jurafsky, Daniel: Knowledge-Free
Induction of Inflectional Morphologies

References

John Goldsmith. 2001. Unsupervised Learning of the
Morphology of a Natural Language, University of
Chicago, Association for Computational Linguis-
tics.

Hervé Déjean, 1998. Morphemes as Necessary Con-
cept for Sructures Discovery from Untagged Cor-
pora. Université de Caen, Basse Normandie,

Partick Schone and Daniel Jurafsky. 2001. Knowl-
edge-Free Induction of Inflectional Morphologies,
University of Colorado at Boulder.

10

Using salienceto rank documents

Patricia Grudziecka, Bjorn Isaksson
Departmenbf ComputerScience
Lund Instituteof Technology
Box 118
SE-22100 Lund, Sweden
d98ng@efd.lth.seJ98bis@efd.lth.se

Abstract

Theideadescribedn this papelistoim-

prove searche®n the Internetby using
the syntacticstructureof sentencesWe
implementech methodwhich with help
of contet factorsis ableto capturethe
importanceof a word betterthana sim-

ple occurrenceount. Theprototypede-
velopedis slowv andwith thefunctional-
ity limited to simplecasesFurthersug-
gestionsof improvementof the method
aregiven.

1 Intr oduction

Often when you searchon the Internetyou will
be frustratedwhenyou cant find theinformation
you want. The searchengineswill give you pop-
ular documentghat containthe wordsyou search
for. But you dont searchfor words, you search
for content.l.e how thewordsareusedin thedoc-
umentis moreimportantthanhow oftenthey are
used.

The ideais to usethe syntacticstructureof the
sentence documentgo rankthe importanceof
wordsin adocument.E.g. aword thatis the sub-
jectof a sentencés moreimportantto the content
of thedocumenthananobijectis.

A way to capturethatideais describedn this pa-
per

2 Vector SpaceModel

A commonwayto rankdocumentss to usetheln-
verseDocumentFrequeng which is basedon the

11

VectorSpaceModel. Theideaof the vectorspace
modelis to representlocumentsandqueriesin a

multi-dimensionabpace Semantiequivalenceof

the query and documentis saidto be correlated
with theproximity of thequeryanddocumentec-

tors.

The coordinate®r termweightsarederived from

occurrenceountsasdescribedelow.

2.1 Term weights

Theimportantquestionis how to weightwordsin
thevectorspacemodel. The essentialnformation
usedin termweightingis termfrequeng anddoc-
umentfrequeng.

Thetermfrequenyg shavs how salientaword is

Quantity Symbol Definition

termfreq. tf; ; number of occur
rencesof w; in d;

documentreq. df; number of docu-

mentsin a collec-
tion thatw; occurs
in

Figure 1: Two commonlyusedquantitiesin in-
formationretrieval. w; standsfor word i andd;
standgor documentj

in a given document. The higherterm frequenyg

meansa higherlikleyhoodthatthewordis agood
descriptionof the contentof the document. The
relatve importanceof a word is often not a lin-

earfunction of the occurrencesf theword, but is
taken asa logarithmicfunction(oranotherdamp-
ening function) of the term frequeng. A docu-

mentwith threeoccurrencesf aword is moreim-
portantthana documentwith oneoccurrencebut
notthreetimesasimportant.
Documentfrequeng indicatesthe informative-
nessof theword. If aword occursin mary docu-
mentsin the collectionits relative importanceis
lessthanif it occursonly in a few documents.
Thereforeonecantake theimportanceof theword
asaninversefunctionof thedocumenfrequeng.
A way to combinea word'’s term frequeng and
documenfrequeng into a singleweightis asfol-
lows:

(1 + ln(tfi,j)) In dlf, if tfz',j >1

wezght(%J):{O iftfi; =0

where N is total number of documentsin the
collection. This form In% is often calledinverse
document frequency.

3 The useof salienceto give term weights

In the idea of improving information retrieval,
given in the introduction, the syntacticstructure
of a sentenceis the deciding factor of how
salienta word is insteadof the term frequeng.
A nenv number describing the salienceof the
word insteadof the termfrequeny is usedin the
calculationof thetermweights.

This new numbercalculatedby the weight of the
contet factors, we call the aggregated context
factor weights (ACFW). When a word in a
sentences within the scopeof the context factor
its weight is addedto the ACFW of the word.
The saliencevalue of an individual word in a
documentis obtainedby adding the weights of
the contet factorswhich have thatword in their
scope:

SV (word) = Zweight(CFiword)
i

whereSV is the saliencevalue, CF is the context
factor(seeFigure3).

After each sentencethe word’s ACFW is
updatedby the saliencevalue of that sentence.
Figure2 shavs how the ACFW of two individual
wordschangesn the shorttext.

12

cat dog
Thecatandthedogran. 3+2=5 3+2=5
Thedogchasedhecat. 5+3=8 5+3+2=10

Figure2: Exampleof ACFW calculation.

Contet Factors Objectsin scope

Weights

Major-constituent Subjectsandobjects 3

Subject Subject 2
Nested-term Nounphrasenodifiers 1
Relation Relative clause 3

Figure3: Contet factorsandtheirweights

4 Implementation

A prototype has been developed to rank doc-
uments accordingto the method abore. The
prototype, called SalRankwritten in Java, is at
this stage not able to rank documentson the
Internet,but you have to supplyit with text-files.
This has beena consciouschoice to avoid all
the technical pitfalls of the real world and to
concentrat®nthebasicidea. For thesamereason
thereareonly rudimentaryuserinterfaces.

The programconsistsof two major parts,the data
processingartandthe userinterfaces.

(Parser H Ranker HDatabas}

Figure4: The dataprocessingpartabove andthe
userinterfacesbelow.

The dataprocessingart consistsof the Parsey
Ranler andDatabase.

4.1 Parser

The parsermarsesa giventext into sentencesAt
presentit can only handle uncomplicatedsen-
tencesand hastrouble with abbreviations. It is

suitablefor text-filesandit cant readHTML-tags.
Thusit is the practicalobstacleto run the proto-
typeonthelnternet.

4.2 Ranker

In order to rank a documentthe Ranler hasto
obtain the contet factorsin a sentence.This it
doeswith agrammaticaparserLink grammar
Link grammar treats the words of a sentence
as blocks with connectors. Every block has
connectorspointing to the right or to the left,
every connectois of specifictype. A left-pointing
connectorconnectswith a right-pointing connec-
tor of the sametype. Thetwo connectordogether
form a“link”. Theselinks areusedto decidethe
contet factorof aword (seeFigure5).

Context Factors Link types
Major-constituent S,SlI,J,0

Subject S, S|
Nested-term AN
Relation R

Figure 5: Link typesand correspondingcontext
factors

Figure 6 gives an example of a parsedsen-
tence with link types. The lowercase letters
are connectorsubscriptsthat are not usedin the
implementatiorof SalRank(link type D connects
adeterminemwith anoun).

+—-0s—+
+-Ds-+—Ss—++-Ds-+

thedog.nchased.\thecat.n

Figure6: Exampleof link grammarepresentation
of asentence.

Dependingon thelink type of word it a differ-
entweightis addedto its ACFW. In the example
of Figure 6 3+2 (major+subject)s addedto the
ACFW of “dog” and 3 (major) is addedto the
ACFW of “cat”. The ACFW is the weight of a
wordin aspecificdocument.

13

4.3 Database

The Databaseis implementedas a hashtable
with linked lists. Every entry in the hashtable
correspondsvith oneword andcontainsa linked
list. Everylink in thelist consistsof anurl anda
rankfor the specificwordin thatdocument.
Therankof everywordis computedoy theinverse
documentfrequeng using the ACFW instead
of the term frequeng. If a documentdoesnot
containa queriedword therankfor thatwordis O.
The documenis ranked by summingthe ranksof
thewordsaccordingo:

rp= Z{(l + ln(apyi)) In dlfl If ap. >1

i 0 if ap,; = 0
Whererp is therankof documentD, 7 runsover
thequeriedwordsanda p ; is theACFW for word+
in documentD. Thusthedocumentwvith the high-
esttotal rankis the bestmatchfor the query
It is possibleto save andloadthe Database.

4.4 Application & Applet

The applicationitself, SalRank,is mainly a user
interface. The collectionof text documentgo be
indexed will have to be in a specifieddirectory
The documentarefetchedby the applicationand
are then passedon to the data processingpart.
Whenthe dataprocessings finishedoneis able
to querythedatabas@andgeta presentatiormf the
result,in form of asimplelist with rankandurl for

thedocumentsnatchingthe query

The appletis only ableto querya databaserevi-

ously createdby the application. The resultsare
presentedby the appletin a similar way to the ap-
plication.

5 Evaluation

The data processingtakes extremely long time.
In our experimentswe have had a collection of
33 files with a total of about47000words. It

takes several hoursto processthis collection of
documentson a Sparc 167MHz machine. The
mainbottleneckhereis theLink grammarparser

We testedthe ACFW againstthe term frequeny
usinginversedocumenfrequeng andanexample
of theresultis presentedn Figure7. In thefigure

thereis alsoa comparisorwith Google.

Rankingresultson: housedecoration

ACFW tf Google* Filename
13.81 12.01 4 chinadailytxt
10.94 6.61 2 speel.txt
771 8.70 1 burrows.txt
7.07 8.14 3 philamuseum.txt
496 9.96 5 cleanaigardening.tk
3.03 3.96 - houseb5.txt
1.79 3.19 - house3.txt

xOnly relatve order “houseb5”and“house3”are
notin thetop 100on Google.

chinadaily.txt: An article in China Daily about
the mishapsof a customertrying to hire a house
decoratiorcompary.

speel.txt An historicalreview of Lord Leightons
decoration of Arab Hall, Leighton House.
burr ows.txt: Oscar Wilde’s lecture on house
decoratiorgivenin 1882.

philamuseum.txt A presentationof House
DecorationThemesby the Park HouseGuidesof
Philadelphiaviluseumof Art.
cleanairgardeningtxt: A commercial page
selling bird- andbat-housesThe housesare“not
decoration"accordingto thetext.

house5.txt EncgyclopediaBrittanicas entry on
thehousesparrav.

house3.txt Engyclopedia Brittanicas entry on
thehousemouse.

Figure7: Testresultof rankingwith ACFW and
termfrequeng with inverteddocumentrequeng.

Oursubjectve orderingof thedocumentss en-
tirely consistentwith the orderinggiven by Sal-
Rank. Although the first and the two last docu-
mentsareratedin the sameordertherearesome
differencesnbetween. The secondhighestrated
documentusingterm frequeng, “cleanaigarden-
ing”, does not contain ary information about
“house decoration”. The term “not decoration”
increaseghe rating for this documentwith term
frequeng. With the way the termis mostly used
in thetext e.g. “Bluebird housefor bluebirds,not
decoration!” thisdoesnotincreasehe ACFW for
“decoration”.

Whenit comesto the “speel’-text it is ratedhigh

14

with ACFW mostly becauseghe word “house”in
the’right’ positionin the sentences.
Thedifferencesn ratingsbetweerdocumentsan
intuitively be describedasthe relative importance
of the documents. The differencebetweenthe
highestand lowest ranking documentsis larger
with the ACFW methodthan with the term fre-
gueng methodimplying thatthe ACFW method
is betterin lifting importantdocumentsand sup-
pressingrrelevantdocumentsBut this is afairly
untestecassumption.

6 Conclusions

The idea of SalRankwas to improve the per
ceived correlationbetweenthe pagecontentand
thesearchguery ontheInternet.We feel we have
achieved this, but we would have benefitedfrom
alargertestcollectionto draw this conclusionfor
certain.At this stageSalRankmostoftenreturnsa
rankinglist in the expectedorderof our subjectve
rating of thedocuments.

Someimprovementof theprogramcanobviously
be made. The Parsershouldbe ableto fetchreal
Internetdocumentsandto crawl the net for new
documentslike areal searchengine.To rankthe
document®necouldexchangeheLink grammar
parserto a speciallywritten sentencgparsento ex-
tract the context factors. The databasecould be
replacedoy aregulardatabasdijke SQL.

A further improvementof our methodto calcu-
late the saliencecould beto take reference®f the
words into account. One’s scopewould thenno
longerbe just one sentenceat a time, but several
on eachotherfollowing sentencesA word with
mary referencesin following sentenceswould
thenreceve ahigherACFW, thanwith the present
method.Theadwantageof this methodis thateven
if aword is only usedonce(or seldom)in a page,
but referredto alot, it is still importantto the con-
tentof thepage.

7 Acknowledgements

In our programwe have used java-files written
by Ola Akerbeg and Hans Svennson. The most
important file was the java interface to Link
grammarthatis writtenin C.

We have also used Link grammar from
http://wwwlink.cs.cmu.edu/link/

References

ChristopherD. Manning and Hinrich Schitze, 1999,
Foundations of statistical natural language process-
ing, MIT Press.

CarlaHuls, Edwin BosandWim Claassen]995,Auto-
matic Referent Resolution of Deictic and Anaphoric
Expressions, Associationfor ComputationallLin-
guistics

Megumi Kameyama, 1997, Recognizing Referential
Links: An Information Extraction Perspective,
http://acl.ldc.upenn.edu/W/W97/W973Q7 pdf

Pierre Nugues,2002, Introduction to Language Pro-
cessing and Computational Linguistics, Lecture
notes, Lund Instituteof Technology

Davy Temperly 1999, An Introduc-
tion to the Link Grammar Parser,
http://www.link.cs.cmu.edu/link/dict/itroduction.html

John Lafferty, 2000, The Link Parser
Application Program Interface (API),
http://www link.cs.cmu.edu/link/api/idex.html

15

HMS: A Predictive Text Entry Method Using Bigrams

Jon Hasselgren Erik Montnemery Markus Svensson
Lund Institute of Technology
Department of Computer Science
Box 118
S-221 00 Lund, Sweden

{d99jh, d99em, d99msv

Abstract

Due to the emergence of SMS messages,
the significance of effective text entry
on limited-size keyboards has increased.
In this paper, we describe and discuss
a new method to enter text more effi-
ciently using a mobile telephone key-
board. This method, which we called
HMS, predicts words from a sequence
of keystrokes using a dictionary and a
function combining bigram frequencies
and word length.

We implemented the HMS text entry
method on a software-simulated mobile
telephone keyboard and we compared it
to a widely available commercial sys-
tem. We trained the language model on
a corpus of Swedish news and we eval-
uated the method. Although the train-
ing corpus does not reflect the language
used in SMS messages, the results show
adecrease by 7 to 13 percent in the num-
ber of keystrokes needed to enter a text.
These figures are very encouraging even
though the implementation can be opti-
mized in several ways. The HMS text
entry method can easily be transferred
to other languages.

}@efd.lth.se

However, in the last few years, mobile tele-
phones have introduced a new demand for text en-
try methods. Mobile telephones are usually opti-
mized in size and weight. As aresult, the keyboard
is reduced to a minimal 12-button keyboard (Fig-
ure 1).

Figure 1. The 12-button keyboard of a Nokia
3410.

The reduced keyboard makes it hard for the user
to enter text in an efficient way because s/he has to
use multiple tapping or long key combinations to
display and disambiguate the characters. Albeit
tedious, the multiple tapping method was the most
commonly implemented in mobile telephones un-
til some time ago. To spare the user these elements
of frustration, a new class of text entry methods
has appeared. It uses dictionaries in an attempt to
resolve the word ambiguity and requires, in most

cases, only one keystroke per character.

This paper proposes a method that supplements
The entry of text in computer applications has tra-the dictionary with word and bigram probabili-
ditionally been carried out using a 102-key key-ties. The method uses the last written word to im-
board. These keyboards allow to input characprove the prediction of the current word and to de-
ters in a completely unambiguous way using sincrease the number of needed keystrokes even fur-
gle keys or sometimes key combinations. ther. This method that we refer to as HMS in the

1 Introduction

16

rest of the text, uses the frequencies of commom same key. This method decreases KhgPC

bigrams that we extracted from a corpus of texts. because frequent characters are entered with only
one keystroke.

2 Current Text Entry Methods The program MessagEase (Saied, 2001) of EX-

In this section, we summarize the text entry methid€as uses the idea of the remapped keyboard tech-

ods currently in use and some methods under delidue. MessagEase results k& PC at 1.8210

velopment. All the mentioned methods use a key{MacKenzie, 2002).
board with 12 buttons. _
As a measurement of the efficiency of the differ-2-2 Single-Press Methods

ent text entry methOdS, we will use the number OfThe sing|e-press methods try toreduceePC
keystrokes per character &5PC (MacKenzie, to roughly one. They resort to a dictionary as a
2002). A completely unambiguous keyboard enmean of resolving the ambiguity of the input.
ables aK S PC of 1, text prediction methods may

reduce this number even further. 2.2.1 The Predictive Text Entry Method

21 Multi-Press Methods With the predictive text entry method, the user

Th " thod . th %resses one key per character and the program
€ MUlti-press mMetnods require more than ong, i hes the key sequence to words in a dictionary
keystroke to enter a character. These methods

. . aal--laestrup, 2001). Even if several characters are
lows for unambigous typing of characters. Theymapped to the same key, in many cases, only one

can be used alone or as a fallback for systems USVord is possible given the sequence. This method
ing more complex text entry methods. The mUIt"makes it possible to reduce tfés PC to roughly

pre?s_ m((ajtho?r;s ear_e t_well suited to type words no&l If the key sequence corresponds to two or more
contained in the dictionary. words, the user can browse through the resulting
2.1.1 The Multi-Tap Method word list and choose the word s/he intended to

The first and still most common way to enter W€

text on a mobile telephone is the multi-tap method. 1N€ User, for example, enters the weaing by

Since ‘a’, ‘b’ and ‘c’ share the same key, the userlirst pressing 2. The program will then propose the

presses it once to enter an ‘a’, twice to enter ayvord a because it matches the entered sequence.
‘o', and three times to enter a ‘c’. To enter theWhen the user presses 6, 6, and 3, the program

word dog the user presses the sequence of key&9ht propose the wordan, conand finallycome
“36664". The wordsbone bond andanod(and some more),

As two consecutive characters of a word Calrfalso fit the given seq_uence. The user can access
share a same key, as for example the word “noiN€S€ Words by pressing a next-key.
where both ‘n’ and ‘0’ are assigned to 6, a timeout _ Many new mobile telephones use this method.
is needed to determine when to stop shifting thel he most widely used implementation is T9 by

letters and display a new character. Tegic (Grover et al., 1998). Other implementa-
This method results in & SPC of 2.0342 if tions are eZiText by Zi Corporation (Zi Corpora-
English text is entered (MacKenzie, 2002). tion, 2002) and iTAP by Motorola (Lexicus Divi-
sion, 2002) . Most implementations only match
2.1.2 Remapped Keyboard words with the same length as the key sequence,

On current mobile telephone keyboards, charresulting in aK'SPC of slightly greater than 1
acters are assigned alphabetically to keys. Thiwhen the user types words that are contained in
is not optimal given that, for instance, the mostthe dictionary.
frequent character in English, ‘e’, is displayed us- Some implementations propose words longer
ing two taps. Remapped keyboards assign a sirthan the tapped sequence based on probability in-
gle key to the most frequent characters. The reformation for the words. These implementations
maining characters are grouped into sets that shaman reach &(SPC < 1.

17

2.2.2 WordWise wy,_1 IS computed as:

WordWise developed by Eatoni Ergonomics
- . _ C(wn717 wn)
uses an auxiliary key. A character on a key is Prrrg(wy|wp—1) = o
selected explicitly by simultaneously pressing the (n-1)
key corresponding to the character and the auxilince the previously written word,,_; is always
iary key indicating the position of the character onknown and constant, it is sufficient to use the fre-
the key. This decreases the number of matchinguency of the bigrams and set asidéw,_1).
words for a key sequence considerably because the |n practice, bigrams must be combined with a
user explicitly disambiguates some characters ijictionary. Sparse data from the development cor-
the sequence. _ pus and memory constrains make it impossible to
A drawback is that two keys must be pressedstore an exhaustive list of bigrams. To choose
concurrently. Wlth a limited space keyboard, thlSthe words to propose, we used a variation of the
can prove difficult to some users. Katz model (Katz, 1987). The Katz model takes
223 LetterWise the longest ava!lable N-gram 'gr?d uses correction
) , terms to normalize the probabilities. In the case of
LetterWise (MacKenzie et al.,

2001), also byb- .
igrams, the probabilities can be expressed as:
Eatoni Ergonomics, is a different approach, which g P P

(1)

eliminates the need for a large dictionary. It only P(wp|wp_1)
considers the letter digram probabilities. In En- B

lish, the letter ‘t’ is often followed by ‘h’ and B
N . y P(wylwn—1) Clwn—1,w,) # 0
hardly ever by ‘g’. The program selects the most P c Z 0 2)
probable letter knowing the previous one. The aP(wn) (wn—1,wn) =

user can browse and change the characters IWherea is the correction term

pressing a ‘Next' key. In our implementation, the bigrams are always
The LetterWise method hastaSPC of 1.1500 iqritized over the unigrams. The Katz back-off

(MacKenzie, 2002). One of its main advantagesygqe| is well suited for our implementation as it
is the small amount of memory needed. Anotheryq s for a small memory footprint of the bigrams

advantage is the fact that it is just as easy to entg[g; \hile still ensuring that the system will sup-

words, which are not in a dictionary. Therefore ort entering of all words in the dictionary.

this could be a suitable fallback method instead oP In addition to the bigram frequencies, the word
the multi-tap methods, to produce faster textinputyen e is 5 useful criterion to present the match-

ing words to the user. This additional parameter is
justified by the navigation through a list of words
Prediction may further improve the performancewith the keys available on mobile telephones.
of text entry with a limited keyboard. With it, the Bigram probabilities used alone produce a list
suggested words may be longer than the currentlgf possible words and rank them without regard
typed input. to the effort needed to select the intended word.
We propose to use word bigrams, i.e. two con-Since browsing the list is carried out using one
secutive words, to give a better text prediction, seacrolling key, it may take a couple of keystrokes to
inter alia (Shannon, 1948), (Jelinek, 1997), andreach the word. Even, if corpus frequencies sug-
(Manning and Salitze, 1999). The list of bigrams gest a longer word being preferred to a shorter one,
is stored in memory together with their frequencya presentation by decreasing frequencies may be
of occurrence and it is accessed simultaneouslinadequate.
with the character input. The list navigation is in fact easier in some cases
Given a previously written word, the most prob- using character input keys. A single keystroke can
able subsequent words are extracted from the bresolve a great deal of ambiguity because there is
gram list. Using the maximum of likelihood, the a total of 8 keys to choose compared to the unigue
probability of the bigramw,,_1, w,, giventhe word scrolling key to cycle the list of suggested words.

3 Predictive Text Entry Using Bigrams

18

That's why the list of proposed words is rescored
and short words are given an additional weight.

[Tap (ORioE

4 Implementation
Hej! Hoppas det gick bra pa

We implemented a software prototype of the HMS métet i Lund. Allt hénger pa
method we described in this paper. We chose det. /Chefen

the Java programming language because of its

extensive packages that allow for rapid develop-

ment. Another advantage is Java’s platform inde-

pendence, which should, in theory, make it pos- Yes Up .
sible to run the program on any modern mobile Down
telephone. 1 2abe Jdef

The program was designed to run on a hand-
held device i.e. on the client side of the mobile
network. The memory of a mobile telephone is Tpyrs Btuv Swxyz

4ghi 5k gmno

very limited and a disadvantage of this strategy is iy T e

the memory footprint of the language models we
use. A possible workaround would be to imple-
ment the HMS software on an application server.Figure 2: Screenshot of the HMS Java prototype.
All the users would then share the language mod-
els with possible customizations. Modern mobile

telephone infrastructures enable a real-time rounét
trip of the typed characters and thus the interactive
suggestion of matching words. 4.2 Data Structures

The program computes a list of word SUGGES-, compact encoding structure of the bigram and

LT , Qnigram lists has a significant impact to achieve
gestion is displayed simultaneously on the screen; g g P

The top white window in our Java program (Fig- an efficient word proposal.

. : The data structure we used is comparable to
ure 2). The user can browse the list of suggestlon%at of a letter tree airie (de la Briandais, 1959)
using the up and down keys. ’ '

However, the nodes of the new tree structure cor-
respond to an input key instead of a character
as in the classical tries. For instance, the char-
The program is divided into two parts: a user in-acters(a, b, ¢, 2) are associated to a single node.
teraction module and a lexical database module. Thus, the tree structure enables to represent the
The user interaction module currently consistskeystroke ambiguity and makes it easier to tra-
of a Graphical User Interface (GUI) whose lay-verse the tree. It also introduces the need to store
out closely resembles that of a mobile telephonea complete list of words that match a keystroke
The simulated keyboard layout makes it possiblesequence in the leaves resulting in a somewhat
to compare the HMS prototype with software run-higher memory overhead.
ning on mobile telephones. Searching this type of tree is straightforward.
The lexical database module contains the cord@he keys pressed so far by the user are used as in-
of the program. It is responsible for the gener-put and the tree is traversed one level down based
ation of a list of suggested words given the useon every key pressed. When the traversal is com-
input so far. The modules communicate with eaclpleted the resulting sub-tree includes all possible
other using an interface. Thus, the two parts arsuggested words for the typed key combination.
independent and one may modify the user interac- For the bigrams, a slightly different structure
tion module in particular to fit different platforms is needed. Since the previously written word has

ithout having to modify the module concerning
e word guessing algorithm.

4.1 Program Design

19

been chosen from the list of suggested words, ithe HMS and the T9 methods. The testers were
can no longer be considered ambiguous. One camncouraged to compose a short arbitrary SMS
not simply build a tree of bigrams using the pro-message of 50-100 characters containing everyday
posed structure because the tree itself is ambiguanguage. They also chose an excerpt of a news-
ous. A collection of trees, one tree for each prepaper article of approximately the same length
ceding word, was used. For performance reasongs the typed SMS message from thitonbladet

a hash table was used to manage the collection. Swedish newspaper website. The keystroke count
was recorded and used to calculate W& PC pa-
rameter.

We trained the language model — unigrams and The entry of new words, i.e. missing from the
bigrams — on the Stockholm-UragSU) Corpus dictionary, uses the same technique in the HMS
(Ejerhed et al., 1992). The SU corpus is a POS anand T9 methods. We selected texts where all the
notated, balanced corpus of Swedish news reportsyords were in the dictionary of both systems.
novels, etc. The SU corpus does not reflect the lan- Table 1 shows the results we obtained in
guage of SMS messages that differs greatly fronkeystrokes per character.

that of the “classical” written Swedish. This re-
sults in a non-optimal language model. We chose
it because of the unavailability of a large-enough

4.3 Training the Language Model

Table 1: Test results.

public SMS corpus. Method Type of text KSPC
When the input of a single word is completed, T9 i SMS 1.0806
its corresponding bigram and unigram probabili- HMS Bigrams SMS 1.0108
ties are updated. It results in a learning system, T9 _ News 1.0088
HMS Bigrams News 0.8807

which adapts to every user’s style of writing. To
increase the speed of adaptation, language fre-
guencies derived from the user input have higher The HMS entry method shows & SPC
priorities than what has been learned from thesmaller than that of the T9 system in both tests:
training corpus. news and SMS texts. The improvement is of, re-
All corpora and dictionaries used with the soft- spectively, 7 and 13 percent. The better result for
ware have been in Swedish so far. However, th¢he bigram method is mainly due to two reasons.
HMS program does not carry out any language-irst, the utilization of the previously written word
specific parsing or semantic analysis. Hence, théo predict the next word results in an improvement
method could be transferred to any language proef the prediction compared to the methods relying

vided that a sufficient corpus exists. only on dictionaries such as T9. Secondly, the fact
) that words are actually predicted before all charac-
5 Evaluation ters are entered improves even further the perfor-

As an evaluation of the efficiency of our imple- Mance of HMS over T9.

mentation, we made an initial comparative tes : -

between the HMS program and the Nokia 3410t,6 Discussion

which uses the T9 system. The difference inK.SPC between the SMS and
As we said in the previous section, we couldnews text with our method is to a large extent

not train a language model optimized for an SMSdue to the corpus, which does not fit the more ca-

application. This certainly biased the evaluationsual language of the typical SMS texts. The T9

of the entry methods in our disfavor. Therefore,method, on the other hand, is optimized for typing

we chose to evaluate both programs with a test s&MS texts.

consisting of a sample of SMS messages and short Another reason for the difference may be that

texts from newspapers. the news texts in general contain longer words.
A total of nine testers entered the texts. TheyThe mean word length in our test is about 4

first had the possibility to get accustomed to bothcharacters for the SMS texts and 5 characters

20

for the news texts. In general longer words can Other significant differences between the SMS
be predicted earlier relatively to the wordlength,and news texts play a role in the final results. For
since less words are possible given a sequence ekample, the SMS texts show a higher frequency
keystrokes. This should imply a small&rSPC of certain characters such as the question marks,
for longer words. Figure 3 shows théSPC ac- slashes and exclamation marks, which results in a
cording to the word length and the falling curve higher K'SPC. This fact can explain the surpris-
for longer words. ingly high K.SPC for some texts. This property
affects both methods to the same extent though.

127 . 7 Conclusion and Perspectives
1’1 | “’ ¢ We implemented a new text entry method adapted
9 o %2 to mobile telephone keyboards and we compared it
Z 09 Tt e e to the T9 method widely available on commercial
0.8 . devices. The HMS method is based on language
0,7 models that we trained on the SU corpus.
06 | | | | The training corpus was, to a great extent, col-
lected from Swedish news wires and didn't fit our
0 Me%m Word4Length 0 8 application very well. This is heavily related to

the language used in SMS messages, which tends
to include abbreviations and slang absent from the
SU corpus. However, the results we obtained with
Figure 3: K. SPC versus the mean word length in the HMS method show a decrease by 7 to 13 per-
the HMS bigram method. cent in the number of keystrokes needed to enter
a text. These figures are very encouraging even
A longer word often resolves some ambiguitiesthough the implementation can be optimized in
and the possible words for a given key sequenceeveral ways.
are often fewer than for a short sequence. This It would be very interesting to evaluate the
explains why the T9 system also shows a bettef{ SPC of the bigram method after training the
result for the news text. However, the T9 can nevesystem with a better-suited corpus. We expect
reach al SPC less than 1 since it doesn't predict the K.SPC to be significantly lower than with the

words longer than the given sequence. present corpus. Itis worth once again pointing out
that even with the non-optimal corpus, the results
1.3 - of the bigram method are on par or superior.
12| . We also observed that the language model
1’1 | L adapts quicker to the users’ individual ways of ex-

O ’ o e ® pressing themselves than other systems. It thus in-

g 1 woede ¢ creases the gain over time.

%)) :

0,9 - At the time we wrote this paper, we could not
0,8 - gain access to a large corpus of SMS messages.
0,7 - However, we intend to collect texts from Internet
0.6 ‘ ‘ ‘ | chat rooms and message boards, where the lan-

0 5 4 6 g guage shows strong similarities to SMS Ianguage.
Mean Word Length We expect a better language model and an im-

proved K .S PC from this new corpus.
A problem with the bigram method is its large
memory footprint compared to that of dictionary-
Figure 4: K.SPC versus mean word length in the pased systems. However, this should not be a
T9 system. problem on the next generation of mobile tele-

21

phones like GPRS and 3G. The language modchristopher D. Manning and Hinrich Satze. 1999.
els could be off-loaded on an application server Foundations of Statistical Language Processing
and the low round-trip time of the network system MIT Press, Cambridge, Massachusetts.

should enable a real-time interaction between th@lesbat B Saied. @ 2001. Fast, full text en-
server and the user terminal to carry out the word try using a physical or virtual 12-button

selection. keypad. _ Technical report, EXideas,
http://www.exideas.com/ME/whitepaper.pdf.

Claude E. Shannon. 1948. A mathematical theory of
References communicationThe Bell System Technical Journal

))) . 27:379-423, 623656, July-October.
Zi Corporation. 2002. eZiText. Technical report,

http://www.zicorp.com.

R. de la Briandais. 1959. File searching using variable
length keys. InProceedings of the Western Joint
Computer Conferen¢erolume 15, pages 285-298,
New York. Institute of Radio Engineers.

Lexicus Division. 2002. iTap. Technical report, Mo-
torola, http://www.motorola.com/lexicus, Decem-
ber.

Eva Ejerhed, Gunnel &lgren, Ola Wennstedt, and
MagnusAstrom. 1992. The linguistic annotation
system of the Stockholm-Uragiroject. Technical
report, University of Uma; Department of General
Linguistics.

Dale L. Grover, Martin T. King, and Clifford A. Kush-
ler. 1998. Reduced keyboard disambiguating com-
puter. U.S. Patent no. 5,818,437.

Jan Haestrup. 2001. Communication terminal hav-
ing a predictive editor application. U.S. Patent no.
6,223,059.

Frederick Jelinek. 1997. Statistical Methods for
Speech RecognitionThe MIT Press, Cambridge,
Massachusetts.

Slava M. Katz. 1987. Estimation of probabilities
from sparse data for a language model component
of a speech recognizdEEE Transaction on Acous-
tics, Speech, and Signal Processi§(3):400-401,
March.

I. Scott MacKenzie, Hedy Kober, Derek Smith,
Terry Jones, and Eugene Skepner. 2001. Let-
terwise: Prefix-based disambiguation for mo-
bile text input. Technical report, Eatoni,
http://www.eatoni.com/research/lw-mt.pdf.

I. Scott MacKenzie. 2002. KSPC (keystrokes per char-
acter) as a characteristic of text entry technigues.
In Proceedings of the Fourth International Sym-
posium on Human Computer Interaction with Mo-
bile Devicespages 195-210, Heidelberg, Germany.
Springer-Verlag.

22

The Artificial Librarian
A Database Dialogue System

M atti as Johansson and Jonas Hakansson
Department of Computer Science
Lund Institute of Technology
Lund University, Sveden

January 17, 2003

1. Introduction

This project is the second part of the course “An Introduction to Language Processing and
Computational Linguistics’ at the Department of Computer Science. It was defined by us
together with our teacher Pierre Nugues. The Artificia Librarian is a dialogue system which
is connected to a database. It parses the user input and searches the database for the
information. The user can for example ask for a book by a specific author, who has written a
specific book or where in the library the book is located. The librarian can sometimes ask for
additional information, for example to narrow down the search. The application is web based
and can be found at http://www.efd.lth.se/~e98mj/librarian/. It may not aways be up and
running though. There is a screenshot in appendix B to give an idea on how the system looks.

2. Technology overview

The application was decided to be connected to a public book database to make the query
constraints as few as possible. Since the application was to be connected to the database
through internet it felt natural to make an internet interface for the whole application. Our
teacher suggested JSP, Java Server Pages. We had never used this technique, but most of our
programming courses are based on Java, so it seemed like a good idea.

3. Language processing

The language processing consists of two parts; one that interprets the user input and one that
generates the response from the librarian. The main technique we use for the user input
interpretation is decision trees, which simplified works like this: classify the first word, and
then take the next word and check if it fits with some of the parts-of-speech that are allowed
after the first one. This way, word by word in the sentence is traversed. The dialogue
processor, that generates the response from the librarian, is explained in chapter 3.3.

€98mj @efd.Ith.se
€98jha@efd.Ith.se 23 1

3.1 Parts-of-speech

When aword is to be classified it is compared to the list of words in the part-of-speech table.
Examples of the words are shown in the table below.

Part-of-speech Examples
Auxiliary do, can, has
Interjection yes, no, ok, okay
Noun shelf, books
Preposition by, on
Pronoun you, |, anything, something, any
Proper noun any proper noun, e.g. Stephen King
Verb have, find, written, wrote
Wh-word what, where, who, which

3.2 Possible decision trees

The tree consists of part-of-speech phrases. These phrases consist of words of the same part-
of-speech. Which phrases or words that are alowed as the next, are shown in the table below.
Every sentence begins with the sentence phrase. The first word of a sentence is compared to
the list in the second column in the table. If it fits, the next word is checked in the same way.
Not all parts-of-speech are alowed as a last word in a sentence. The rules are shown in the
third column. Since the phrases not are words, there is no information on those rows. As given
from that column the only two parts-of-speech that are allowed as last word are proper nouns
and interjections. There is a special case when the last word not is a proper noun or an
interjection. When the librarian has asked for something and the user answers with “yes,
[phrase]”, the phrase part is interpreted, but if the phrase part doesn’t fit any of the possible
types of sentences, the phrase part is neglected and the sentence is interpreted as only “yes’.
This means that al words are allowed as a last word if it is a phrase that follows a “yes’ or
“no” and the phrase couldn’t be interpreted.

Root or current leaf Possible subsequent leafs Allowed aslast word
Sentence (phrase) wh-word, preposition phrase, interjection, -
proper noun phrase, auxiliary
Noun phrase pronoun, houn -
Preposition phrase preposition -
Proper noun phrase proper noun -
Verb phrase verb -
Auxiliary noun phrase, verb phrase no
Interjection proper noun phrase, preposition phrase, yes
wh-word
Noun auxiliary, preposition phrase no
Preposition proper noun phrase, wh-word no
Pronoun verb phrase, preposition phrase, noun phrase no
Proper noun proper noun phrase, preposition phrase yes
Verb preposition phrase, proper noun phrase, no
noun phrase
Wh-word auxiliary, noun phrase, verb phrase no

€98mj @efd.Ith.se
€98jha@efd.Ith.se 24 2

3.3 Dialogue processor

The user input is searched for special words so that the system knows what the user wants.
For example if the user begins the sentence with “whao”, the system knows that the user is
looking for authors. When a successful interpretation of the user input is done, the query is
sent to the database. Otherwise, if it could not be interpreted, the librarian has to ask the user
to type something else. When the answer is received from the database, and the result is
extracted, the system can decide what the answer should be. The system now checks how
many results the database returned and builds different answers based on that information. On
some occasions the systems gives more information then the user asked for, e.g. on what shelf
the books are located. All possible dialogues are listed in atree structure in appendix A.

4. Information extraction from web database

The web database we decided to use was Amazon.com. This is an online book store which
provides a huge amount of books, so that it will look like there are that many books in the
library. The draw back of using a book store is that there are sometimes different editions of a
book. If you for example ask “What do you have by Tolkien?’, the answer would be:

| found more than 25 titles. The five most popular, | think, are:

a The Hobbit and The Lord of the Rings [BOX SET]

a The Lord of the Rings [BOX SET]

a The Lord of the Rings (Leatherette Collector's Edition)

a The Hobbit (Leatherette Collector's Edition)

a The Slmarillion

Isit any special book you areinterested in?
Thisis not the answer you expect when it is alibrary. It should only answer with the title and
not with multiple versions of the same book.

4.1 Retrieve result from web page

Amazon.com only provides an html based version of the database available to people outside
the company. This means that when we send our database queries we get an html page as an
answer. Since Amazon.com is one of the largest online book stores, it has a lot of commercial
banners and special offers on the site. This made it a little more difficult to extract the
significant results from the answer. If Amazon.com doesn’'t find any book or it only finds one,
the answer page looks completely different, but we managed to find some patterns to
recognise the significant results, even in such cases. For example, there was a number on the
page that told how many results that was found, but the number only showed if there were
two or more results. Another potential problem with getting the result page in html format is
that it shows a maximum of only 25 hits per page. As the system is built now that is not a
problem, but if we sometime are going to develop it further it might be alimitation. To get the
most likely answer when the user asks for an author or a title, we chosen to use
Amazon.com'’s feature of sorting the results by best selling. Then, when the system suggests
an author or atitleit picksthe top item of thelist.

€98mj @efd.Ith.se
€98jha@efd.Ith.se 25 3

5. Development

To give an overview of the way our work proceeded, we have put together some milestones.

Selected techniques. Since we have programmed alot using Java earlier, we chose to use a
Java based environment; Apache Tomcat which is a web server supporting JSP (Java
Server Pages). As we run the server on our school account, we can not have it up and
running when we are not logged on. We looked around for an online book store to use as
the database for our project, and found that Amazon.com would be the best choice, even
though it sometimes could be a little slow, because of its large number of books and the
consistent way it presents the search results.

Extracted search results: In the beginning we had some difficulties to decode the result
pages, because of the large amount of commercials and specia offers on the result pages,
but managed to solve the problems and wrote code for searching by author, title and both.
The Language Processing module: Initially we wrote code that could handle a couple of
types of sentences. Before we decided to use decision trees to represent the alowed
sentence structures, we tried a couple of other homemade variants. This was probably the
part of the project that chewed the most time.

Connected the modules. We developed the Language Processing module and the Web
Database module separately to have better control over eventual misbehaviours. As we got
them both to work independently, we connected them and for the first time got a working
web application.

The dialog history: To be able to get an overview of the dialog (since each turn can take
quite a while to process, see selected techniques above), we added the history to returned
web pages.

The multi-turn dialogs: To make a more interesting application, we implemented multi-
turn dialogs, so that the user would be able to give answers to the librarian’s following-up
questions. The recognized answers would be “yes’, “no” and “okay”. The user may also
continue a*yes’-answer with a supported sentence that would be used if correct.
Conversation enders: To reset the dialog and its history, we added conversation enders
like “goodbye” and “thank you”

Map of library: We added a simple map as a complement to the referred sections of the
library. It makes the visualisation of the artificial library easier.

Testing the application: We let people not involved in the project try The Artificial
Librarian to get opinions about it, to see what kind of sentences they asked, and to find
eventual bugs.

€98mj @efd.Ith.se
€98jha@efd.Ith.se 26 4

6. Examples

To give you apicture of how The Artificial Librarian works, we have provided a

demonstration with four examples.

Example 1:
U: Who has written Pippi Langstrump?

L: | found over 25 matching titles. Could it
perhaps be Astrid Lindgren, Michael

Chesworth (Illustrator)? Otherwise, you have

to be more specific.
U: Yes, that'sright
L: Great, I'm glad | could help you!

Example 2:
U: What books do you have by King?

L : | found more than 25 titles. The five most
popular, | think, are:

o From aBuick 8: A Nove

a Everything's Eventual: 14 Dark Tales

@ On Writing: A Memoir of the Craft

o Brunelleschi's Dome: How a Renaissance
Genius Reinvented Architecture

a The Foster's Market Cookbook

Isit any specia book you are interested in?

U: Yes

L : Which one would that be?

U: Everything's Eventual

L: It would be to your left in the ‘K’ section.

€98mj @efd.Ith.se
€98jha@efd.Ith.se

27

Example 3:
U: What do you have by Jan Guillou?

L: | found 18 titles. The most popular ones
are:

a Enemy's Enemy

a Veagen till Jerusalem

a Tempelriddaren

a |rak--det nya Arabien

a Artister : intervjuer och portreatt

Isit any special book you are interested in?

U: Yes, on which shelf can | find
Tempelriddaren?

L: It would beto your left in the'G'
section.

Example 4:

U: Where can | find books by
Langstrump?

L: I'm sorry, but it seems like we don't
have anything by Langstrump.

U: Okay
L: What else can | do for you?
U: Nothing

7. Conclusions

The problem discussed in chapter 4, that the system answers with different versions of the
same book, should be dealed with. If we some day would decide to develop The Artificial
Librarian further, we would probably use a library database to make it more realistic. Another
solution is that we could change the library to an information desk in a book store. This would
be much easier of course, but it could have other features as price information and price
l[imitation in a search.

When we started with this project we did not really know what result we could expect because
we were al new to computational linguistics. We started with a not very high ambition level,
but our teacher encouraged us to make it more and more extensive. Now when we are
finished, the most important lesson we have learned is that it doesn’t take a huge program to
make an interactive dialogue system which work fairly well, athough there are some
linguistic tricks that make our system ook smarter theniit is.

Overall we are satisfied with the result of this project. Of course there are things that could be
better, but it was only atwo university points (two weeks) project.

8. References

JBoye, M Wirén, M Rayner, | Lewin, D Carter and R Becket, July 1999, L anguage-
Processing Strategies and Mixed-I nitiative Dialogues, IJCAI-99 Workshop on Knowledge
and Reasoning in Practical Dialogue Systems

S Abney, M Collinsand A Singhal, 2000, Answer Extraction, AT&T Shannon Laboratory

P Nugues, 2002, L ecture notes. Introduction to L anguage Processing and Computational
Linguistics, Department of Computer Science, Lund Institute of Technology

Apache Tomcat of The Apache Jakarta Project, http://jakarta.apache.org/tomcat/

Amazon.com, http://www.amazon.com/

€98mj @efd.Ith.se
€98jha@efd.Ith.se 28 6

Appendix A. Structure of implemented dialogs

This appendix shows the structure of all implemented types of possible and successful
dialogs. A "new" dialog (beginning with one of the three main types below) can be started at
any point in the current dialog.

Upper case words within brackets indicate information supplied by the user or other dynamic
information generated by the program. Below follows alist of descriptions of such words.

[TITLE] Title supplied by user or found during search

[AUTHOR] Author supplied by user or found during search

[SECTI ON| First letter in author’ s last name indicating a section

[HTS] Number of hits found during search

[DI RECTI ON| Side of the artificial library (Ieft or right)

[LOCATI ON_ SENTENCE] A possible sentence of the third main type of dialog
starters below

[ANYTHI NG Any sentence/text

» Asking for atitle (e.g. "What do you have by Stephen King?"')

Search result returns no titles:
- I'"'msorry, but it seens |ike we have no books by [AUTHOR] .
- Okay
- What else can | do for you?
Search result returns just onetitle:
- | can only find [TITLE] by [AUTHOR]. Is this the one you are |ooking for?
- Yes
- You will find it in the "[SECTION]"' section.
- Ckay
- | amglad | could help you!
- No Or No, [ANYTHI NG
- I'"'msorry but it seens |ike we don't have any ot her books by
[AUTHOR] .
- Ckay
- What else can | do for you?
Search result returns more than one but fewer than six titles:

- | found [HITS] titles:
[TITLE] ...[TITLE
Is it any special book you are interested in?

- Yes
- Wich one would that be?
- [TITLE]
- It would be to your [DIRECTION] in the '[SECTION'
section.
- Ckay
- | amglad | could help you!
- Yes, [TITLE] Of Yes, [LOCATI ON_SENTENCE]
- It would be to your [DIRECTION] in the '[SECTION]' section.
- Ckay
- | amglad | could help you!
- No Or No, [ANYTH NG
- Okay, | hope you find theminteresting!

€98mj @efd.Ith.se
€98jha@efd.Ith.se 29 7

Search result returns more than five but fewer than twenty six titles:

- | found [HITS] titles. The nobst popul ar ones are:
[TITLE] ...[TITLE]
Is it any special book you are interested in?

- Yes
- Wi ch one would that be?
- [TITLE]
- It would be to your [DIRECTION] in the '[SECTION'
section.
- Ckay
- | amglad | could help youl
- Yes, [TITLE] O Yes, [LOCATI ON_SENTENCE]
- It would be to your [DIRECTION] in the '"[SECTION]' section.
- Ckay
- | amglad | could help youl
- No Or No, [ANYTH NG
- kay, | hope you find theminteresting!

Search result returns more than twenty five titles:

- | found nore than 25 titles. The five nmost popular, | think, are:
[TITLE] ...[TITLE]
Is it any special book you are interested in?

- Yes
- Wiich one woul d that be?
- [TITLE]
- It would be to your [DIRECTION] in the '[SECTION'
secti on.
- Okay
- | amglad | could help youl
- Yes, [TITLE] Or Yes, [LOCATI ON_SENTENCE]
- It would be to your [DIRECTION] in the '[SECTION]' section.
- Ckay
- | amglad | could help youl
- No Or No, [ANYTH NG
- kay, | hope you find theminteresting!

» Asking for an author (e.g. "Who has written The Hitchhiker's Guide To The Galaxy?")

Search result returns no titles:
- I'"'msorry, but I don't know who the author is of [TITLE].
- Okay
- What else can | do for you?
Search result returns one or more but fewer than twenty six titles:
- | found [HHTS] matching titles. Could it perhaps be [AUTHOR] ?
O herwi se, you have to be nore specific.
- Yes
- Great, I'mglad |I could help you!
- No Or No, [ANYTH NG
- You have to be nore specific.
O herwi se, that is the only author | can find on [TITLE].
- Ckay
- What else can | do for you?

€98mj @efd.Ith.se
€98jha@efd.Ith.se 30

Search result returns more than twenty five titles:
- | found over 25 matching titles. Could it perhaps be [AUTHOR] ?
O herwi se, you have to be nore specific.
- Yes
- Great, I'mglad | could help you!
- No Or No, [ANYTH NG
- You have to be nore specific.
G herwi se, that is the only author | can find on [TITLE].
- Ckay
- What else can | do for you?

» Asking for alocation (e.g. "On which shelf can | find The Testament by John Grisham?")
Search result returns no titles:

User supplied both the title and the author in the question:
- I'"'msorry, but it seens |ike we do not have [TITLE] by [AUTHOR].
- kay
- What else can | do for you?
User only supplied the title in the question:
- I"msorry, but I can not find any books nanmed [Tl TLE].
- kay
- What else can | do for you?
User only supplied the author in the question:
- I"msorry, but it seens |ike we don't have anything by [AUTHOR] .
- Ckay
- What else can | do for you?
Search result returns one or more titles:

User supplied both the title and the author or just the author in the question:
- It would be to your [DIRECTION] in the '[SECTION]' section.
- Okay
- | amglad | could help youl
User only supplied thetitle in the question:
- If you nmean [TITLE] by [AUTHOR], it's to your [DI RECTION|
inthe "[SECTION]' section. Qtherw se, you have to be nore specific.
- Okay
- | amglad | could help youl

€98mj @efd.Ith.se
€98jha@efd.Ith.se 31

Appendix B. Screenshot

icrosoft Internet Explon

= -

Balkat Framat

#)
Stopp Uppdatera Startzsida

Q

Sk

E= O

Favoriter Media Tidigare

Skriv ut Fedigera Digkutera

Adress I@ http: /flagin-12.efd bk ze: 8080/librarian/librarian. jzp ?quen=0k apblazt=lt+would+be+to+pour+left+intthe+ 22 7H 227 + section. #baottam

x| @G

011010111101001010011010011
0111100011000010001303101
0111313010010100111101
10100101111113100311179
00100111110011113100
10000010400111043444
0101011100100101101
01000011010101010010
10110001000100110113
100113110111000100113
1001100000110100101
11011311110111110001
1011010001000110101
01110000101101100010
0110001100010011001010
00111010000000011100000
0101101000001113100000
1010110011011311333103

1010000010111 00000
10110011011010110
010113100111113101
01011111110011100
01101113100001101
1000111010011001
1001101000110110 1
1 00000110010111 at:
o 0101101010011
o 111010111011
o 0010001001011
00001010100000011
0100010011100101001
o 0100111110110111
o 01113131313101311

o 0000010101110
0010011010001011
10101311001000111
0110001100011101
100001110101000011
111100110
1010101011

01110010

000111

010001

101010

100100

010110

01001

11010

The Artificial Librarian

& Database Dialogue System

1001001001011011111
akakal 00010010101
o1 1101011011
1 0111001001
0101100101
0000000010l
11011011001
0001110101
iiiio0o0o0o0o0
110101100
110101111
alal{pibalalilal
00010011
100111
10101
01101
010103100100
ii1io0i00
oio
oo o
10 o
01
it
11
i1
oo
ooo
o1 ot
100 10
10101001
000110100
100111000
11111013101
01001 aliat
11011 oo
10
ao

oHO

Welcome to the library, What can I do for vou?

What do pou have by Thomas Harris?

I found mare than 25 titles, The five most popular, I think, are:
= Red Dragon

® Silence of the Lambsz

® I'm OK-You're OK

= Hannibal

= Walue-Added Public Relations: The Secret Weapon of Integrated Marketing
Iz it any special book you are interested in?

¥es

which one would that be?

Red Dragon

It would be to vour left in the 'H' section.

Okay

I am glad I could help you!

You say: || Submit | Yiew map

Guidelines:

Only grarnmatically correct sentencas can be understood.

All wards of 2 title and an author riust begin with an upper caze latter,
End = conversation by saving thank you or goodbye.

Examples:

"what do vou have by Stephen King?"

"2n which shelf can I find The Testarment by John Grisham?"
"who has written The Hitchhiker's Guide To The Galaxy?"

|§'| Klar

,_ I_ ,_ |4 Intemet

LK

€98mj @efd.Ith.se
€98jha@efd.Ith.se

32

10

A Morphological Parser for Estonian

Richard Johansson
d99rj@efd.1th.se

Abstract

This report describes how a prototype morphological parser for Estonian, a language with a relatively
complex morphology, was implemented. The implementation uses a two-level model which was hand-coded
in Prolog. Some background material on the Estonian language and the two-level model is presented.

1 Introduction

A morphological parser is a computer tool that accepts a given inflected word (or sequence of words) and
determines which its root word is and which inflections it has undergone. It can be used alone, as a kind
of intelligent dictionary for the learner of a language, or as a morphological backend for a high-level natural
language tool such as a dialogue system.

Morphology has been a neglected area of research in computational linguistics, mainly due to the fact that
English has a trivial morphology. A simple morphology eliminates the need for morphological parsers since
the inflectional forms are few enough to be stored in the dictionary along with their root words. But in a
language with a complex morphology, where a noun or verb can take hundreds of shapes, an automatic tool is
needed to extract the root word and interpret the inflectional information.

This report describes the implementation of a morphological parser for Estonian, a Finno-Ugric language
with a relatively complex morphology. Although quite incomplete, the morphological parser is currently run-
ning for everyone to try at its web interface at http://www.df.1lth.se/ richardj/parser.

The report is organized as follows: In Section 2 a short introduction to the Estonian language is given.
The implementation of the parser is described in Section 3. In the following section, Section 4, the parser is
evaluated and compared to existing tools on the web, and in Section 5 we discuss why the result is imperfect.
Finally, a conclusion is given in Section 6.

Linguistic terms are for the sake of brevity only explained only when they are specific to Estonian. When
using linguistic terminology, I have tried to stick to the Glossary of Linguistic Terms by SIL
(http://www.sil.org/linguistics/Glossary0fLinguisticTerms/).

2 An Introduction to the Estonian Language

2.1 Background

Estonian is spoken by approximately 1100000 people in the world. Most of them live in Estonia, located on
the east side of the Baltic Sea in the north of Europe, but there is also a large diaspora. The language is a
Finno-Ugric language closely related to Finnish and some nearly extinct languages in the St. Petersburg area
in Russia.

Some characteristics of the Finno-Ugric languages compared to the Indo-European are:

e absence of gender (the same pronoun for both he and she),
e absence of definite-indefinite articles (a and the in English),
e long words due to the structure of the language,

® numerous noun cases,

33

e postpositions rather than prepositions, and
e no syntactic equivalent of the verb “to have”.

Estonian has been more influenced by Indo-European languages (above all German) than Finnish has been,
which is visible not only in the numerous loan words but also in the German-influenced word order and the
use of genitive forms instead of possessive suffixes. Another striking feature of Finnish, the vowel harmony,
has also disappeared in Estonian.

When the nationalist movement in Estonia emerged, and Estonian needed to be remade from a peasant’s
language into a language for all levels of society, the language was artificially reconstructed grammatically and
many new words were invented to purge the language from unwanted loan words and to cover concepts for
which Estonian earlier had no suitable words.

A readable and thorough Estonian language course (written in Swedish) is [8]. A linguistic overview can
be found in [1]. The dictionary data and inflection tables used when implementing the morphological parser
were taken from Oigekeelsussonaraamat [2] (from now on called the OS), the standard reference dictionary
used in Estonia. The best Estonian-English dictionary is [7].

2.2 Letters and Sounds

Estonian uses the Latin alphabet with the following non-ASCII additions: d, ¢, 4, 6, § and Z The letters ¢, f,
q, w, T, y, z, § and Z are only used in words of foreign origin. In computer systems various encodings are used.
This morphological parser, like most other computer systems using Estonian, uses the ISO-8859-1 encoding,.

One interesting feature of Estonian phonology is that there are three degrees of quantity (length) of vowels
and consonants. To indicate the first degree of quantity, a single letter is used. Unfortunately, the distinction
between the second and third degree is not always indicated in the spelling. Here are two examples where this
leads to ambiguity:

saada (second) send! linna (second) of the town
saada (third) to get linna (third) into town

Beside quantity, there is another source of ambiguity in Estonian spelling: palatalization of consonants.
This means that dental consonants are pronounced with the tongue in the position of an i-sound, slightly
similar to the sound 7 in Spanish. The letters d, ¢, I, s and n can all denote an unpalatalized as well as a
palatalized sound.

Except for the quantity and the palatalization, Estonian spelling is simple. One letter generally stands for
one sound. A single letter denotes a short sound and a doubled a long (second or third quantity).

The pronunciation of letters in Estonian is usually similar to the pronunciation in German, its greatest
influence. There are although some differences: b, d and ¢ are distinguished from p, ¢t and k mainly in
quantity (the former are pronounced with the first degree of quantity and the latter with the second) rather
than voicing. The letter v is always pronounced voiced and s always voiceless. The umlauted letters ¢ and
are pronounced like their German counterparts, but @ is open like the a in the English word fan. The letter
0 is an indescribable sound specific to Estonian, but it can be approximated by the w in the Swedish word
Mumintrollen with a deep Finland-Swedish pronunciation. The letters 2, Z and §, which are used in loan words
only, denote sounds similar to the English zoo, measure and shoe, respectively.

2.3 General Picture of Morphology

Originally Estonian, like its neighbour language Finnish still is, was a highly agglutinative language where
separately identifiable and independent morphemes were added to the word stem. But due to influence from
Indo-European languages and phonological attrition, morphemes in word-endings are not always separable in
present-day Estonian. For example, the present tense person and number endings are today different from
the past tense endings. But Estonian still has some agglutinative features, like most of the noun case endings
(which are simply added to the genitive endings) and the clitic -gi/-ki.

34

Central to the morphology of Estonian is the concept of gradation. This is a process where a word changes
phonetically, usually in the form of a syllable shortening or loss of a stop consonant, when the word is put into
certain inflections. For example, the verb dppima, “to study”, (where pp signifies a third degree stop) becomes
opin (with a second degree stop) in the present tense first person singular, and the noun lind, “bird” (with a
short stop at the end) becomes linnu in the genitive singular (the stop is lost).

2.4 Morphology of Verbs

The verb morphology is more complex in Estonian than in English but comparable in structure and complexity
to Romanic languages like French or Spanish. The finite forms of the verbs are constructed according to the
following morphological features:

e Mood: Indicative, conditional, imperative or oblique (reported speech),
e Voice: Active or passive,

e Tense: Present or past (perfect and pluperfect are constructed with participle forms),

Polarity: Affirmative or negative,
e Person: First, second or third,
e Number: Singular or plural.

As one can see, the Estonian verb features are rougly the same as in many Indo-European languages, with
the main difference being that the verb has an affirmative — negative polarity feature. In the negative polarity,
the verbs lose their person and number endings (except for in the imperative mood). The oblique mood, which
tells what one is said to or supposed to do, is also notable.

There are also nonfinite forms such as participles, a gerund and two kinds of infinitive. The dictionary
form for verbs is the first infininitive.

In Appendix A we can see an example verb minema, which is the most irregular verb of the Estonian
language, conjugated in most forms.

2.5 Morphology of Nouns and Adjectives

While the verb morphology of Estonian is relatively similar to those of some Indo-European languages, the
morphology of nouns is radically different. As mentioned above, Estonian has a wealth of noun cases. From a
morphological point of view, the cases can roughly be divided as follows:

e Fundamental: Nominative (denoting the subject of the sentence), genitive (denoting possessor or the
object of the sentence) and partitive (denoting a quantity or the object of the sentence),

e Nonfundamental: Tllative (into what?), inessive (in what?), elative (from the inside of what?), allative
(onto what?), adessive (on what?), ablative (from the outside of what?), translative (into the state of
what?), terminative (until what?), essive (as what?), abessive (without what?) and comitative (with
what?).

The nonfundamental cases are usually formed by adding their respective ending to the genitive form. For
example, if we wish to construct the inessive plural we add the ending -s to the genitive plural form.

Adjectives in Estonian are from a morphological point of view just nouns which can form the comparative
or superlative forms. The dictionary form for nouns and adjectives is the nominative singular. The nouns and
adjectives are declined in singular and plural. Many alternate forms are possible.

In Appendix B we can see the nouns reamat and mdgi in all inflectional forms. For raamat, alternate
plural forms are available for many cases — the case ending may be added both to the genitive plural and to
the partitive plural (which is considered somewhat archaic). For the other example noun, mdgi, we see that a
short form of the illative case is possible. If the short form is available, it is generally preferred.

Nouns in the nominative singular or genitive singular or plural may form a compound with another noun.

335

2.6 Syntax

As mentioned above, Estonian word order is influenced by the German one. But that is more a question of
preferred style than a rigid rule, and generally speaking the word order is free for the speaker to vary according
to taste and style or for emphasis or clarity.

One of the fundamental concepts in Estonian syntax, which is also notable from a morphological point of
view, is the distinction between total and partial objects, which rougly means that the object was affected
“totally” or “partially”. This manifests itself in the use of the genitive or nominative case for the total object
and partitive case for the partial object. For example:

Ma lugesin raamatut. I read (or was reading) a book.
Ma lugesin raamatu ldbi. I read the book through.

Here raamat, “book”, is in the partitive case in the first example and in the genitive case in the second.
The word ldbi, “through”, is one of a number of particles used to emphasize that the action is complete. These
particles have come into use relatively recently and the reason they are used is that for many words in present-
day Estonian, the genitive and the partitive forms coincide. For example:

Koer soi vana muna. The dog ate (or was eating) an old egg.
Koer soi vana muna dra. The dog ate the old egg (up).

Here vana, “old”, and muna, “egg’, have identical genitive and partitive forms.

3 Implementation

3.1 Goals

The following goals of the parser project were set:
e The parser should be able to parse all inflected forms of nouns, pronouns, adjectives and verbs,
e it should be reasonably fast,
e it should be able to handle all possible compounds, not just the most frequent ones,

e it should be able to handle the most regularly appearing derivations.

3.2 Two-level Morphology

The model used in this implementation is the two-level model introduced by Kimmo Koskenniemi, which
presently is the most widespread one for implementations of morphology systems. This model is useful be-
cause it is conceptually very simple and because it easily can be implemented efficiently using finite-state
techniques. In [4], an introduction to the subject is given by its original inventor.

In the two-level model, a word is thought to have a surface form — what appears to the speaker — and
an underlying form — the theoretical form consisting of root word and inflection information. The relations
between these two forms are called two-level rules. The two-level rules are bidirectional — one can go from the
surface form to the underlying form or vice versa.

The two-level rules usually operate symbol by symbol. To handle the case where a symbol is present in the
underlying form but not in the surface form (or vice versa), a zero symbol is inserted.

Here is an example of a two-level rule for a group of Estonian nouns. For these nouns, which consist of
two vowels separated by b, d or g, the surface genitive singular form is formed from the underlying nominative
form by removing the separating consonant and mutating the vowels in the following way: i becomes e, u
becomes o and # becomes . Here we can see how a two-level rule could relate the surface form sea (“of the
pig”) to the underlying form siga (“pig”’) Singular Genitive.

Surface form se0a00o
Underlying foorm s i ga S G

36

3.3 Finite-state Transducers

The two-level rules are usually implemented using finite-state transducers, which are nondeterministic finite-
state automata where the arcs are labelled with pairs of surface-underlying symbols.

In [6] and [5], there are introductions to the theory of finite-state transducers, with theorems about their
basic properties presented.

ei 0'b ei
c:Cc o:u 0:d ou . oGen
6:a 09 6 0:Singular :Genitive

\AY VvV

OO0

Figure 1: A finite-state transducer

In figure 1 we see a transducer which implements the two-level rule for forming the genitive for the noun
group mentioned in Subsection 3.2. Here, C means any consonant and (for the sake of brevity) V means any
vowel except 4, u or 4.

To make a transduction from the surface string sea to the underlying string siga Singular Genitive, we
first follow the arc from the start state back to itself, while consuming the s in both the surface and the
underlying form. Then we jump to the next state, this time consuming the e in the surface form and the i in
the underlying form. We follow arcs and consume symbol pairs in this way until there are no more symbols
left, and if we are then in a final state (marked in the figure as a double circle), the transduction was successful.

Note that in this transducer, the transduction from surface form to underlying form is not a function,
that is the underlying form is not uniquely determined by the surface form. In this example five additional
underlying forms, for example the nonexistent *seba Singular Genitive, are produced by the transducer. When
trying to find correct underlying forms, the results need to be checked with a dictionary.

3.4 Implementation of Transducers

The transducers for this morphological parser were hand-written in Prolog. Using Prolog is particularly conve-
nient from a programming point of view: the nondeterminism of the transducers and their bidirectional nature
can both be implemented almost without effort.

In Appendix C a Prolog code example implementing the described transducer is given.

The reason that no existing two-level morphology system was used instead of hand-writing was mainly the
time constraints — there was simply no time to learn how to use for example the Kimmo system [3].

3.5 The Dictionary

As mentioned above, the transducers produce lots of hypothetical forms which usually are incorrect. This
means that for every word, many dictionary lookup need to be made. An efficient dictionary data structure is
therefore essential.

The dictionary was implemented with a letter tree or trie. In a letter tree the words are stored as paths
in a tree, with the nodes representing letters. In the leaf nodes, grammatical information such as conjugation
pattern numbers could be stored. Two words which begin with the same letters share a common entry path.
This leads to a compact dictionary data structure, where the search time is proportional to the number of
letters of the word. In figure 2 a letter tree with two words is shown.

The dictionary used for the morphological parser is the online version of the OS. Since the transducers
should be able to construct any possible compound word, those compound words which were already present
in the dictionary could be removed. This reduced the size of the dictionary from about 120000 words to 50087

537

OaOSO Qa0

Figure 2: A letter tree

words.

3.6 Other Implementation Details

The parser system consists of a client containing the transducer code and a server handling the dictionary.
This division was made for development reasons since the startup of the dictionary takes several minutes, and
while developing and debugging the transducers the program frequently needs to be restarted.

The executables are built as compiled Prolog code and currently run on an UltraSPARC-II 300 MHz
machine.

4 Evaluation

To evaluate the quality of the implementation, the parser was compared to two existing parsers on the web:
Filosoft’s at http://www.filosoft.ee and the one at Estonian Language Institute, http://kiisu.eki.ee.
The prototype was run once with compound words enabled and once with compound words disabled. The
100-word test data used can be seen in Appendix D. The results were the following:

e When compound word handling was enabled the parser produced a result after 1 minute and 40 seconds
with 69 percent correct parses.

e When compound word handling was disabled the result was produced in 20 seconds with 63 percent
correct parses.

e The parsers at Filosoft and at Estonian Language Institute both parse the test data in a couple of
seconds.

The benefit of compound words is questionable since it may lead to an explosion of possible constituent
words of the compound. For example, when the word patsiendiorganisatsiooniks (“patient organization” in the
translative case, which is just a two-word compound) was input, the parser produced no output at all (at least
the report author did not have the time to wait for it).

5 Improvements

5.1 Program Speed

The main problem with the parser is, as we have seen in the previous section, its speed. There are a number
of reasons for this:

The client-server division of the program should not have been done between the transducers and the
dictionary, since all the dictionary lookups will lead to excessive process communication. This is currently not
a big issue since the processes run on the same machine (and time measurements have shown that communi-
cation is only a small part of the execution time), but making another division could lead to a more efficient
program. But as mentioned previously, the reason for this division was the development cycle time and this
should only be used as a last resort.

38

A less attractive implementation improvement could be to abandon Prolog as implementation program
language and fine-tune the implementation in a low-level language such as C. The current implementation
uses Prolog features such as atom unification and backtracking extensively. Abandoning Prolog would how-
ever surely increase the development time drastically.

The parser behaves acceptably when compound word handling is disabled, but when compound words
are handled the output may be produced after many minutes. The naive implementation of compound word
handling used here (just connecting nominative and genitive final states to the start of the noun transducer)
is obviously not a good strategy. Limiting the number of allowed constituents is a strategy taken in the im-
plementation of the two parsers which were compared to the prototype — they both allow a maximum of four
nouns to be compounded. Memoization is obviously also a necessity when handling compound words. Another
simple option is to disallow arbitrary compound words and just use the ones given in the OS.

5.2 Maintainability

Another obvious problem seen when inspecting the code is that it is unreadable, which is the result of the
decision to hand-write the transducers in Prolog. This leads to code that is difficult to change and debug. It
is obvious that such code could be generated by an automatic tool (for example a graph-drawing program),
which could be produced in relatively little time. Another option could be to use existing rule-based two-level
morphology systems such as Kimmo [3].

6 Conclusion

6.1 Goals Met

A prototype of the parser was implemented and set up to run with a web user interface. The verb morphology
was completely implemented (except for some nonstandard forms), but due to time constraints the noun mor-
phology was only partially implemented. The most common personal pronouns are handled, but no adjective
features (comparative and superlative). Derivations are not handled except for the verbal noun forms (like
“the eating”). The clitic -gi/-ki is not handled. The success rate of the prototype the test data in Appendix D
was 63 percent when compound words were disabled.

As we saw in the Section 4, the parser prototype is acceptably fast when compound words are disabled but
still much slower than the other ones tested. Compound words can be handled but expose a severe implemen-
tation problem, as the number of possible constituent words of the compound becomes enormous for long words.

6.2 Final Words

The parser project has been relatively successful and its goals have to a certain degree been met. But to
overcome the speed and maintainability problems and produce a high-quality product such as the two existing
parsers compared to the prototype, much work would need to be done.

39

A A Verb Example:

A.1 Finite forms

minema, “to go”

Mood Voice Tense Affirmative polarity Negative polarity
1st Person Singular, ..., 3rd Person Plural
Indicative Active | Present ldhen, ldhed, ldheb, ldheme, ldhete, ldhevad lahe
Past laksin, 1dksid, ldks, ldksime, ldksite, ldksid ldinud
Passive | Present minnakse minda
Past mindi mindud
Conditional | Active | Present ldheksin, 1dheksid, 1dheks, 1aheksime, ldheksite, ldheksid laheks
Past lainuksin, ldinuksid, 1dinuks, ldinuksime, ldinuksite, ldinuksid lainuks
Imperative mingu, mine, mingu, mingem, minge, mingu mingu, mine, ...
Oblique Active | Present minevat minevat
Passive | Present mindavat mindavat
A.2 Nonfinite forms
First infinitive minema
Second infinitive minna,
Progressive form minev
Gerund minnes
Active past participle lainud
Passive past participle | mindud
B Two Noun Examples
B.1 raamat, “book”
|| || Singular | Plural
Nominative raamat raamatud
Genitive raamatu raamatute
Partitive raamatut raamatuid
Mlative raamatusse raamatutesse | raamatuisse
Inessive raamatus raamatutes | raamatuis
Elative raamatust raamatutest | raamatuist
Allative raamatule raamatutele | raamatuile
Adessive raamatul raamatutel | raamatuil
Ablative raamatult raamatutelt | raamatuilt
Translative raamatuks raamatuteks | raamatuiks
Terminative raamatuni raamatuteni | raamatuini
Essive raamatuna raamatutena | raamatuina
Abessive raamatuta raamatuteta
Comitative raamatuga raamatutega

40

B.2 mdgi, “mountain”

|| || Singular | Plural ||

Nominative magi méed
Genitive mée migede
Partitive mége mégesid
Illative miesse | mikke migede
Inessive mées mégedes
Elative méest méagedest
Allative maele mégedele
Adessive méel miégedel
Ablative maelt mégedelt
Translative méeks mégedeks
Terminative maeni mégedeni
Essive méena mégedena
Abessive méieta méagedeta
Comitative méega mégedega

C Prolog Code Example

arc(start, start, C, C) :- consonant(C).

arc(start, statel, i, e).

arc(start, statel, u, o).

arc(start, statel, i, 6).

arc(start, statel, V, V) :- member(V, [a, e, o0, y, &, &, 8]).

arc(statel, state2, b, 0).

arc(statel, state2, d, 0).

arc(statel, state2, g, 0).

arc(state2, state3, i, e).

arc(state2, state3, u, o).

arc(state2, state3, i, 9).

arc(state2, state3, V, V) :- member(V, [a, e, o, y, &, &, 8]).

arc(state3, state4, ’Singular’, 0).
arc(state4, final, ’Genitive’, 0).

final_state(final).

transduce(Start, Final, [U | UnderlyingString], SurfaceString) :-
arc(Start, Next, U, 0),
U \== 0’
transduce (Next, Final, UnderlyingString, SurfaceString).
transduce(Start, Final, UnderlyingString, [S | SurfaceString]) :-
arc(Start, Next, 0, S),
S \== 0’
transduce (Next, Final, UnderlyingString, SurfaceString).
transduce(Start, Final, Under, Surface) :-
arc(Start, Next, 0, 0),
transduce(Next, Final, Under, Surface).
transduce(Start, Final, [U | UnderlyingString], [S | SurfaceString]) :-
arc(Start, Next, U, S),
U \== 0’
S \==0,
transduce(Next, Final, UnderlyingString, SurfaceString).

41

transduce(Final, Final, [1, [1) :-
final_state(Final).

D Test Data

The following test data was used in the performance tests. The text consists of 100 words and was taken from
the website of the Estonian daily Eesti Pdevaleht (http://wuw.epl.ee).

Kahju kui see nii l&heb iitles Arstide Liidu eestseisuse liige Andres Lehtmets
kelle sdnul on patsiente esindav organisatsioon demokraatliku

ihiskonna iiheks tunnuseks

Uhingul on laiem ja tasakaalustav roll kui ainult iiksikisikute abistamine
lisas Lehtmets Mingil juhul pole see arstide vastane iihing vaid aitab védlja
tuua kitsaskohti meditsiinis

Patsiendil kaob sdltumatu abi Praegu on esindusiihingul kabinetid neljas linnas
Kahju on mitte inimeste koondamisest vaid sellest et patsiendil puudub edaspidi
abiline ja vdimalus kaebuste korral ndu saada praegugi on meil mitu juhtumit
pooleli mérkis Ilves kelle sdnul on iihing juhtumi lahendamisel inimesi
tohusalt aidanud

Tappo kinnitusel pakkus ministeerium ilhe lahendusena et esindusiihing

References

[1] Aavik, Johannes. 2000. Introduction. In Saagpakk, Paul F., Estonian-English Dictionary. Koolibri.

[2] Erelt, T., R. Kull, V. Pdlma, K. Torop. 1976. Oigekeelsussonaraamat. Eesti NSV TA Keele ja Kirjanduse
Instituut. (http://ee.www.ee/QS)

[3] PC-KIMMO. A Morphological Parser. http://www.sil.org/pckimmo

[4] Koskenniemi, Kimmo. 1997. Representations and Finite-State Components in Natural Language. In
Roche, E. and Y. Schabes, editor, Finite State Natural Language Processing. MIT Press, pages 99-116.

[5] Mohri, Mehryar. 1997. On the Use of Sequential Transducers in Natural Language Processing. In Roche,
E. and Y. Schabes, editor, Finite State Natural Language Processing. MIT Press, pages 355-382.

[6] Roche, Emanuel and Yves Schabes. 1997. Introduction. In Roche, E. and Y. Schabes, editor, Finite State
Natural Language Processing. MIT Press, pages 1-65.

[7] Saagpakk, Paul F. 2000. Estonian-English Dictionary. Koolibri.
[8] Tuldava, Juhan. 1997. Lirobok i estniska. Pangloss.

1042

Extracting Information from Sport Articles in SwedishUsing Pattern
Recognition

Erik Lindvall
Lund University
fo8el@efd.lth.se

Abstract

Sport articles from newvspaperscontai-
ning endresultsof one or multiple ga-
mesis a specialapplicationof the in-

formationextractiontask,in thatalmost
all interestinginformation is available
in patternswhich areeasyto recognize.
Useof patternrecognitionto extractthis

informationyields good resultsespeci-
cially consideringhe simpleimplemen-
tation. Such a sytem has beenimple-

mentedand testedfor Swedishandthe
resultsareconsideredatishctory

1 Intr oduction

The subjectof this reportis to describea method
to extractinformationfrom sportsarticlesin Swe-
dishtakenfrom the webpage®f variousSwedish
newspapersA systemusingthis methodhasbeen
implementedand the resultsof this implementa-
tion arediscussedn the reportaswell. Theidea
hasbeento utilize specializedoolsfor extracting
information which is known to be availablein a
specificform.

Our stratgy for extractinginformationhasbe-
enavery "shallov” one,focusingwholly on ob-
taining the relevant information and not on con-
structing a full grammarwhich would result in
a deeperunderstandingf the texts. The articles
typically containsa lot of irrelevant information
whichin thisapplicationis notinteresting A shal-
low approachwill save time by skipping proces-
singof thisinformation.

43

Johan Nilsson
Lund University
fog8jn@efd.lth.se

Someimpraovementso our methodaresugges-
ted,aswell asa brief discussioron somealterna-
tive approacheso achiere the sameend.A small
dictionary containingEnglish translationsof the
Swedishtermsusedin this report,canbe foundin
appendixC.

1.1 InterestingInformation

Theapplicationfocuseson sportarticleswhichare
basicallyreportsfrom football or ice hockey ga-
mesin Swedishor foreignleaguesFromthesere-
portswe wishto extractthefollowing information
from every gamementionedn thearticle:

1. Theteamnames

2. The endresult,i.e. which team(if any) won
thegame

3. Thefinal score

This is informationwhich asgoodas certainly
is availablein someform in theatrticle.

In an improved versionthe programcould in-
clude detectionof for instancegoalscorersho-
me/avay team,refereeor evenwhich sportthear
ticle is about. This information is not certainto
beincludedin the article however (exceptfor the
sportwhichin mostcasess very implicit), which
raisessomeqguestionsvhenit comeso evaluating
theprogram Ourfirst versionhasbeenfocusedon
extracting information known to be available for
simplicity in bothimplementatiorandevaluation.

2 Method

2.1 BasicStrategy

The basic stratgy for obtainingthe information
is simplepatternrecognition.Thefirst stepof the
algorithm will detectkey patterns,suchas sco-
res,teamnamesandcertain”winning” or "losing”
words. The outputfrom this stepwill undego so-
me local (meaningsamesentenceprocessingo
getastandardizedutputfrom every sentence.

The output from the sentencesn the pattern
recognition-stepre completedby a global logic
which will take a larger discoursanto accountto
improve the outputfrom the local logic whenthis
logic is incomplete For example,the outputfrom
asentencenay consistin somethingequivalentto
"teamlloses”. The global logic will in this case
try to determinethe winner of that specificgame
from thelargerdiscourse.

The outputfrom the globallogic will consistin
anumberof facts with a given priority, which will
undego furtherprocessingn thefinal step.In this
final cleanupstepsomefactsareabsorbednto ot-
hersandotherfactsare outright discardedbased
onthe priority every factrecevedin thelaststep.
For example,thefact"teamlwins” canbe absor
bedinto thefact"teamldefeatdeam?2”,andif this
facthasahighpriority it cancausehefact"teaml
loses to bediscarded.

Whenthis is donea list of factsand their re-
spectve priorities will remain. This list will not
includefactswhich areinconsistentwvith eachot-
her, and no two factswhich say the samething.
Theoutputwill consistof all factsthathave a pri-
ority higherthana certainthresholdwhichwill be
tunedto give the bestpossibleresult.

2.2

Thefirst stepis to detectthe interestingpatterns.
The patternswhich are detectedhave basically
four differentforms: the team-pattern,the score-
pattern thewin/lose-patternandthe draw-pattern.
One of thesepatterns,the win/lose-patternjs
morecomplicatedhanthe otherthree. The score-
andteam-patternseedsomeexplanationaswell.
The draw-pattern simply exist of a draw-key,
whichin thisversiononly canconsistin oneword:
"oavgjort” andits differentforms. For more di-

Initial Pattern Recognition

44

scussioron thedraw pattern,see3.2.1.The other
patternsaredescribedelon in moredetail.

2.2.1 The Team-pattem

Theteam-patteriis simply ateamname which
canconsistof a prefix, alocation andasufix (alt-
houghmostof the timesnot with both prefix and
sufiix), solely a prefix/sufux or solely a location.
An exampleof ateamwith a prefixandalocation
is "IFK Gotebog”. An exampleof ateamwith a
locationandasufix is "Orgryte|S”.

Theteam-patterris very similar to a multiword
sincetheprefix/sufix mustcomeright before/after
thelocationin thetext for the patternto berecog-
nized.However, onemoretermis includedin the
team-patternsinceit hascrucialimportancefor in
what contet the teamappearsn the text: if the-
re is a prepositionof a specialkind in front of the
teamthisis includedin the pattern.

The prepositionswe are interestedin are six
in number:”av”, "ill", "for", "pd”, "6ver” and
"mot”. We wantto save theseprepositionfor furt-
herprocessindgecausef theirimplicationsonthe
teamfollowing themin thetext.

2.2.2 The Score-pattem

The score patterncan also be seenas a kind
of multiword. It consistsin a constructionon the
form Numberl - Number2, where Numberl
andNumber2 arenaturalnumbersseparatety a
dash.This is theform which is usedfor reporting
gamescores.

2.2.3 The Win/lose-pattem

This is the most complicatedof the basicpat-
terns,andis differentin thatit cannotbe reduced
to amultiword. This patternis ontheform

Teaml [..] Key [...]
Team2 [...] Team3

where Teaml, Team2 and Team3 are team-
patternsandKey is aword which sayssomething
abouttheresultof the game.The ellipsesare me-
ant to representhe fact that therecan be words,
which areirrelevant for our application,between
the partsof the pattern.

Further a maximum of 2 teamsare detected
in every pattern(seebelow). As an example,the
sentencélFK Gotebog lyckadedtill slutbesgra

ett svagt Orgryte efter en spannandenatch? will
matchthepatternabore with Team1="IFK Gote-
borgy”, Key = "besgra” andTeam2 = "Orgryte”.
Team3will beunassignedh this case.

Therearealsodifferenttypesof patternsdepen-
ding on whatthe key-word is. Keys canbe active
or passive andwinning or losing words, genera-
ting a total of four differentpatternsThe distinc-
tion betweerwinning andlosingkeysis obviously
importantsincewe areinterestedn whowon,and
the active/passie distinctionis importantfor the
samereasondue to its implicationson the word
order

2.2.4 Active/passie Distinction

Most key-wordsareactve. This includesverbs
in active form suchas”vinna” and”férlora”, cer
tain nounssuchas”forlust” and”seger” andeven
someverbsin passie form suchas”slogs”. The
reasonfor the last onesto be includedis purely
empirical - we found that if the last exampleis
consideredactive ratherthan passie the results
improve. Thisis alsoratheruncontraersialif one
takesinto accountthe symmetryof winning and
losingrespeciiely.

The sentence$Gotebog besgradeAlK” and
"Gotebog besgradesav AIK” aresimilarfor our
purposesut needto yield oppositeresults.It se-
emslogical to count”beseyrades”asan active lo-
singverbeventhoughthiswill complicatetheter
minology In fact,in the currentversiononly two
constructionsare considerecpassve: "vinnas” in
differenttensesand”férloras” in differenttenses.

Note the differencebetween’Matchenférlora-
desav AIK.”, which will matchKey = "forlora-
des”, Team2 = "AIK” and”IFK besgradesav
AIK” which will matchTeaml = "IFK”, Key =
"besggrades”,Team2="AIK". In thefirstexamp-
le AIK is theloserandin the secondthe winner.
Theseneedto be separatedandsinceour detec-
tion of thewinneris basedsolely onthe key-word
and the word order it is necessaryto take acti-
ve/passie distinctioninto account.

2.2.5 Conflicting Patterns and Priorities

Sometimesa sentencewill be ambigousin the
sensethat it can matchmultiple patterns.Consi-
der for example”IFK besgrade AIK som tidi-
garei veckanhadevunnit mot Orgryte? In this

45

sentencave canmatch(amongothers)Team1 =

"IFK”, Key = "besgyrade”, Team2 = "AIK” or

Key = "besgrade”, Team2 = "AIK”, Team3 =

"Orgryte”. It is importantto have a clearpriority-

ordersoit is knovn which patternsare matched
and which are discarded.The order of matching
attemptgyoesasfollows:

1. TeamlKey Team?2
2. TeamlKey

3. Key Team2Team3
4. Key Team2

5. Key

In other words, we try to fill as mary slots
as possiblefrom the beginning of a sentenceln
the example above the first matchingmentioned
would be the one detected Note thatif no teams
are detecteda key-word will still generatea pat-
tern. In later stepsthis key canbe connectedo
teams mentionedin the current discourse(see
2.4.1).

2.2.6 Output

Outputfrom thefirst stepwill include,for every
sentence:

1. A list of teamsmentionedn thesentence
2. A list of scoregnentionedn thesentence

3. A list of win/lose-and/ordrav-patternsde-
tectedin thesentence

2.3 Local Logic

The outputfrom the initial patternrecognitionis

taken asinput to the secondstep,whichis alocal

logic for extractinginformationwhichis available
in every sentenceln this stepthe active/passie

distinction and the win/lose keys disappearand
the resultis simply somethinglike "IFK wins”

or "IFK defeatsAlIK”. Dependingon the key-

variablein every fact(which canbe of four types:
win_act, win_ps, lose_actlose_p3$ andtheword

order new factslike the onesabove are obtained.
A moredetailedspecificationof this processcan
befoundin appendixA.

2.3.1 PrepositionsActing on Teams

In this stepfurther processingof the teamsis
alsodone.A crudedivision of the prepositionsn-
to subject and object prepositionss madein an
attemptto decidein what contet the teamappe-
ars. It is importantto note that the termssubject
andobjecthere(andmoreimportantlyin the next
step)doesnotappeaiin theirgrammaticakenses.
In our terminologya subjectis a teamwhich the
text is "about”, and an objectis a teamwhich is
mentionedelative to thesubject.

Prepositionsvhich appeatbeforetheteamscan
be a clue to whetherthe teamis a subjector an
objectin this sensewhichis why thesearelabel-
led subjectand object preposition.For example,
"mot” is atypical objectprepositionlf thepattern
"mot IFK” appearsn a sentencet is reasonable
to believe thatthis sentenceés aboutanotherteam
which playedagainstlFK. IFK is thusan object
in this sentenceinceit appearselative to another
team.Our crudedivision of prepositionidentifies
subjectprepositionsas "ill”, "fér” and’av” and
objectprepositionas”mot”, "6ver” and”pa”.

2.3.2 Output

Theoutputfrom thelocallogic will include,for
every sentence:

1. A list of teamsandwhetherthey areprecee-
ded by subjectprepositionsobject preposi-
tionsor no prepositions.

2. A list of facts on the form "Team1 defe-
ats Team2”,"Teamlwins”, "Teamlloses”,
"win” or "lose”

3. A list of scoresunchangedrom the previous
step

2.4 Global Logic
2.4.1 Discourses

Whenprocessindanguageon a discoursdevel
it is usualto keeptrack of a numberof discourse
entities, which are termsthat the text is "about”
andreferto implicitly (seee.g.Nugues20032).

Our approactcanbe comparedo the oneabo-
ve. Thediscoursen our applicationis simply one
teamwhich we assumehetext to be "about”. Af-
terstudyinggamereportsof thekind wewantedto

46

processwe found that usually the text wasabout
oneteamprimarily, with commentson whatteam
wastheopponenof themainteam whatthescore
wasetc.Sometimeshemainteamchangediuring
the text. To reflectthis, a "subject” for every sen-
tenceis determinedduring the global stepin an
attemptto decidethe mainteamfor thatsentence.

2.4.2 Finding the Subject

The subject of a sentenceis determinedas
follows (andin this order):

1. If asentenceontainsateamwhichis notan
object,andthesameeamis the subjeciin the
preceedingsentencethe teamis setas sub-
jectin thecurrentsentence.

N

. Else,if asentenceontainsateampreceeded
by asubjectprepositiortheteamis setassub-
jectin thesentence.

3. Else,if a sentencecontainsa teamnot pre-
ceededby ary prepositionthe teamis setas
subjectin thesentence.

4. Elsethesubjectof the currentsentencés set
equalto the subjectin the preceedingsen-
tence.

5. If the first sentenceloesnot containa team
its subjectis considerecdhot assignedr un-
determined.

All sentencesxceptpossiblysomeinitial ones
arethusassigned subject.

2.4.3 Completing Facts

After the subjectsaredeterminedhey areused
to completesomefactswhich areincomplete(for
example"Teamlloses”).A priority is alsoassig-
nedheredependingon how certainthefactis jud-
gedto be. For a detailedreferenceon how andin
which orderthe factsarecompletedandwhatpat-
ternsgive whatprioritiesseeappendixB. A higher
priority meansa morecertainfact.

2.4.4 Assigning Scoresto Facts

Oncethe factsare completedan attemptto as-
sign scoredto all factsis made.The scoreis also
assigneda priority in a simliar mannerasabove.
Three different priorities can be set: 0, 1 and 3.

For every fact, all sentencesire checled for sco-
res,andthe scorewith the highestpriority found
is setas scorefor the fact. Scorepriority is as
followswhenmatchingthepatternflTeaml de-
feats Team?2] againstasentence:

e If thelist of teamsof the sentencancludes
eitherTeam1 or Team2 andthe score-listof
the sentencds non-empty a memberof the
score-listis setas scorefor the currentfact
with apriority of 3.

¢ If thesubjectof thesentencés eitherTeaml1
or Team2 andthe score-listof the sentence
is non-empty a memberof the score-listis
setasscorefor thecurrentfactwith a priority
of 1.

e Else,thescoreis consideredunassignend
hasa priority of O.

A possiblecomplicationhereis the casewhen
thescore-listof asentenceontaingmorethanone
entry This rarely happenshut a betterapproach
which will take only a minor improvementof the
systemwould beto choosehe highestscorefrom
the score-listinsteadof justanarbitraryone.

2.4.5 Output

The global logic will have a list of factsand
theirscoreswith prioritiesassignedbothto thefact
andthe scoreasoutput.

2.5 Cleanup

In thefinal stepthelist of factsis processedndso-
mefactsareremovedbeforethefinal output.First,
acombinedpriority is assignedwhichis the prio-
rity for boththe factandthe scorein one.This is
calculatedrom the priorities of factandscoresas
10 - (factpriority) + (scorepriority) to reflectthat
it is moreimportantfor thefactsto becertain.The
cleanupis thendonein two steps.

2.5.1 Unification

In this stepfactsare comparedandif possibly
unified. This is doneby taking the fact with hig-
hestcombinedpriority and comparingit with all
otherfacts.Thiswill createalist of new factswho-
se priority is setto the priority of the generating

47

fact. After this, the factwith secondhighestprio-
rity will unify with the (remaining)list andsoon
until thelist is empty For example,giventhe list
of facts:

[IFK, wins, noopp]

[AIK, loses, noopp]

[MIF, loses, noopp]

[IFK, wins, AIK]

thefirst stepwill unify thelist to:
[IFK, wins, AIK]

[IFK, wins, MIF]

giventhatthefirst facthasthehighestpriority. No-
te thatfor this to happenthedifferentfactscannot
have differentscores.

252

In the secondstepentrieswhich arenot consi-
stentaredeletedrom thelist. Two entriesarecon-
sideredinconsistenif the teamsarethe samebut
theresultis different.In suchacasethe entrywith
lowestpriority is deletedfrom thelist of facts.

Inconsistencies

2.5.3 Priority Threshold

Finally, a thresholdis setand all entrieswith
priorities below this thresholdaredeleted.This is
doneto allow tuningof the sytemin asimpleway.
In our applicationthethresholds setO.

3 Results

Theoutputfrom thesystemnis alist of gamegwith
teamsgendresultandfinal score) for instance

[II'FK, 'Goteborg’], wins,
[AIK], [2,-1]],

[[Djurgarden’], draws,
[Halmstad’], [1,-,1]]]

In this exampletwo gameswerefound, IFK Gote-
borg vs. AIK andDjurgardenvs. Halmstad.

Eachentryin thelist of gamesconsistsof four
fields:

[First_team,
Second_team,

wins|draws,
Score]

Oneof First_ team and Second_team (but
not both) can be noopp when no opponentis
found. Also, Score canbe noscore whenno
scoreis found.

3.1 Method of Scoring

The scoringis done as follows: for eachgame
entry in the output, find an entry in the templa-
te that matcheshe gameconsideredi.e. find an
entryin thetemplatecontainingat leastoneof the
teamsin the consideredutputentry

If severalmatchingsarepossibletheoneresul-
ting in the highestscoreis used.Notethatnoopp
and noscore fields are countedas empty i.e.
they arenot consideredasirrelevant whencalcu-
lating the precision.

Thefirst field in anentryis considerectorrect
if it matcheghefirst or third field in thecorrespo-
ning entryin the pre-filledtemplate.

For the secondfield to be consideredcorrect
it is requiredthat it matchesthe secondfield in
the pre-filled entry In the caseof wins it is al-
so required that the first and/or the secondfi-
eldsin the two entriesmatch (i.e. the secondfi-
eld is incorrect for instancewhen the entry is
[T1, wins, T2, S] andthe matchingpre-
filled entryis[T2, wins, T1, S]).

Thesecondeam(third field) is correctif it mat-
chesthefirst or secondcorrectteam(seeabove).

Finally, thescoreis correctif it matcheghesco-
re in the pre-filled template.Note that it is also
correctwhenit is reversedi.e. [2,-',1] mat-

ches[1,’-",2] sinceit is obviousfrom field 2
which teamwon.
Consider
[['FK, 'Goteborg’], wins,
[AIK, [2,-,1]]
vs.thecorrect
[[AIKT, wins, [IFK’,
'Goteborg], [2,-,1]]

Field 1,3, and 4 are correctwhile field 2 is in-
correct.
Now considerthe output

[II'FK, 'Goteborg’], wins,
[AIKT, [2,-,1],

[[Djurgarden’], draws,
[Halmstad’], [12,-,2]11

VS.

[[TAIKT, wins, [IFK’,
'Goteborg’], [2,-,1]],

[[AIKT, draws, [Elfsborg],

48

[1,-.1]1

Thesecondentryin the outputhasno matchin the
correctresults,andthe seconcentryin the correct
resultsis not representeth the output.In thefirst
entry of the output, three of the four fields are
correct.Henceboth recall and precisionare 3/8

is this example.

3.2 Scores

Testedonthecorpusconsistingof 45 articlesfrom
Aftonbladet,20 articlesfrom DagensNyheter 14
articlesfrom Expresserand8 articlesfrom Syd-
svenskaDagblade{i.e. 87 articles)the systemac-
hievesarecallof 56%andanda precisionof 66%.

Comparedo thenumberdFASTUS achieredin
MUC-6 (recall 44% and precision61%) (Appelt
etal., 1993)ourresultseemsrery good.However,
sincethetaskis mostlikely mucheasierthanthe
onein MUC-6, it is not unreasonabléo believe
thata FASTUS-like systemwould performconsi-
derablybetterthanours.Evena very simpleheu-
ristic, which ouputthe two mostcommonteams
in the text andthe highestscore,would probably
performdecently

On articleswhereonly one gameis mentioned
(which are quite commonin the corpus),the sy-
stemscoresvenbetterthattheabove figures,with
recall of approximately75% and precisionof ap-
proximately 85%. As expected,the performance
getsworsewhenthe numberof teamsandgames
mentionedn anarticleincreases.

3.2.1 The Problemwith Draws

It is noteworthy thatthe systemperformsconsi-
derablywealer on articlescontaininga gameen-
dingin adraw. Especiallytherecall(36%)is much
worsewhen only articlesmentioninga drawv are
consideredAs notedabove, our drav-patternis
very simple,which resultsin this ratherweakper
formance.

However, it is not quite obvious how to con-
structmoreefficient drav-patternsjt seemdike a
draw is muchmoreoften expressedn anindirect
way thana win or a loss. One way of detecting
dravswould of coursebeto utilize scoreqe.g.”2-
2" impliesadraw), but it is oftennot very easyto
tie the right scoreto the right game,andto malke

sureit is final, whenthereareseveralgamesnen-
tionedin anarticle.

4 Alter nate Solutionsand Further
Development

4.1 Full Grammar

It is of coursepossibleto constructa complete
grammarfor thetext from knowledgeof the Swe-
dishlanguagen anattemptto generate morefull
understandingf thetext. Fromthisfull understan-
ding the piecesof interestinginformation could
thenbeextracted.To dothisaparts-of-speectag-
gerwhoseoutputwasinsertedinto (for example)
a DCG grammarcould have beenused.After this
had beencompletedreferenceson the local and
globalscalewould be worked out.

Thisapproactwouldtake alot of work andcon-
siderablymoretime to execute,andit is our opi-
nion thatit would be difficult to significantlyim-
provetheresultswith thiskind of systemThefinal
stepswvouldhaveto beveryaccuratdo localizethe
interestingnformationandalot of work would be
doneontext thatis notinterestingfor theapplica-
tion.

4.2 Local Grammar

A better approachis to constructonly a local
grammar This could probably improve the sy-
stemif it wasdoneproperly With a good parts-
of-speechtaggerit would be possibleto make a
grammarspecifically suited for this application.
This wasin factour first approachput initial re-
sults were disappointing(particularly due to bad
PoS-tagging) However, a grammarof this kind
would help in that it would be possibleto more
thoroughlyinvestigatein what context the teams
appearandnotcompletelyrely onpreceedingre-
positionsandword order

For amoredifficult task(lik e detectinggoalsco-
rersor more)the grammarwould probablysigni-
ficantly improve the results.For the limited task
investigatedn this reportthe resultswould most
likely beasmallimprovement.

4.3 Why Pattern Recognition?

Therearetwo factorswhich make patternrecog-
nition a goodapproacho choosethefactthatthe

49

patterngsuchasteamsandscoresjyreeasyto re-
cognize andtheratherspecializedopicsof thear
ticles. Often,thereaderf anarticleis expectedto
know thingsnot explicit in thearticle (suchasthe
resultof pastgames)Referenceso suchknowled-
geis equallyunattainabldor bothpatternrecogni-
tion andalocal (or global)grammarlt thenseems
reasonabléo regardthisinformationas”lost” and
chosethesimplerapproachThealternatve would
beto have alarge databasef pastevents,but that
taskis onawholeotherscale.

4.4

A very crudebut probablyeffective improvement
would be to do a simple checkbeforethe output
to make surea gamebetweenthe two mostcom-
monteamsn thearticleis included.In mostcases
the article is aboutprimarily one gamewith per
hapssomeothergameamentionedoriefly. If these
brief interludesaffect the outputsothattheprima-
ry gameis lost (which in somecaseshappened),
we would wish to make atleasta crudeguessof a
gamebetweernthesetwo teams.
Otherimprovementswould be to add patterns,
specificallyto betterdetectdrav games.This is
a matter of finding suitable patternsand adding
themto the code. More dramaticimprovements
would be along the lines mentionedabove, i.e.
constructingalocal grammarfor sentences.

Impr ovementsin Curr ent Program

References

D. Appelt, J. Hobbs,J. Beat D. Israel, M. Kameya-
ma,A. Kehler D. Martin, K. Meyers,andM. Tyson.
1993. SRI InternationalFASTUS system:MUC-
6 testresultsand analysis. In Proceedings of 16th
MUC, Columbia,MD.

Pierre Nugues. 2002. Manuscript. Departmentof
ComputerSciencel.und University Usedaslecture
notesin the course”Introduction to LanguagePro-
cessingandComputationaLinguistics” 2002.

A Local Logic

Below is atablewhich describediow the patterndrom theinitial stepstranslatesnto local "facts”. The
higherup in this table a matchoccurs,the higher priority it has(i.e. testsfor matchingare madetop
to bottomof the table). ObjectPrefs an objectprepositionwin_act,win_ps,lose_actandlose_psare
active/passie, winning/losingkeys respectrely anda TeamClauseés a teampossibly preceededy a
preposition.Teamletc areteamsandin the casewhereTeamland TeamClausehppearsn the same
entry Teamlis theteamcontainedn theteamclause(the samegoesfor Team2andTeamClause etc).

Pattern Translatednto

[draw] [draw]

[[ObjectPrep, Teaml], win_act, TeamClauseZ2] [Team2, defeats, Teaml]
[[ObjectPrep, Teaml], lose_act, TeamClauseZ2] [Teaml, defeats, Team?2]
[[ObjectPrep, Teaml], win_act] [Teaml, loses]

[[ObjectPrep, Teaml], lose_act] [Teaml, wins]
[TeamClausel, win_act, TeamClauseZ2] [Teaml, defeats, Team?2]
[TeamClausel, lose_act, TeamClause2] [Team2, defeats, Teaml]
[win_act, [ObjectPrep, Teaml], TeamClauseZ2] [Team2, defeats, Teaml]
[lose_act, [ObjectPrep, Teaml], TeamClauseZ2] [Teaml, defeats, Team2]
[win_act, TeamClausel, TeamClause2] [Teaml, defeats, Team?2]
[lose_act, TeamClausel, TeamClause2] [Team2, defeats, Teaml]
[win_act, TeamClausel] [Teaml, loses]

[lose_act, TeamClausel] [Teaml, wing]

[win_act] [win]

[lose_act] [lose]

[[ObjectPrep, Teaml], win_ps, [av, Team2]] [Team2, defeats, Teaml]
[win_ps, [av, Team2]] [Team2, wins]

[win_ps, TeamZ2] [Team2, wing]

[win_ps, [av, Teaml], [Team2]] [Teaml, defeats, Team?2]
[[ObjectPrep, Teaml], lose _ps, [av, Team?2]] [Teaml, defeats, Team2]
[lose ps, [av, Team2]] [Team2, loses]

[lose_ps, Team?2] [Team2, loses]

[lose ps, [av, Teaml], [Team2]] [Team2, defeats, Teaml]

50

B Completing Facts

We have threedifferentcasesvhenwe wish to completethe factsdependingn how the factlooks:

1. The fact is [Str] , where Str is either win, lose or draw. The fact is completed to
[Subject, Str+s] andprocesseagain.

2. Thefactis [Teaml, defeats, Team?2] . This factis alreadycomplete.lt is given priority 5
(highestpriority) to reflectthatthetwo teamswerefoundin the samesentenceéogethewith akey.

3. Thefactis[Teaml, Str] ,whereStris eitherwins,losesor dravs. Suchafactis comparedo all
othersentenceandcompleteddependingn subjectsandfactsin thesesentencesSeetablebelav
for details.Thefinal completionwill betheonewith highestpriority.

The"Fact” belaw is theprocesseflact. The Local Fact” is afactoccuringin thesentencehatthefact
is currentlycomparedo. "Subject”is the subjectof thecurrentsentence;Team”is ateambelongingto
the currentsentencéwith mark”obj” if it is preceededby an objectpreposition)and”P” is the priority
givento thecompletedact. T1 andT2 are(different)teams.

Fact Local Fact Subject Team CompleteFact P
[T1, draws] T1 [obj T2] [T1, draws, T2] 5
[T1, draws] T1 T2 [T1, draws, T2] 3
[T1, wins] [T1, defeats, T2] [T1, wins, T2] 5
[T1, loses] [T2, defeats, T1] [T1, loses, T2] 5
[T1, wins] [T2, loses] T1 [T1, wins, T2] 3
[T1, loses] [T2, wing] T1 [T2, loses, T1] 3
[T1, wins] T1 [obj T2] [T1, wins, T2] 2
[T1, loses] T1 [obj T2] [T1, loses, T2] 2
[T1, wins] [lose] T2 [T1, wins, T2] 1
[T1, loses] [win] T2 [T1, loses, T2] 1

51

C A Small Dictionary from Swedish

Below is adictionaryof all Swedishtermsusedin this reportin examplesandexplanations.

av by
besgra defeat(vb)
besgrades wasdefeated

for for

forlora lose

forlust loss,defeat(n)

mot against

oavgjort drawv (The game ended in a draw.)
over over

pa on

saer victory

slogs wasdefeated

till to (prep)

vinna win (vb)

vinnas bewon (The game can be won.)
over over

Finally atranslationof all Swedishsentences thetext:

IFK Gotebog lyckadedtill slutbesgraettsvagtOrgrytei enspannandenatch.= IFK Gotebog finally
managedo defeataweakOrgrytein anexciting game.

Gotebog besgradeAlK. = Gétebog defeatedAlK.

Gotebog besgradesav AIK. = Gotebog wasdefeatedy AlK.
Matchenfoérloradesav AIK. = Thegamewaslost by AIK.

IFK besgradesav AIK. = IFK wasdefeatedy AlK.

IFK besgradeAlK somtidigarei veckanhadevunnit mot Orgryte.= IFK defeatedAIK who earlier
in theweekhadwon againstOrgryte.

52

A Spoken Dialogue System to Control Robots

Hossein Motallebipour, August Bering

Dept. of Computer Science, Lund Institute of Technology,
SE-221 00 Lund, Sweden;
E-mail: d97hm@efd.1th.se, d98abe@efd.1lth.se

Abstract

Speech recognition is available on
ordinary personal computers and is
starting to appear in standard soft-
ware applications. A known prob-
lem with speech interfaces is their
integration into current graphical
user interfaces. This paper re-
ports on a prototype developed for
studying integration of speech dia-
logue into graphical interfaces aimed
towards programming of industrial
robot arms. The aim of the proto-
type is to develop a speech dialogue
system for solving simple relocation
tasks in a robot workcell using an in-
dustrial robot arm.

1 Introduction

Industrial robot programming interfaces
provide a challenging experimental context for
researching integration issues on speech and
graphical interfaces. Most programming issues
are inherently abstract and therefore difficult
to visualize and discuss, but robot program-
ming revolves around the task of making a
robot move in a desired manner. It is easy to
visualize and discuss task accomplishments in
terms of robot movements. At the same time
robot programming is quite complex, requir-
ing large feature-rich user interfaces to design
a program, implying a high learning threshold
and specialist competence. This is the kind of

53

interface that would probably benefit the most
from a multi-modal approach.

This paper reports on two extensions to an
earlier prototype speech user interface devel-
oped for studying multi-modal user interfaces
in the context of industrial robot program-
ming (0). The extended prototype gives the
robot the ability of understanding spoken nat-
ural language instructions and perform simple
tasks. The user/operator will be able to refer
to objects in the robot’s environment either
spatially, or using descriptive object names.
The prototype is restricted to manipulator-
oriented robot programming. Examples of
spoken instructions that the robot should be
able to understand and perform are:

Robot, please move 10 steps to the
right.

Move up slightly.

Grip the cube.

Move forward and a bit up.

Please move 15 steps to the right
and down to the table.

The spoken language instructions are used
within a restricted task domain. This has sev-
eral advantages:

e The speech vocabulary can be quite lim-
ited because the interface is concerned
with a specific task. The number of nat-
ural sentences tend to be limited as well.

e A complete system decoupled from exist-
ing programming tools may be developed

to allow precise experiment control.

e [t is feasible to integrate the system into
an existing tool in order to test it in a
live environment. The prototype could
be integrated into existing CAD software
where it would enhance a dialogue, or a
design tool, in the larger CAD tool.

Further motivation for keeping speech vo-
cabularies limited lies in the fact that current
available speech interfaces seem to be capa-
ble of handling small vocabularies efficiently,
with performance gradually decreasing as the
size of the vocabulary increases. This also
makes it interesting to examine the impact
of small domain-specific speech interfaces on
larger user interface designs, perhaps having
several different domains and collecting them
in user interface dialogues.

The general purpose of the prototype is to
provide an experimental platform for investi-
gating the usefulness of speech in robot pro-
gramming tools. The high learning threshold
and complexity of available programming tools
makes it important to find means to increase
usability. The prototype extensions presented
in this paper are summarized below:

e Implemention of a human-robot dialogue
system that is capable of handling spa-
tial references and named references to
workspace objects.

e Utilization of XML for experimental se-
tups in order to test different dialogue sit-
uations. This includes modifying experi-
ment geometry (robots and workspace) as
well as using different speech grammars
and vocabularies.

Organization of this paper is as follows: we
will first take a look at the methods used for
the implementation, such as ASR and NLP.
Then, the experiment and the prototype it-
self are presented. A subjective evaluation and
results of the implementation and the experi-
ments with the prototype are then presented.
The paper will conclude with a short discus-
sion about the result.

Physical
environtment

Job Noise Banduwnidth

Mood

Speech |Host
recogniser| computer

Health
Accent

Figure 1: Components of a speech recogni-
tion system and factors affecting system per-

formance. See (0).

2 ASR, NLP and CFG

An overview of dialogue systems is given
in (0). The language tools used in this pa-
per are basically automatic speech recogni-
tion (ASR) combined with natural language
processing (NLP) using context-free grammars

(CFG).

2.1 Automatic Speech Recognition
(ASR)

ASR could be defined as the ability of ma-
chines to recognize human speech in a specific
language.

There are three basic uses of ASR:

e Command and control: give commands to
the system that it will then execute. Sys-
tems for this purpose are usually speaker-
independent.

e Dictation: spoken sentences will be tran-
scribed into written text. Systems for this
purpose are usually speaker-dependent.

e Speaker verification: the voice is used to
identify a person uniquely.

The common components of an ASR system
include the person speaking to the system, in-
put devices to the system (i.e. microphones)
and the ASR system itself.

An ASR system is shown in Figure 1. The
figure show factors affecting the performance
of an ASR system, for example health and
mood of the speaker.

54

2.2 Natural Language Processing
(NLP)

NLP is about building computational mod-
els for understanding natural language. NLP
models will, from a natural language text,
compute a representation of the semantic
meaning of that text.

Several levels of analysis and knowledge are
commonly applied in NLP (0):

e Morphological analysis looking into the
construction of words, prefixes and suf-
fixes.

e Syntactical analysis using the structural
relationships between words.

e Semantical analysis finding the meanings
of words, phrases, and expressions.

e Discourse analysis to find the rela-
tionships across different sentences or
thoughts with contextual effects taken
into account.

e Pragmatic analysis looking for the pur-
pose of a statement trying to investigate
what the used language is used to com-
municate.

e Applying world knowledge (facts about
the world at large, common sense) for in-
terpreting sentences in a general context.

NLP is attractive and has several applica-
tion areas like database query interfaces, ma-
chine translation, fact extraction, information
retrieval / search engines, categorization, lan-
guage filtering, text summarization, question
answering systems, speech recognition and
spoken language understanding and intelligent
tutoring systems.

2.3 Context Free Grammars (CFG)

Many grammars used for NLP systems are
CFG since they have been widely studied and
understood and hence highly efficient parsing
mechanisms have been developed using them.

In basic terms, a CFG define sentences that
are valid using a parse tree. The parse tree

55

Dotted lines replace different comb inations with mferring, cube, adverh and direction. Bmken
line represerds the ontput from the fianction ‘emph { presentation} .

Figure 2: Scheme showing outline of imple-
mentation of prototype CFG grammar.

breaks down the sentence into structured parts
that can be easily understood and processed.
A parse tree is usually constructed using a set
of rewrite rules which describes legal language
structures.

In the definition of the grammar rules a
state graph can be used to illustrate how sen-
tences are to be constructed. Each sentence
following the paths in the graph will be recog-
nized as a correct phrase. For instance, the se-
mantic meaning: Grip cube number 1! should
accept phrases like:

Robot, please grip cube number 1
Robot, please grab cube number 1
Robot, please grasp cube number 1

and:

Robot please grip the cube number 1
Please grip the cube number 1
Robot grip the cube number 1

Grip the cube number 1

Grab the number 1

Grab cube 1

The scheme in the figure 2 show an outline of
the graph of the CFG grammar for controlling
the robot arm in the prototype. Two paths in
the grammar are marked. The straight line at
the bottom pointing to the right corresponds
to the sentence: Robot, please mowve the cube
number one slightly to the right. The broken
line at the top of the scheme corresponds to
the sentence: This is cube number 2.

Speech flow

P e CE e >
SAPI 5.1

ASR

Visual feedback

Voice panel

Y

Action logic

XEmacs

Rapid DB

A 4

SAPI 5.1

3D robot

e

Figure 3: Prototype system dataflow.

3 The Prototype

The prototype presented here is a user in-
terface where speech has been chosen to be
the primary interaction modality but is used
in the presence of several feedback modalities.
Available feedback modalities are text, speech
synthesis and 3D graphics.

The prototype system utilizes the speech
recognition available in the Microsoft Speech
API 5.1 software development kit (SAPI).
SAPI can work in two modes: command mode
recognizing limited vocabularies and dictation
mode recognizing a large set of words using
statistical word phrase corrections. The pro-
totype uses the command mode. It is thus able
to recognize isolated words or short phrases.

The system architecture (see Figure 3) con-
sists of several applications:

e The ASR application uses SAPI 5.1 to
recognize a limited domain of spoken user
commands. Visual feedback is provided
in the Voice Panel window. Recognized
words and phrases are received from the
SAPI 5 ASR engine graded with a confi-
dence value. This information, as well as
extracted semantic information, is sent to
the action logic application.

e The Action Logic application controls the

user interface system dataflow and is the
heart of the prototype. Basically it re-
ceives phrases from the ASR application
and acts upon them. For instance, if
the semantic information of a phrase in-
cludes robot arm movement, correspond-
ing RAPID code is generated for the
robot!. A phrase that reads Move two
steps left, will generate the RAPID code
Movel (0,2,0). In this instance the
RAPID code will be sent to the 3D robot
application for execution providing 3D
feedback, and to the XEmacs application
for storage and textual feedback.

e The Text-To-Speech application provides
user voice feedback.

e The XEmacs application acts as a
database of robot movement commands
written in the robot programming lan-
guage RAPID, since it is an editor it also
allows direct editing of RAPID programs.

e The 3D Robot application provides a
3D visualization of the robot arm with
workspace. It understands and can per-
form a subset of RAPID commands.

The applications forms a distributed sys-
tem. Inter-application communication is per-
formed using TCP/IP.

The ASR application uses SAPI 5 in com-
mand mode (as opposed to the also available
dictation mode). The command mode uses
CFG grammars to recognize single words and
short phrases. The CFG format in SAPI 5 de-
fines the structure of grammars and grammar
rules using XMLZ2. In the prototype, this XML
format is used for implementing the prototype
NLP capabilities.

3.1 SAPI 5 XML CFG Grammar
Format

The reference document describing the
XML SAPI 5.0 speech recognition grammar

'RAPID is a programming language for industrial
robot arms developed and used by the ABB company.
2A SAPI 5 included XML CFG grammar applica-
tion compiles CFG XML grammars into the binary for-
mat required by the SAPI 5 speech recognition engine.

56

format (based on the Microsoft schema lan-

guage and not fully W3C compliant?4) is in-

cluded in the SAPI SDK documentation.
Below is an example of a grammar rule writ-

ten in SAPI 5 XML:

<RULE NAME="grip">
<LIST>
<P>grip</P>
<P>grab</P>
<P>grasp</P>
</LIST>

<P>cube</P>

<LIST PROPID="CUBENR">
<P VAL="1">one</P>
<P VAL="2">two</P>
<P VAL="3">three</P>
</LIST>
</RULE>

The grammar rule corresponds to sentences
like ”grip cube two”. Only words between
<P> tags are recognized. Furthermore, the
rule is augmented with semantic information
(enclosed as name-value pairs within XML
tags). This information is extracted during
sentence recognition by the ASR application
and provides the means for a simple context-
independent NLP analysis performed by the
prototype. The sentence "grip cube two”
would provide the ASR application with the
following semantic information:

RULE: grip
CUBENR: 2

4 Experiment

A series of Wizard-of-Oz experiment tran-
scripts were recorded before the work on the
prototype began. Below is an example of a
dialogue between the user and the system
derived from the transcribed Wizard-of-Oz

®The World Wide
http://www.w3.org

4 Although the MS Speech SDK (SAPI 5.1) docu-
mentation says that the schema will be rewritten and
compliant with W3C once it has been approved by
W3C.

Web Consortium

(W3C),

57

experiments:

Robot, please move 10 steps to the right!
Move down to the table!

Move up slightly!

Move 1 step to the right! Move down!
Grip!

This is cube 1.

Move forward and a bit up!

Move 4 steps to the left!

Move a bit down and drop the cubel!
Move up slightly!

Could you move 15 steps to the right
and down to the table?

Grab the cube!

This is cube 2.

Put it on cube 1!

Please move 2 steps up and 6 steps left!
Move 2 steps down!

Grab the cube number 3!

Put it on the cube number 2!

The robot knows the position of the table. It
has no information about the cubes and where
they are situated. The user should guide the
robot arm to each cube, where each cube is
denoted a specific name by the user, e.g. cube
number one. The robot remembers the loca-
tion of the specified cubes.

The goal for the user is to instruct a vir-
tual robot arm, using natural spoken English,
to identify and put three cubes on top of each
other on the table. Figure 4 shows the exper-
imental setup as well as the user interface.

Three non-native English-speakers has
tested the ASR and NLP part of the proto-
type system using dialogues similar to the one
above. Dialogue sentences are recognized with
good accuracy using SAPI 5. However, at the
time of the test the prototype implementation
partially lacked 3D and textual feedback for
part of the dialogue. Evaluation of the proto-
type system with full multimodal feedback will
be performed at completion of these parts.

5 Discussion

The experiment with three subjects showed
the SAPI command mode and the CFG gram-
mar used in the presented prototype to be

Figure 4: The prototype system user interface
consists of four windows; 1. The voice panel
containing lists of available voice commands.
2. The XEmacs editor containing the RAPID
program statements. 3. The 3D visualization
showing the current state of the hardware. 4.
The TTS application showing the spoken text.

rather stable. The feedback from the system
gave clear signals that it could hear and tran-
scribe the spoken sentences well. Subjective
impressions from test subjects were positive.
The dictation mode of SAPI 5 were tried
in the initial stages of prototype development.
The mode uses a large set of words and should
potentially suppart a larger set of English sen-
tences than the chosen solution. However,
recognition accuracy proved insufficient. The
command mode with smaller vocabulary was
more accurate. Although the grammar and set
of used words in the system is limited the test
subjects felt the dialogue came natural.

6 Conclusion

A prototype user interface for examining
spoken dialogues for controlling simple reloca-
tion tasks to be performed by robot arms has
been developed.

e The prototype uses SAPI 5 and CFGs for
processing and understanding spoken nat-
ural language robot instructions.

e The prototype dialogue system supports
spatial referencing with respect to the

robot arm and identification and ob-
ject referencing by name in the robot
workspace.

e Feedback is provided by several modali-
ties.

7 Acknowledgements

We would like to thank Pierre Nugues and
Mathias Haage at the Department of Com-
puter Science at Lund University for valuable
insights and comments during our work.

References

M Haage, S Schotz and P Nugues. A Prototype
Robot Speech Interface with Multimodal Feed-
back. Proceedings of the 2002 IEEE, Int. Work-
shop on Robot and Human Interactive Commu-
nication. Berling, Germany, Sept. 25-27, 2002.

J Hollingum and G Cassford. Speech Technology
at Work. New York: IFS Publications Ltd, 1988

Microsoft SAPI homepage. http://research .mi-
crosoft.com/srg/sapi.aspx. 2003.

P Nugues. Lecture Notes: Introduction to Lan-
guage Processing and Computational Linguis-
tics. 2002. Contact P Nugues at Department of
Computer Science, Lund Institute of Technol-
ogy, Sweden.

Spoken dialogue technology: enabling the conver-
sational user interface, ACM Computing Sur-
veys (CSUR), vol. 34, nbr 1, 2002, pp. 90-169,
ACM Press.

58

Clustering documents with vector space
model using n-grams

Kias Skogmar, d97ksk@efd.lth.se
Johan Oisson, d97jo@efil.lth.se

Lund Institute of Technology

Supervised hy:
Pierre Nugues, Pierre.Nugues@cs.Ith.se

Abstract

This paper describe a method to cluster documents using the linear space algorithm
together with unigrams, bigrams, trigrams and n-grams in an attempt to enhance the
clustering performance compared to unigrams only. Our tests did not reveal an
improvement, but shows that the technique has a potential, especially in certain
specific areas like finding citations or versions of the same document. The extra effort
required for implementation and the speed loss could make it less interesting however.

59

mailto:d97jo@efd.lth.se

Introduction
This paper is the result of a project

done for a course in language
processing at Lund Institute of
Technology. The project was

mandatory, but the topic of the project
was optional. We chose to use our
newly acquired knowledge on the
benefits of n-grams versus unigrams,
but on a different area, namely:
document clustering.

We wanted to use basic standard
algorithms for everything, because we
wanted to focus on the differences that
n-grams versus unigrams could make
for the accuracy of clustering.
Therefore we chose the vector space
model for determining similarities
between documents, and k-means for
clustering.

We expected that the benefits of our
suggested solution would be that it
enhanced the accuracy of clustering,
that it worked with all available
solutions (with some minor
modifications), and that it gave better
retrieving of keywords (which we will
not consider in this paper).

The accuracy should increase in
documents, where similar words occur,
but when the ordering is different. An
example is “Avoid a written door
code...” and “... code written to avoid
the Trojan back door...”, where they
would be considered quite similar
using unigrams, but not as similar
using bigrams or trigrams. In the
example above “Trojan back door” is
an example of the benefits of trigrams
over bigrams.

The proposed algorithm will not give
as many benefits in languages where
words are compound words, as in
Swedish (in contrast to English).

60

As far as we know, most existing
algorithms only wuse unigrams,
although the advantages of n-grams
have proven most successful in many
language processing areas.

The problem
Clustering is the ability to
automatically group similar

documents, only using the text in the
document itself. To do this one needs
to determine the similarity between
documents. There is also a need to
create reference documents when
combining two or more documents.

Clustering is done in many areas of
computer science, and there are a lot of
different techniques, like algorithms,
neural networks, genetic algorithms, et
cetera. The different techniques used
depend on the application area.

There are many applications for
clustering documents. Some examples
are: Internet search engines,
knowledge management systems or
document databases. Similarities
between documents could be used for
searching the local computer for
documents or automatically acquiring
meta-data from documents for use in
version management systems.

Usually clustering of documents can be
combined with several other
techniques to enhance the clustering
accuracy. These techniques can be:
determining grammar, omitting
common words or putting weights to
the words.

Our solution

We chose to use the k-means clustering
algorithm. This algorithm requires a
distance value between documents. For
this we used one of the most widely

used techniques for determining
similarities: the Vector space model.

The reason for the choice of these
algorithms is that they are very
common and therefore known by most
computer linguists. The fact that they
are well documented make them easy
to implement and easy to read for
others. Also, we wanted to focus on the
benefits of n-grams compared to
unigrams.

We chose to implement the project in
Java. In addition to the fact that it is
object oriented and that we are familiar
with the language, we could also show
our progress using an Applet on the
Internet. Since this is a commonly used
language, others will be able to copy
our source code and modify it for their
own purposes. Since we had used
regular expressions in the course, we
thought it would be good to include
that functionality in this project as
well. This makes the parsing of the
documents very flexible. We used
Java’s standard implementation of
regular expressions (included since
Java 1.4).

Vector space model

The vector space model is widely used
for determining similarity between
documents [5].

This method sees each document as a
vector in a word-space. The dimension
(number of axis) of this word-space is
the number of different words in the
two documents. The number of
occurrences of each word determines
the “length” of that axis for that
document. Then the vector space
model determines the angle (cosine
coefficient) or some other value (for
example Jaccard or Dice coefficients)
[4] between the documents. This
represents the similarity between the
documents.

61

When using n-grams instead of
unigrams, each axis consists of more
than one word. Since we used Java as
the programming language, we did
some simple inheritance to solve this.

We chose to use the cosine coefficient,
which determines the angle between
the documents. [1] presented the
algorithm for VSM as follows:

n

Zqidi

cos(q, c?) = =

W,i qiz 1/ idiz
i1 i1

where q is the query, d is the document
and n the number of different words.

Since we used only the number of
words as the coefficient, only those
words, which have a word count higher
than zero in both documents, will
produce a wvalue. Therefore we
simplified this algorithm, so that we
would only need to multiply the
common words in the nominator. This
way the algorithm we use does not
require any computations on the words
that are not part of both the documents.

nqd

dl,d2.
1

cos(d1,d2) = =

/nzqdlf /idzf
i=1 i=1

where dl is document 1, d2 is
document 2, and nge the number of
common words.

We extract the words from the
documents using regular expressions,
which make it flexible to redefine the
smallest parts that are analyzed. Then
we sort using Java’s Mergesort for
O(nlogn) performance, instead of
putting in the words in a sorted list
directly, which would give O(n?)
performance.

Clustering

According to [1], the k-means
algorithm “is the conceptually simplest
method and should probably be used
first on a new data set because its
results are often sufficient”. This
summarizes the reasons why we used
this algorithm.

The k-means method is really simple;
first some cluster centers (center of
mass) are randomly chosen (we picked
randomly chosen documents). Each
document is assigned to one of these
clusters (defined by the closest centre).
Then a new cluster centre is calculated
for each cluster. In the next iteration
each document is assigned to one of
the new cluster centers that were
previously calculated. Currently we
iterate a given number of times, instead
of having a stop criterion.

The calculation of new cluster centers
was done using only the words of all
the documents in that cluster. An
alternative would have been to include
all words in all documents instead, but
that would have required more
computational power.

Results

We have only tested our algorithm on a
limited test, due to time restrictions.
We have also constructed examples

where our algorithm outperforms
traditional (unigram) methods. For
example our method can see

differences in texts with words that are
the same, but that come in a different
order. In our test texts there are not
many cases where this arises. In some
arcas there are two words that are
belonging to each other, though, which
make our algorithm work better.

When calculating a Vector space
model value between two documents, a

62

choice has to be made between
unigrams, bigrams, trigrams, et cetera.
Since we wanted to analyze the
benefits of n-grams, we did both
separate tests using them individually
and a weighed sum of the unigrams,
bigrams and trigrams.

We found that the Vector space model
between arbitrary documents is only
applicable using up to 4-grams or 5-
grams, unless you want to spot
citations or versions of exactly the
same documents. We have chosen to
only use the first three values (up to
trigrams) in our clustering tests.

When we tested to cluster 6 texts from
the New Scientist web page, 3 texts
about neutrinos and 3 texts about
transistors, they were clustered
correctly using both unigrams and our
extended version, which included
bigrams and trigrams. When analyzing
the output of the Vector space model
(the similarities), we found that our
approach using only bigrams changed
the outcome of the clustering
somewhat in the wrong direction to
what we had expected. Clustering with
only trigrams made it cluster properly
again, as did the combination of the
three. One reason to the failure of
bigrams could be the small quantity of
texts, or the fact that we did not choose
texts that were different enough.

Conclusion

Our limited testing shows that looking
at more than one word at a time won’t
necessarily give accuracy, but can
potentially give other benefits when
comparing documents. In the few texts
we have used, there is no obvious
advantage of wusing our suggested
algorithm, although it could be our
handpicked documents that are not
adequately belonging to other areas.
The extra time of implementing the

algorithm probably makes it even less
interesting. We hope that people can
reuse, and make use of, our source
code, though.

Besides clustering, n-grams could be
used to spot citations from one
document to another, or versions of the
same document, with some small
changes in the source code. The
method could also be used to extract
key n-grams, instead of extracting
keywords from texts. These would
probably describe the document even
better than single words.

We think there are a lot of potentially
interesting areas where n-grams can be
used, and clustering is one of them. We
have shown that it has potential, but
the current benefits are too small.
Maybe a combination of n-grams and
other techniques will prove to work
best? Further testing of our proposed
algorithm needs to be done.

Applet, Java source, and
test texts

To make it easier to analyze our
results, and to present the code used, a
web page was created for the project. It
is located at:
http://www.etd.lth.se/~d97ksk/languag
e. There we have the source code for
the project, together with javadoc, an
example Applet, the test text samples
we used and this report.

63

http://www.efd.lth.se/~d97ksk/language
http://www.efd.lth.se/~d97ksk/language

References

[1] Christopher D. Manning and
Hinrich Schiitze, 1999, Foundations
of statistical natural language
processing, MIT Press.

[2] Andrei Z. Broder, Steven C.
Glassman, Mark S. Manasse,
Geoffrey Zweig, 1997, Syntactic
Clustering of the Web, Digital SRC
Technical Note 1997-015,
http://gatekeeper.dec.com/pub/DEC/
SRC/technical-notes/abstracts/src-tn-
1997-015.html

[3] Pierre Nugues, 2002, Introduction
to Language Processing and
Computational Linguistics, Lecture
Notes, Lund Institute of Technology.

[4] Danmarks Tekniske Universitet,
2002, Introduction: Vector Space
Model, Technical report,
http://isp.imm.dtu.dk/thor/projects/m
ultimedia/textmining/node5.html

[5] Gerard Salton, A. Wong, C.S
Yang, 1975, A Vector Space Model
for Automatic Indexing,
Communications of the ACM,
18(11), November.

[6] John Zukowski, 2002, Java Tech
Tips on using regular expressions in
Java, Sun JDC Technical notes,
http://developer.java.sun.com/develo
per/JDCTechTips/2002/tt0423.html

64

http://gatekeeper.dec.com/pub/DEC/SRC/technical-notes/abstracts/src-tn-1997-015.html
http://gatekeeper.dec.com/pub/DEC/SRC/technical-notes/abstracts/src-tn-1997-015.html
http://gatekeeper.dec.com/pub/DEC/SRC/technical-notes/abstracts/src-tn-1997-015.html
http://isp.imm.dtu.dk/thor/projects/multimedia/textmining/node5.html
http://isp.imm.dtu.dk/thor/projects/multimedia/textmining/node5.html
http://developer.java.sun.com/developer/JDCTechTips/2002/tt0423.html
http://developer.java.sun.com/developer/JDCTechTips/2002/tt0423.html

HORACE

—an artificial columnist

Marcus Uneson, Jan 2003

Abstract

After a brief outlook on the field of random text generation, in particular on
Andrew Bulhak's Postmodernism generator, the present paper describes a
program for generation of random, meaningless but grammatically correct
text in Swedish. The program, named Horace, is intended to simulate the
abstract reasoning of (some) literary columnists.

Horaceis written in Prolog using the DCG formalism. It handles agreement
and permits weights to be assigned to competing rules. A first version can be
tested at Horace www (embedded in a Perl CGI for www access). The paper
is concluded with suggestions of various experimental, application-specific
extensions to the program.

Introduction

Automatic text generation

Automatic generation of text from some underlying, formal semantic
representation is an important research field. Generally, the point of automatic
text generation (or “natural language generation”) is to adequately render
a system- and application-specific machine representation (which is very
opaque to human beings) in natural language (which is, at least sometimes,
immediately and effortlessly accessible).

For restricted domains good results have been attained. On a more
general level, however, most things remain to be done. Automatic generation
of text in the sense of transforming a formal semantic representation into a
grammatical and (above all) coherent text is a very demanding task (for a
first introduction, see for instance Gal et al 1991). Nevertheless, the field is
most central to improvements on the interface between man and machine.
Research in the field is quite vivid; for instance, the 2nd International Natural
Language Generation Conference was held 2002 and there have been several
international workshops sponsored by the Association for Computational
Linguistics (ACL www). There is also an ACL Special Interest Group on Text
Generation, SIGGEN (Siggen www).

Random texts

The topic of the present paper, however, is another: generation of random
texts. This task is easier by several orders of magnitude. For such completely
meaningless texts, there is no semantic representation at all to be conveyed.
Several difficult models (of semantics, pragmatics, world knowledge, and
discourse structure, among others) are thereby made superfluous.

Random text generation may seem as pointless as the texts themselves.

65

Admittedly, the applications from a practical point of view are few: Turing
tests, tests of a grammar under construction, perhaps generation of sentences
for language education, when the teacher’s imagination is exhausted. The Al
and computational linguistics research communities seem to have largely lost
interest in the field (perhaps after the successful but now terminated attempts
with the semantically clueless ELIZA and PARRY), turning the attention to
automatic text generation in the sense described in previous section.

However, the main raison d’étre of random texts is diversion, and
diversion will probably never become out of date. For a more general
audience, simulation of texts produced by humans in different genres continue
to attract interest. On the web one may find for instance randomly generated
poetry (Kurzweil www, Zawinski www), buzz-word spoof commercials (Lee
www), pulp fiction covers (Romance writer www), pseudo-philosophical
ranting (Kant www), or postmodern discourse (Postmodernism www). See
the link collections Toolworx www and Charabia www for more links.

On the present program

The current program, named Horace, is certainly not intended for anything but
amusement. It attempts to imitate the discourse of certain cultural columnists
of the Swedish intelligentia. As pointed out by Bulhak 1996, the vocabulary
of such writers is often abstract, dense, and replete with jargon; additionally,
the disciplines they comment (art criticism, philosophy, cultural theory,
among others) are inherently subjective, with reasoning based on analogies,
comparisons and references to text-external sources, rather than on logic. Thus,
this kind of writing should be easier than the average to simulate. The texts
generated by computers certainly may appear incoherent, incomprehensible,
and difficult to follow; but then again, for this specific genre, so may those
generated by humans.

It is by pure coincidence that Horace bears the same name as Horace
Engdahl, permanent secretary of the Swedish Academy and notorious for his
esoteric literary reviews.

Strategies for random text generation

The most popular approaches for random text generation may roughly be
divided into statistical modelling and explicit grammars. They are briefly
commented on below.

Statistical modelling

Statistical modelling is stable, easy to implement and covers inherently
collocation (at least for immediate neighbouring words, such as carry through,
state senate), which probably is an important cue for naturalness. A common
method is to construct a training corpus; to divide it into units (most often
words, sometimes individual characters); and to construct a probability table
(a language model) wherein a probability is assigned to each unit, given some
preceding sequence of a certain length (the degree of the model; for words,
typically three or four).

Such a model encodes very little or no linguistic knowledge—the text
is treated as a sequence of arbitrary symbols from a given alphabet and
would need very few modifications to analyse, say, amino acid or DNA
sequences. While this is perhaps a weakness only from a linguist’s point of
view, there are more substantial drawbacks as well. Thus, a training corpus

66

must be prepared—for some purposes, this task may amount to downloading
a collection of texts from www, but it may also include very laborious and
tedious work (as in this case—corpora of newspaper text exist, but a large
enough corpus of literary criticism in Swedish, preferably by one or two
particularly abstruse authors, is not easily found).

Furthermore, the statistical model has structural deficiencies: for one
thing, it does not easily handle dependencies reaching outside the window
width set by the model’s degree. This may be less obvious in English than
in most other languages, for which agreement is more important. In modern
standard Swedish, verbal agreement is even simpler than in English (i.e.
non-existent); the rules for NP agreement, however, are quite complex (for
instance, different adjectival agreement for definite and indefinite and for
attributive and predicative position). Some simple examples of agreement
outside the span (for a 4-gram model) are given below:

[la] de otroligt stora, grona dngarna
’the incredibly large, green meadows’

[1b] *de otroligt stora, grona édngen

[2a] den otroligt stora, grona édngen
’the incredibly large, green meadow’

[2b] *den otroligt stora, grona dngarna

Given the sequence {otroligt, stora, grona}, there is no way in a 4-gram model
to correctly choose between the singular [1a] and the plural [2a] by pure
statistics.

Explicit formal grammars

Grammatical correctness (on which agreement is but one aspect) seems to be
sine qua non for successful simulation. Whereas many writers may get away
with flawed reasoning, blurred semantics or general incoherence (I suppose
most of us do, occasionally), such failures are not as immediately obvious to
a casual reader as are incorrect endings, erroneous number of verb arguments,
or (for languages which so require) failure to include subject and/or finite verb
in each clause. To model long and complicated but immaculately grammatical
(in the Chomskyan sense) sentences, an explicit formal grammar is called
for.

It should be noted that writing a grammar for generating text is far easier
than writing one for parsing (on a general level, that is). In parsing, it is
necessary to foresee and formalize the possible constructions of a language,
which is a tremendous challenge; in generation, by contrast, it is enough
to specify the constructions wanted in the generated text. Grammatically
correct but highly unlikely constructions (such as nested relative clauses, or
recursively called prepositional phrases beyond a depth of, say, three) may
be discarded with no immediate drawbacks. Furthermore, if the output isn’t
very long (as in the current case), some perfectly normal constructions that
happen to be difficult to formalize or implement efficiently (in Swedish, for
instance, movements, particle verbs, prepositional complements), can be left
out without losing much naturalness. Repetitions of a certain grammatical
structure is by no means as conspicuous to a human reader as repetitions of an
unusual lexeme, and we note what’s there rather than what’s not.

67

Explicit grammars in use: The postmodernism generator

Most of the examples of web sites featuring computer-writed texts cited
above appear to use some kind of statistical modelling; those that do not
are mostly extremely simple (offering perhaps a three-word phrase with a
randomly chosen verb, followed by a randomly chosen adjective, followed
by a randomly chosen noun). One notable exception is the aforementioned
“postmodernism generator” (Postmodernism www), the most ambitious
attempt at simulating genre-specific text I have come across.

As mentioned before, random text generation has generally not
attracted much interest from the research community in the latest years. The
postmodernism generator is an exception in this sense as well: it is described
in the paper, “On the Simulation of Postmodernism and Mental Debility
using Recursive Transition Networks” by Andrew C. Bulhak (1996). The
paper presents briefly a system called “The Dada engine”, which accepts as
input a script defining a set of rules in form of recursive transition networks
(RTNs) in an especially devised format called pb (slightly reminding of the
Backus-Naur form). Bulhak has provided some extensions to the basic RTN
approach; in particular, the rules may take parameters, which permits lambda
abstraction. The engine traverses the RTNs, choosing rules at random, and
outputs strings.

A particularly successful set of RTNs simulating postmodern discourse in
the style of a journal article is also described in the paper (Postmodernism www
offers an online version). A few excerpts from the randomized postmodernist
article “Realities of Stasis: Subsemiotic materialism and Foucaultist power
relations” (included as a sample in Bulhak’s paper) are given below:

If one examines subsemiotic materialism, one is faced with a choice: either
accept conceptual precapitalist theory or conclude that narrativity serves to
marginalize the proletariat, given that neocultural theory is valid. Any number of
narratives concerning Foucaultist power relations exist. Subsemiotic materialism
implies that sexuality has objective value.

()

Lyotard promotes the use of Marxist socialism to attack the status quo.
Foucaultist power relations suggests that culture is capable of deconstruction.
However, several deconstructions concerning subsemiotic materialism exist.

()

In a sense, a number of narratives concerning subsemiotic materialism exist.

()

If one examines textual capitalism, one is faced with a choice: either
accept Foucaultist power relations or conclude that the goal of the reader is
deconstruction.

()

If one examines Foucaultist power relations, one is faced with a choice: either
reject textual capitalism or conclude that truth is capable of intention, given that
art is equal to narrativity.

The approach does have its limitations. Judging from the sample article
document cited above, Bulhak has attacked the problem from a computer
scientist’s point of view (rather than a linguist’s). Terminals may have any
length, with little consideration of linguistic relevance, so some parts remind
of filled-in templates. Furthermore, the RTNs do not easily handle agreement
(not even with Bulhak’s extensions), which makes the engine difficult to
rewrite for other natural languages. (At times this is noticable even in English.
All verbs output by the postmodernism generator are in third person singular,
present tense. So are almost all subjects as well, but occasional exceptions

68

are not considered—note the ungrammatical “Foucaultist power relations
suggests” above). Another weakness is the primitive way of assigning
individual weights to rules; currently, any rule with proper head is as likely to
be chosen as another, and doubling its probability is done by including it twice
in the script. This is not a very sophisticated approach, and not something you
would like to use to assign weights {10000, 30, 1} to {rulel, rule2, rule3}.

Still, the overall impression of a paper produced by the postmodernism
generator is quite convincing. The repertoire of constructions is large enough
not to make the repeated structures too obvious (the quotes above are chosen
from a three-page document), and the output even includes made-up quotes
and references. The program has attracted a fair amount of attention. In
October 2002, it participated in an art exhibition called Electrohype 2002
(Malmo, Sweden; Electrohype www).

Horace

Issues of formal grammars for Swedish

The modelling of Swedish grammar for random text generation presents
some difficulties which are absent or at least less cumbersome in English. In
particular, they concern agreement constraints and word order. Some other
difficulties, less ubiquituous (e.g. particle verbs, movements, prepositional
objects), have simply been outlawed—see under “Restrictions” below.

Agreement

Agreement constraints in Swedish concern in particular the nominal phrase
(see also examples [1-2]). Adjectives can be regarded as having inflections
for number, gender, species (definite/indefinite; compare [3a] to [3b], and also
[3c] to [3d]), and position (attributive/predicative; compare [3b] to [3d]).

[3a] en farglds idé/ett farglost minne/farglosa idéer
’a colourless idea/a colourless memory/colourless ideas’ (attributive position, indefinite)

[3b] den farglosa idén/det farglosa minnet/de farglosa idéerna
’the colourless idea/the colourless memory/the colourless ideas’ (attributive position, definite)

[3c] en idé ar farglos/ett minne ar farglost/idéer dr farglosa
’an idea is colourless/a memory is colourless/ideas are colourless’ (predicative position,
indefinite)

[3d] idén &r farglos/ minnet dr farglost/idéerna ar farglosa
’the idea is colourless/the memory is colourless/ideas are colourless’ (predicative position,
definite)

A fifth conceivable category is natural gender. In written Swedish, the
adjective ending is often -e for masculine persons in definite singular

attributive; compare [4a] and [4b].

[4a] den store hjdlten

’the great hero’ (masculine)

[4b] den stora hjéltinnan
’the great heroine’ (feminine)

69

However, for many writers, this is not a compulsory distinction, and it is
currently unimplemented in Horace.

Word order

Swedish is a Germanic language and, like several others of those, it has
strict rules for where to place the finite verb. The constituent order is often
described by means of the Danish linguist Paul Diderichsen’s position schema
(originally for Danish), as in Figure 1:

Foundation Nexus field Content field
\"2! N1 Al V2 N2 A2
finite verb | subject clausal infinite object/s, time, place,
(when adverbials, |verb/s, predicative | manner etc
not in short verb adverbials
foundation) | adverbials | particles

Figure la. Diderichsen s position schema, main clause

Subjunction Nexus field Content field
field
N1 Al V1 V2 N2 A2
subject clausal finite verb | infinite object/s, time, place,
adverbials, verb/s, predicative | manner etc
short verb adverbials
adverbials particles

Figure 1b. Diderichsen’s position schema, subordinate clause

Basically, there are two different schemata, one for main clauses and one for
subordinate clauses. In virtually all declarative main clauses, the verb goes
into the second slot (Fig 1a), and the first slot (the foundation, Diderichsen’s
Fundament) can and must be filled with exactly one of the other constituents'.
The entire phenomenon is known as “V2”, which may be interpreted as
“verb in second slot”. The by far most common content of the foundation is
either subject (N1) or clausal/short adverbials (A1). The constituent order of
subordinate clauses is more rigid.

Implementation

Requirement specification

Horace is expected to generate a text consisting of grammatically immaculate
sentences composed from an entirely abstract vocabulary. A later step is to
include a rudimentary simulation of discourse structure (such as rhetorical
markers and/or references to other fictive writers).

Formalism

Horace is written in Prolog, using the DCG formalism (Pereira and Warren,
1980). DCG was initially chosen for Horace as a convenient way of handling
agreement. However, with one argument for probability, one for unique ID
(more on these below); perhaps three or four for morphological and agreement
categories; and two for difference lists (when treating the implicit lists of
DCG rules in ordinary prolog code), the argument lists may appear quite
cluttered. For rules involving many constituents, such as instance ditransitive
verbs with optional adverbials, the notation does become cumbersome.

70

Additionally, DCG does not handle the V2-mechanism in some obvious way.
The program may one day be rewritten in some other formalism, such as
Constraint Grammar.

Allowed constructions

Forthe purposes of Horace, it is enough to provide a grammar which is extensive
enough to generate some 40 lines of text without too obviously repeating
grammatical constructions. As pointed out, human language perception is not
very easy to offend in this sense—if the vocabulary is varied, a readable article
may be generated with rather few rules. Quite a few constructions may thus
be simplified or disregarded. The V2 phenomenon can be reduced to the two
most common cases: subject or adverbial in the foundation. Wh-movements
may be disregarded, as may particle verbs, prepositional complements, any
recursive categories, ellipses, extragrammatical utterances etc

Non-terminals

It is in fact easier to state what the grammar does cater for, than what has been
disregarded. Table 1 gives an overview over the non-terminals currently used,
with an informal use of regular expression modifiers ({}|?) for quantification
and disjunction, and DCG-style square brackets ([]) for terminals. All DCG
arguments (for weights, rule ID, morphological categories, agreement etc)
have been left out for clarity, as well as methods for choosing terminals and
rewrite rules at random (see below). Variations for main and subordinate
clause have also been left out; they include active vs passive clauses, finite
vs compound verb forms, optional adverbial phrases, and (for main clauses)
subjects vs clausal adverbials in the foundation.

Table 1.
Non-terminals of Horace.

heading [Art] [Adj] [N] heading

critic paragraph{3} critic

paragraph ${6,9} paragraph

S mcl | mcl scl | scl mel | mel [Conj] mcl sentence

mcl cl advl [Aux] np main clause

(vit | vimt np | vdt np np | vkp np | vkp adjp) | (only one type shown)
scl subj np cl_advl subordinate clause
(vit | vimt np | vdt np np | vkp np | vkp adjp) | (only one type shown)

np n_grp (pp)? nominal phrase

np gen_attr (adjp)? [N]

subst_adjp [Art] (advp)? subst adj substantivized adjectival phrase
gen_attr n_grp genitive attribute
n_grp ([Art] (adjp)?)? [N] noun group

n_grp subst_adjp

adjp (advp)? [Adj] adjectival phrase

juy [P],n_grp prepositional phrase
agent [Agent _marker] np agent

advp [Adv] adverbial phrase

cl advl scl | advp | [Cl_adv] clausal adverbial
Terminals

Terminals are handled by an abstraction layer which hides details like
inflection class (declination or conjugation), implemented as follows:

The available vocabulary is read in from a separate file (lexicon.txt) at
start-up. As an example, let’s consider a small sample from noun declination
3:

71

$%% in file ‘lexicon.txt’

noun ([decl3, utr],
[intighet, poststrukturalitet, kausalitet]).

o

%% directive in file "horace.dcg’ (last in file)

consult (‘lexicon.txt’),

abolish (nouns /1),
nouns (N) ,
assert (nouns_(N)) .

%$%% in file ‘horace.dcg’
nouns (N) :-—

setof (Decl, List”noun (Decl, List), Decls),
list _all infl(noun, Decls, N).

decline noun(Nlemma, sg, indef, decl3, N) :- ccat(Nlemma, '/, N).
decline noun(Nlemma, sg, def, decl3, N) :- ccat(Nlemma, ‘en’, N).
decline noun(Nlemma, pl, indef, decl3, N) :- ccat(Nlemma, ‘er’, N).
decline noun(Nlemma, pl, def, decl3, N) :- ccat(Nlemma, ‘erna’, N).
case_inflect noun(N, nom, N).

case_inflect noun(Nnom, gen, N) :- ccat(Nnom, ‘s’, N).

noun_agreement (pl, , pl).
noun_agreement (Num, Gen, Gen) :-
Num ¥= pl.

o

%% general pos-list-building predicates

$builds a list of form pos

list all infl(_, [1, [1).

list _all infl(POS, [Infll|InflRest], Out) :-
list one infl(POS, Infll, Outl),
list all infl(POS, InflRest, OutRest),
append (Outl, OutRest, Out).

list one_ infl(POS, Infl, Out) :-
Term =.. [POS, Infl, Wordlist],
clause (Term, true),
make list (Wordlist, Infl, Out).

make_list ([1, _, [1).
make list ([Wordl|WordRest], Infl, [[Wordl, Infl] |Rest]) :-—
make list (WordRest, Infl, Rest).

$returns an Element randomly chosen from List
randomize (Element, List) :-

length(List, Max),

Random is random (Max),

length (Left, Random),

append (Left, [Element|], List).

%concatenates atoms X and Y to atom Z
ccat (X, Y, Z2) :-
atom (X), atom(Y), var(z),
name (X, XL), name(Y, YL),
append (XL, YL, ZzZL),
name (Z, ZL) .

After these preparations, a predicate find declined noun may be defined as
below, which returns a random noun in specified number, species, and case; it
also returns the cennum agreement marker for further processing. This marker

72

has one of three string values: ‘ntr’ for the neuter and ‘utr’ for the reale (also

known as “common gender”, “non-neuter”, or “uter”) in singular, and ‘pl’ in
the plural.

% (+Num, +Spec, +Case, -GenNum, -N)

find declined noun (Num, Spec, Case, GenNum, N):-
nouns_ (Ns),
randomize ([NLemma, [Decl, Gen]], Ns),
decline noun (NLemma, Num, Spec, Decl, Nnom),
case_inflect noun(Nnom, Case, N),
noun_agreement (Num, Gen, GenNum) .

Most other parts-of-speech are treated similarly. Verbs with different arities
(intransitives, monotransitives, ditransitives) are treated as belonging to
separate parts-of-speech. For the open classes, terminals may thus be specified
using this type of “find_one random_ X with_this inflection” predicate.

In some cases, generation of inflected forms by simple concatenation of
atoms (as in decline noun/5 above) isn’t enough. An unstressed ending vowel
present in the lemma is generally not part of the stem and therefore lost in
inflected forms (pojke-ar > pojkar, blomma-or > blommor). Another common
mechanism is the deletion of a stem-final dental stop (/d/, /t/) before inflecting
adjectives and participles for the neuter (skadad-t > skadat; immanent - t >
immanent).

While Horace does handle these two standard cases, several computational
challenges from a morphological point of view has been disregarded. Some
of them (e.g., umlaut) aren’t easy to handle with simple string concatenation.
However, the intended, abstract vocabulary of Horace is almost entirely of
Latin or Greek origin (for the open classes). Such late loans are generally quite
regular morphologically. For instance, in Swedish, almost all verbs of Latin
origin end up in the very regular first conjugation (abstrahera, -1, -de, -t, -s,
-s, -des, -ts, -nde, -d, -t ‘to abstract’); and many adjectives end in -isk (logisk,
ironisk ‘logical, ironical’ etc)

Lexicon

The lexicon is constructed by hand, to keep the abstraction level as high as
possible. As pointed out, the late loans aimed at are morphologically very
regular; thus, a few searches on ‘-isk’ and ‘-era’ in a larger Swedish corpus
(e.g. Sprékbanken www) provided valuable help.

Weighting

In contrast to the postmodernism generator, Horace does permit the assignment
of user-specified weights to each rule. For competing rules, individual integer
weights are assigned as the first argument, and a unique rule ID as the second.
The weights could conceivably be extracted automatically from a training

corpus yet to be built; currently, however, they are somewhat arbitrarily set by
hand. The predicate find idx(Q, IDX) then

1. takes Q (a non-terminal to be rewritten, perhaps with some arguments
specified) as input;

2. searches through all rules which are applicable for the particular

combination of constraint arguments;

sums weights of the applicable rules (first argument);

picks a random number integer i, 0 <1i < sum_weights;

maps i to an ID considering the weights;

returns that ID.

Sk w

73

find_idx(Q, IDX) :-
findall ([ID, Wt],

(clause (Q,
arg(1, Q,
arg (2, Q,

), Idwts),
sum wts (IdWts, 0, TotIdWt,
N is random(TotIdWt),

id (N, IdAccWts, IDX).

7) r
ID),
Wt)

IdAccWts),

id (N, -

[[_, AccWt]|RestIdAccWts],

AccWt < N,
id (N, RestIdAccWts,

IDX)
IDX) .

id(N, [[IDX, AccWt]|
AccWt >= N,

|

1, IDX)

sum wts([], Acc, Acc, []).

sum wts([[ID, Wt]|Rest], Acc,
NewAcc is Acc + Wt,
sum wts (Rest, NewAcc,

TotIdWt, [[ID, NewAcc] |RestIdWts])

TotIdWt, RestIdWts).

DCG extensions

Horace is likely to be expanded according to the feedback it elicitates. The
following are suggestions of future extensions to the DCG used in the current
program. They are all experimental at most; some are very sketchy at the time
of writing and may indeed never be implemented. On the other hand, there
may be others instead.

The extensions typically work with entire phrases and should not be
regarded as grammatical statements about an entire genre; rather, they
are implementationally cheap, application-specific enhancements of the
impression of an erudite columnist.

Simulation of discourse (experimental)

The general impression of reasoning is highly enhanced by the presence of
(some simulation of) organized discourse. This is (in Swedish, as in most
Western languages) most naturally attained by using discourse keywords,
giving the impression of collecting pros and contras, arguments and
objections, before arriving at a conclusion. Like before, the task is far easier in
generation than in parsing, since for a reasonably short text, the human reader
will concentrate on what’s present in the text, rather than what is not.

A way of simulating a trace of reasoning is to add a few categories,
say <statement>, <concession>, and <conclusion> for rhetorical structure
organizers. A pseudo-code style attempt (with little attention paid to word
order and clause borders) could go along the following lines:

rhetoric segment --> reasoning, conclusion
reasoning --> statement, concession
statement --> mcl

concession --> concession_phrase, scl
concession --> concession_marker, mcl

concession phrase --> [det, dr], concession marker [sant, att]
Swhile it is true that...

concession phrase --> [det, &r], concession marker [sd , att]
concession marker --> [i, och, f&ér, sig]; [visserligen]

74

conclusion --> conclusion phrase, scl

conclusion --> conclusion marker, mcl

conclusion phrase --> [det, &r], conclusion marker, [klart, att]

%$it is clear that...

conclusion phrase --> [det, &r], conclusion marker, [tydligt, att]
conclusion phrase --> [det, &r], conclusion marker, [uppenbart, att]
conclusion marker --> [foljaktligen]; [salunda]; [alltsa; [saledes]

Keywords and phrases (not yet implemented)

A conspicuous property of the output of the postmodernism generator is the
high frequency of recurring short phrases, typically NP:s such as N +N, Adj
+ N, or Adj + N + N (in the essay quoted above, for instance ‘subsemiotic
materialism’, ‘neocultural theory’, ‘Foucaultist power relations’). It is
interesting to note that these repetitions, while probably unnatural in a novel
or most other genres, in the pseudo-scientific jargon of the thesis quoted rather
contribute to a vague impression of terminological consistence.

Horace aims rather at a newspaper columnist writing style, and repetitions
of this type are somewhat less likely to occur. However, there may certainly
be a point in having a few named concepts recurring. Most obviously, for a
review in literature or art, the name of the artist and the work reviewed should
be mentioned now and again.

In the Postmodernism generator, such fixed phrases are hard-coded,
recurring in essay after essay. Another approach is to generate a few phrases
at run-time and to have them repeated with a certain probability (for the artist,
perhaps in subject position only).

A related question is that of pronominalization. An ordinary text with no
pronominalizations appear highly unnatural and over-specified. However,
for the highly specific impression aimed at here, with loads of piled-up
abstractions, they are less crucial. Still, whenever a person is mentioned (most
notably the artist), it is natural to use a pronoun within the following clause
or two.

Parenthetic clarifications (experimental)

Horace could explain or expand difficult concepts to the reader by including a
quoted clarification in parentheses:

koreografien i det voyeuristiska blir extasens poststrukturalism (“det suberotiska
elementet”).

’the choreography of the voyeuristic turns into the poststructuralism of ecstasy
(the suberotic element”) ’

The explanation pertains to the same syntactic category as the phrase explained
and thus needs little extra modelling. In principle, any phrase type could be
expanded in this way; however, the idea seems to work most efficiently with
NP:s, in which case the added explanation somewhat reminds of a definition.

Quotes from other great thinkers (not yet implemented)

Horace could easily find support for its claims by enclosing arbitrary clauses in
double quotes and ascribing them to some authority on the subject, perhaps:

Som Derrida papekar: “intighetens sant labyrintiska kontrapunktik delegerar
konstruktivismen i det enigmatiska”

’As Derrida points out: ”the truly labyrinthic counterpoint of nullity delegates
the constructivism of the enigmatic”’

Neologisms (experimental)

Any abstract noun or adjective (transcendental, intighet, modernistisk

75

‘transcendental, nullity, modernistic’) may be combined at random with
a derivational prefix, such as for instance meta-, neo-, hyper, hypo-, sub-
, pseudo-, kvasi- ‘meta-, neo-, hyper-, hypo-, sub-, pseudo-, quasi-’ . The
result is an even more abstract neologism (kvasiintighet, metamodernistisk,
subtranscendental ‘quasi-nullity, meta-modernistic, subtranscendental’). A
given prefix should be used no more than once per article.

Web presentation

Horace is currently available at Horace www (not including the experimental
features). Input (name and sex of artist; sex is at the time of writing not used
but will be needed for planned extensions like pronominalization) is validated
by a cgi script in Perl and then forwarded to the prolog DCG. The simple,
xml-like output of the DCG is returned to the cgi script in Perl, which pours
it into an HTML template in newspaper column style. The fake article also
carries an illustration (an abstract painting randomly chosen at runtime; the
painting is currently chosen from a collection by the abstract expressionist
Jackson Pollack).

Sample output:
as for version of Dec 10, 2002 (text only).

Det kosmetiska i det illusoriska debatteras av en ekosofi, eftersom de geometriska
surrealismernas retorik har férldnat det dekonstruktivistiska de obevekligt akademiska
anomiernas eugeni. Trots att det disharmoniskas asymmetri har deklarerat
fanatismen blir det efterhdngset dialogiska musikantiskt. Symbiotiker har appladerat,
eftersom surrealismens postfotografism férlanar morfologismer i de kaleidoskopiska
allegorierna sekterismens semiotik. Naturligtvis abstraherar det postmodernistiska
i det oundvikligt elegiska kameleontismer. De pandemiska hermeneutismerna blir
inte symfoniska, emedan aristokratiens obevekligt nupsykologiska ekvilibrism
forlanar de holistiska gnosticismerna det 6vergripande atlantiskas plastisk. Det sant
konstruktivistiska i pekoralismen har aktualiserats, emedan arkaismer har forldnat
letargismens hermesi allegorien. Trots att neoklassicismen inte har abstraherat det
sant apokalyptiska blir de sant idealistiska arketypernas efterhéngset klaustrofobiska
heraldism antidemokratisk.

De sarkastiska ekvilibrismerna kan inte bli koreografiska, endr symbolismen kan
bli fullstindigt asymmetrisk. Kanske balanserar relativismens geopoliticism de
stilistiska fanatismernas metafysik. Arkaismer kan bli harmoniciteter. Det sant
profetiskas holism blir det elliptiska. Ickestrategiens tragikomik har troligen agiterats
av en eugeni i symbolismen, enir koreografien i det voyeuristiska blir extasens
poststrukturalism. Geometrien i hypotoniciteten har inte attraherats av en rytmik,
endr de sant pyrotekniska tragikomikerna alternerar de asymmetriska kategorierna
i interimismen. Melodier blir amoraliska. De utopiska dekonstruktivismerna i
geopoliticismen debuterar inte, emedan intighetens sant labyrintiska kontrapunktik
delegerar konstruktivismen i det enigmatiska. De absurdistiska narcissismernas
monologism har artikulerats av en analys.

Det atavistiskas helautomatism har avancerat. Det obevekligt absurdistiska forlanar
de kameleontiska kvadraturerna de anagogiska jovialismerna. Trots att fanatismens
morfologism har agerat plastisken i det materialistiska delegerar det efterhingset
symboliskas arkaism fobien. De efterhingset isolationistiska ekosofierna forlanar
dialektens fullstdndigt gigantomaniska plastisk de amoraliska monismernas
fullstindigt relativistiska autokrati, endr metafysiken i protektionismen forldnar
det obevekligt megalomaniska i autokratien det dramaturgiska. Hypokondrier
attackeras inte. Kameleontismen avancerar. Naturligtvis forlanar de sant antiheroiska
opportunismernas mytologi de fullstindigt pedantiska minimalismernas plastisk
voyeurismer.

HORACE

76

References

Literature

Ahrenberg, Lars. 1990. A Grammar Combining Phrase Structure and Field Structure. In Hans
Karlgren (ed.) Proceedings of COLING-90, Helsinki, August 1990, Vol. 1: 1-6.

Bulhak, Andrew C. 1996. On the Simulation of Postmodernism and Mental Debility using
Recursive Transition Networks. Monash University Department of Computer Science,
Technical Report 96/264. Available at:
http://www.csse.monash.edu.au/publications/1996/tr-cs96-264.ps.gz

Gal, Annie, Guy Lapalme, Patrick St-Dizier and Harold Somers. 1991. Prolog for Natural
Language Processing. Chichester: John Wiley.

Pereira, F. C. N. and D.H.D. Warren. 1980. Definite clauses for language analysis. Artificial
Intelligence, 13:231--278, 1980.

WWw
(as for Dec 10, 2002)

ACL www
http://www.aclweb.org/
Charabia www
http://www.charabia.net/generation/index.php?voir=liens&mode=
Electrohype www
http://www.electrohype.org/electrohype2002/artist.html
Horace www
http://www.ling.lu.se/persons/Marcusu/misc/horace/index.html
Kant www
http://macinsearch.com/infomac2/textprocessing/kant-generator-pro-131.html
Kurzweil www
http://www.kurzweilcyberart.com/poetry/rkcp _overview.php3
Lee www
http://www.dack.com/web/bullshit.html
Postmodernism www
http://www.elsewhere.org/cgi-bin/postmodern/
Romance writer www
http://www.familygames.com/features/humor/romance.html
SIGGEN www
http://www.dynamicmultimedia.com.au/siggen/
Sprakbanken www
http://spraakdata.gu.se/lb/konk/
Toolworx www
http://www.burningpress.org/toolbox/
Zawinski www
http://www.jwz.org/dadadodo/

Notes

! This confusion between field and constituent structure is good enough for
the purposes of this paper. It may be criticized, however; among other things,
it invites to circularly defining constituent as ”that which fits into a field” and
field as “’the container of a constituent”. Constituents should really be defined
independently. See for instance Ahrenberg 1990.

77

LUNDS UNIVERSITET

Institutionen for Datavetenskap

http://www.cs.Ith.se
78

Produktion: Jonas Wisbrant e 2004

	klas_johan.pdf
	Clustering documents with vector space model using n-grams
	Abstract
	Introduction
	The problem
	Our solution
	Vector space model
	Clustering
	Results
	Conclusion
	Applet, Java source, and test texts
	References

	klas_johan.pdf
	Clustering documents with vector space model using n-grams
	Abstract
	Introduction
	The problem
	Our solution
	Vector space model
	Clustering
	Results
	Conclusion
	Applet, Java source, and test texts
	References

