
Institutionen för Datavetenskap

http://www.cs.lth.se

Språkbehandling och datalingvistik

Projektarbeten 2002 

Handledare: Pierre Nugues



Printed in Sweden
Lund 2004

2



Institutionen för Datavetenskap

http://www.cs.lth.se

Florian Eisl: 
Discovery of Morphemes in Swedish       5

Patricia Grudziecka, Björn Isaksson: 
Using salience to rank documents       11

Jon Hasselgren, Erik Montnemery and Markus Svensson: 
HMS: A Predictive Text Entry Method Using Bigrams     16

Mattias Johansson and Jonas Håkansson: 
The Artificial Librarian - A Database Dialogue Systems     23

Richard Johansson 
A Morphological Parser for Estonian       33

Erik Lindvall and  Johan Nilsson: 
Extracting Information from Sport Articles in Swedish Using Pattern Recognition 43

Hossein Motallebipour, August Bering: 
A Spoken Dialogue System to Control Robots       53

Klas Skogmar and Johan Olsson,: 
Clustering documents with vector space model using n-grams    59

Marcus Uneson, 
HORACE—an artificial columnist        65

Innehåll



4



Discovery of Morphemes in Swedish 

 
 

Florian Eisl 
 

Lund Institute of Technology 
Department of Computer Science 

Box 118 
S-221 00 Lund, Sweden 
x02fe@efd.lth.se 

 

 

 

Abstract 

This document describes an overview of 
two methods which allows to discover 
syntactic structures form a untagged cor-
pora. 

The first part describes the algorithm by 
Hervé  Dé jean – how it works, and shows 
the result of the algorithm applied to a 
Swedish corpus. A text by Selma Lager-
löf and a Swedish dictionary. 

The second part shows the basics of the 
algorithms developed by Patrick Schone 
and Daniel Jurafsky. 

 

1 Introduction 

The morphological analysis is basically the 
segmentation of words into components that 
form the word by concatenation. 
From a practical point of view, the develop-
ment of a fully automated morphology gen-
erator would be of considerable interest, since 
we still need good morphologies of many 
European languages and to produce a mor-
phology of a given language by hand can take 
weeks or months. With the fact that a lot text 

is available online it is of great interest to 
develop morphologies of particular stages of 
a language, and the process of automatic 
morphology writing can simplify this stage, 
where there are no native speakers available.1 

2 Hervé  Dé jean – Morphemes 

The idea of Hervé  is based on the approach 
by Harris and is characterized by two facts: 
(a) the use of corpora and (b) the use of the 
notion of distribution instead of the sense of 
elements. The distribution of an element is 
the set of environments in which the element 
occurs. 

Only untagged and non artificial corpora 
without specific knowledge about the studied 
language is used. They try to discover the 
structures of a natural language from raw 
texts of this language. This kind of discovery 
is possible if there are some expectations of 
the structure of the Natural Language and 
some formal properties are used. 

The method relies on structural linguistic 
concepts: the morpheme, the chunk and the 
linearity of the language, i.e. the corpus is 

                                                           
1 Goldsmith, John: Unsupervised Learning of the Morphol-
ogy of a Natural Language 

5



composed of a unidimensional sequence of 
elements.2 

2.1 Morpheme Discovery – How it 
works 

The algorithm is based on the number of dif-
ferent letters which follow a given sequence 
of letters. The increase of this number indi-
cates a morpheme boundary. For instance, 
after the English sequence direc, we only 
find, in our corpus, one letter t. After direct, 
we find four letters: i, l, o, and e (directly, 
director, directed, direction). This increase 
indicates a boundary between the root (direct 
and the suffixes (-ion, -ly, -or and -ed). The 
algorithm works well when the corpus con-
tains enough occurrences of a stem family. 
But, it may generate wrong segmentations. 
For example from the list started, startled, 
startling, the algorithm outputs this segmenta-
tion: start-ed, start-led, start-ling. The errors 
occur when two kinds of stem families are 
used for the segmentation.3 

The new idea for improving the segmentation 
now is to divide this operation into three 
steps. The first step computes the list of the 
most frequent morphemes. The second step is 
to extend this list by using the discovered 
morphemes already generated. And the third 
and last step is the segmentation of the words 
using the before produced morphemes. The 
illustration is only done for the segmentation 
of the suffixes but to get the prefixes the 
same algorithm can be used just with the re-
verse letters of the words. 

2.1.1 Discover the most frequent mor-
phemes 

The aim is to find beginnings or endings of 
words which have the following property: 
after a given sequence of letters, we count the 
number of different letters. If this number is 
higher than a threshold (e.g. half the letters of 
                                                           
2 Dé jean, Hervé : Morphemes as Necessary Concept for 
Sturctures Discovery from Untagged Corpora 
3 Dé jean, Hervé : Morphemes as Necessary Concept for 
Sturctures Discovery from Untagged Corpora 

the alphabet), we got a so called morpheme 
boundary, expect in the case that we are in 
the sequence which corresponds to another, 
to a longer morpheme, a case which can be 
detected. This can be illustrate by simple 
example, before the sequence “ on”  we found 
20 different letters therefore “ on”  may be the 
morpheme. But 154 of these words in the 
used corpus end with “ ion”  out of 293 which 
and end with “ on” . Now it can be seen that 
the longest sequence “ ion”  represents more 
then 50% of the words ended by “ on”  and 
due to this it can be considered that the mor-
pheme is not “ on” . “ on”  is only a part of the 
morpheme “ ion” . 

The most frequent morphemes of the English 
and German language can be seen in the fol-
lowing table: 

English German 
-e -en 
-s -e 
-ed -te 
-ing -ten 
-al -er 
-ation -es 
-ly -lich 
-ic -el 
-ent  

 
Table 1: The most frequent morphemes of Eng-
lish and German4 

 

                                                           
4 Dé jean, Hervé : Morphemes as Necessary Concept for 
Sturctures Discovery from Untagged Corpora 

6



The most frequent morphemes of the Swed-
ish language: 

Swedish (selma) Swedish (dictionary) 
-ar -erna 
-er -ningarna 
-en -ade 
 -ar 
 -ligt 
 -ligast 
 -ningarnas 
 -ernas 
 -ades 
 -nings 
 -ens 
 -ers 
 -ets 
 -ad 
 -ning 
 -en 

 
Table 2: The most frequent morphemes of the 
Swedish language 

 

The first column is the result of text written 
by Thelma Lagerlöf. This corpus consists out 
of about 1.000.000 words. 

The result in the second column is received 
using a Swedish dictionary as the corpus. The 
dictionary consists of about 120.000 words. 

2.1.2 Discover other morphemes 

After the most frequent morphemes of a lan-
guage are found this morphemes can be used 
to find out other morphemes. This can be 
done using the following rule: For a given 
sequence of letters it can be checked if the 
next sequences of letters correspond to mor-
phemes already found. If half of them be-
longs to the morphemes found, then the 
others can also be considered as morphemes 
of the language. This can be seen in the fol-
lowing table for the English language: 

 

 

Morphemes 
found 

words New 
Morphems 

 light  
-s lights  
-ed lighted  
-ing lighting  
-ly lightly  
-er lighter  
 lightness -ness 
 lightest -est 
 lighten -en 

 
Table 3: Table of other morphemes of the Eng-
lish5 

 

This algorithm is not perfect and also wrong 
morphemes are generated, but their frequency 
is very low. To make sure that we get only 
correct morphemes we use a threshold (five 
in practice). The morphemes with a fre-
quency lower than the threshold are not 
found. The list of the received morphemes 
may greatly depend on the type of corpus 
used. The number of morphemes depends on 
the morphology of the language. What can be 
found out is, that morphemes have a similar 
behavior as words, a small number of them 
possesses a high frequency and corresponds 
to the mayor occurrences of the corpus. 

2.1.3 Segmentation of the words 

After all morphemes are found we use this 
morphemes to segment all the words in the 
corpus. The segmentation is done be using 
the longest match algorithm. This means that 
we segment each word with the longest mor-
pheme that matches the beginning or ending 
of the word. 

3 Patrick Schone and Daniel Jurafsky - 
Morphemes 

A knowledge free algorithm which automati-
cally induce the morphology structures of a 
language. The algorithm takes as input a 

                                                           
5 Dé jean, Hervé : Morphemes as Necessary Concept for 
Sturctures Discovery from Untagged Corpora 

7



large corpus and produces as output a set of 
conflation sets indicating the various in-
flected and derived forms for each word in 
the language. An example for this can be the 
word “ abuse” . The result would contain the 
following words: “ abuse” , “ abused” , “ abu-
ses” , “ abusive” , “ abusively”  and so on. The 
algorithm extends earlier approaches to 
morphology induction by combining various 
induced information sources: the semantic 
relatedness of the affixed forms using a La-
tent Semantic Analysis approach to corpus-
based semantics, affix frequency, syntactic 
context and transitive closure. The algorithm 
achieves an F-score of 88.1% on the task of 
identifying conflation sets in English. The 
algorithm is also applied to German and 
Dutch and evaluated on its ability to find pre-
fixes, suffixes and circumfixes in these lan-
guages.6 

3.1 Morpheme Discovery – How it 
works 

In the picture below an overview over this 
approach is shown. 

Figure 1: Overview how the algorithm works7 

                                                           
6 Schone, Patrik and Jurafsky, Daniel: Knowledge-Free 
Induction of Inflectional Morphologies 
7 Schone, Patrik and Jurafsky, Daniel: Knowledge-Free 
Induction of Inflectional Morphologies 

3.1.1 Identify pairs of potential morpho-
logical variants 

The first goal is to find word endings which 
could serve as suffixes. A useful tool to find 
these suffixes is the so called character tree. 
Yet using this approach, there may be cir-
cumfixes whose endings will be overlooked 
in the search for suffixes unless we first re-
move all candidate prefixes. Therefore a lexi-
con of all the words in the corpus is built and 
all word beginnings are identified with fre-
quencies in excess of some threshold (T1), so 
called pseudo-prefixes. All the pseudo-
prefixes are stripped and the word residuals 
are added back to the lexicon. To show how 
the search for the suffixes works consider the 
following example. The following words are 
contained in the lexicon: align, real, aligns, 
realign, realigned, react, reacts, and reacted. 
Due to the high frequency occurrence of “ re-“  
it is supposed to be a pseudo-prefix. If all the 
words are stripped of the “ re-“  and the re-
siduals are added to a character tree the 
branch of the tree of words beginning with 
“ a”  can be seen in figure 2. 

Figure 2: Character tree8 
 

Out of the generated character trees rules can 
be received, but not all of these rules are cor-
rect and in the next step, incorporating se-
mantics can help to determine the validity of 
each rule. 

 

                                                           
8 Schone, Patrik and Jurafsky, Daniel: Knowledge-Free 
Induction of Inflectional Morphologies 

 

 

8



3.1.2 Dertermine semantic vectors for 
each word 

In order to obtain semantic representations of 
each word a singular value decomposition 
SVD is performed to a N*2N term-term ma-
trix. The N represents the N-1 most-frequent 
words as well as a glob position to account 
for all other words not in the top N-1. The 
matrix is structured such that for a given 
word w’s row, the first N columns denote 
words that precede w by up to 50 words, and 
the second N columns represent those words 
that follow by up to 50 words. Then the SVD 
is computed and the top 300 singular values 
to form semantic vectors for each word are 
kept.9 

3.1.3 Correlate semantic vectors and 
build conflation sets 

To make a correlation between these seman-
tic vectors normalized cosine scores NCS are 
used. Out of these scores it is possible to get 
the probability that an NCS is random or not 
and it is possible to estimate the distribution 
of true correlations and number of terms in 
that distribution. These numbers are needed 
in the following step. 

3.1.4 Augment with frequency informa-
tion 

If just a purely semantic-based approach is 
used the tendency is to select only the rela-
tionships with contextually similar meanings. 
To overcome this weaknesses of the seman-
tic-based morphology induction the analysis 
can be improved by supplementing semantic 
probabilities with orthographic-based prob-
abilities. 

The motivation is now to use an approach 
based on minimum edit distance MED. 
Minimum edit distance determines the mini-
mum-weighted set of insertions, substitutions 
and deletions required to transform one word 

                                                           
9 Schone, Patrik and Jurafsky, Daniel: Knowledge-Free 
Induction of Inflectional Morphologies 

into another. For example, only a single dele-
tion is needed to transform rates into rate 
whereas two substitutions and an insertion 
are required to transform it into rating. 

If this method for achieving the task is used 
the number of correct pairs of potential mor-
phological variants PPMV can be increased 
by 3% than semantics alone had provided for 
the –s rule.10 

3.1.5 Consider local context for part of 
speech info 

There is no guarantee that two words which 
are morphological variants need to share 
similar semantic properties. Due to this it is 
possible to improve the performance if the 
induction process took advantage of local, 
syntactic contexts around words in addition 
to the more global, large-window contexts 
used in semantic processing. 

There is an added benefit from following this 
approach. It can be also be used to find rules 
that though different, seem to convey similar 
information. This could be clearly be of use 
for part-of-speech induction.11 

3.1.6 Add words  using  transitive clo-
sure 

The algorithm contains semantic, ortho-
graphic and syntactic components but there 
are still valid pairs of potential morphological 
variants which may seem unrelated due to the 
corpus choice or weak distributional proper-
ties. In Figure 3 this property is demonstrated 
in greater detail. 

By semantics only eight connections can be 
found starting at Abuse, abuse, abusers, abus-
ing, …  

                                                           
10 Schone, Patrik and Jurafsky, Daniel: Knowledge-Free 
Induction of Inflectional Morphologies 
11 Schone, Patrik and Jurafsky, Daniel: Knowledge-Free 
Induction of Inflectional Morphologies 

9



Figure 3: Semantic strengths12 
 

3.1.7 Evaluate using CELEX 

The algorithms are only applied to the words 
out of the corpus which have a frequency 
higher then 10. This cutoff slightly limits the 
generality of the results but it also greatly 
decreases processing time for all of the algo-
rithms tested against it.13 

 

4 Conclusion 

Using Dé jean’s algorithm it is very important 
of which type the corpus is. As it can be seen 
in Table 2 two completely different results 
are archived using tow different corpora. 

The corpus should be balanced and the result 
is becoming better the bigger the corpus is. 

 

 

 

 

 

 
                                                           
12 Schone, Patrik and Jurafsky, Daniel: Knowledge-Free 
Induction of Inflectional Morphologies 
13 Schone, Patrik and Jurafsky, Daniel: Knowledge-Free 
Induction of Inflectional Morphologies 

References  
John Goldsmith. 2001. Unsupervised Learning of the 

Morphology of a Natural Language, University of 
Chicago, Association for Computational Linguis-
tics.  

Hervé  Dé jean, 1998. Morphemes as Necessary Con-
cept for Structures Discovery from Untagged Cor-
pora. Université  de Caen, Basse Normandie, 

Partick Schone and Daniel Jurafsky. 2001. Knowl-
edge-Free Induction of Inflectional Morphologies, 
University of Colorado at Boulder. 

 

10



Usingsalienceto rank documents

Patricia Grudziecka, Bj örn Isaksson
Departmentof ComputerScience

Lund Instituteof Technology
Box 118

SE-22100 Lund,Sweden
d98ng@efd.lth.se,d98bis@efd.lth.se

Abstract

Theideadescribedin thispaperis to im-
prove searcheson the Internetby using
thesyntacticstructureof sentences.We
implementeda methodwhich with help
of context factorsis ableto capturethe
importanceof a word betterthana sim-
pleoccurrencecount.Theprototypede-
velopedis slow andwith thefunctional-
ity limited to simplecases.Furthersug-
gestionsof improvementof themethod
aregiven.

1 Intr oduction

Often when you searchon the Internetyou will
be frustratedwhenyou can’t find the information
you want. Thesearchengineswill give you pop-
ular documentsthatcontainthewordsyou search
for. But you don’t searchfor words,you search
for content.I.e how thewordsareusedin thedoc-
umentis moreimportantthanhow often they are
used.
The idea is to use the syntacticstructureof the
sentencesin documentsto rankthe importanceof
wordsin a document.E.g. a word that is thesub-
jectof a sentenceis moreimportantto thecontent
of thedocumentthananobjectis.
A way to capturethat ideais describedin this pa-
per.

2 Vector SpaceModel

A commonwayto rankdocumentsis to usetheIn-
verseDocumentFrequency which is basedon the

VectorSpaceModel. Theideaof thevectorspace
modelis to representdocumentsandqueriesin a
multi-dimensionalspace.Semanticequivalenceof
the query and documentis said to be correlated
with theproximity of thequeryanddocumentvec-
tors.
Thecoordinatesor termweightsarederived from
occurrencecountsasdescribedbelow.

2.1 Term weights

Theimportantquestionis how to weightwordsin
thevectorspacemodel.Theessentialinformation
usedin termweightingis termfrequency anddoc-
umentfrequency.
The termfrequency shows how salienta word is

Quantity Symbol Definition
termfreq. tf ��� � number of occur-

rencesof � � in � �
documentfreq. df � number of docu-

ments in a collec-
tion that � � occurs
in

Figure 1: Two commonlyusedquantitiesin in-
formation retrieval. � � standsfor word � and � �
standsfor document�
in a given document.The higherterm frequency
meansa higherlikleyhoodthattheword is a good
descriptionof the contentof the document. The
relative importanceof a word is often not a lin-
earfunctionof theoccurrencesof theword,but is
taken asa logarithmicfunction(oranotherdamp-
ening function) of the term frequency. A docu-

11



mentwith threeoccurrencesof awordis moreim-
portantthana documentwith oneoccurrence,but
not threetimesasimportant.
Document frequency indicates the informative-
nessof theword. If a word occursin many docu-
mentsin the collection its relative importanceis
less than if it occursonly in a few documents.
Thereforeonecantaketheimportanceof theword
asaninversefunctionof thedocumentfrequency.
A way to combinea word’s term frequency and
documentfrequency into asingleweightis asfol-
lows:

�	�
����
�������������� � ������� �!����" ��� � �#���$�&%')(+* if �#" ��� �-, �.
if �#" ��� � � .

where / is total number of documentsin the
collection. This form ln %')(+* is oftencalledinverse
document frequency.

3 The useof salienceto give term weights

In the idea of improving information retrieval,
given in the introduction, the syntacticstructure
of a sentenceis the deciding factor of how
salienta word is insteadof the term frequency.
A new number describing the salienceof the
word insteadof the termfrequency is usedin the
calculationof thetermweights.
This new numbercalculatedby theweight of the
context factors, we call the aggregated context
factor weights (ACFW). When a word in a
sentenceis within the scopeof the context factor
its weight is addedto the ACFW of the word.
The saliencevalue of an individual word in a
documentis obtainedby adding the weights of
the context factorswhich have that word in their
scope:021

���43657���8�:9 � �	�;�<��
=�;�<>@?@ACBED '� �
whereSV is thesaliencevalue,CF is thecontext
factor(seeFigure3).

After each sentencethe word’s ACFW is
updatedby the saliencevalue of that sentence.
Figure2 shows how theACFW of two individual
wordschangesin theshorttext.

cat dog
Thecatandthedogran. 3+2=5 3+2=5
Thedogchasedthecat. 5+3=8 5+3+2=10

Figure2: Exampleof ACFW calculation.

Context Factors Objectsin scope Weights
Major-constituent Subjectsandobjects 3
Subject Subject 2
Nested-term Nounphrasemodifiers 1
Relation Relative clause 3

Figure3: Context factorsandtheirweights

4 Implementation

A prototype has been developed to rank doc-
uments according to the method above. The
prototype,called SalRankwritten in Java, is at
this stage not able to rank documentson the
Internet,but you have to supplyit with text-files.
This has been a consciouschoice to avoid all
the technical pitfalls of the real world and to
concentrateonthebasicidea.For thesamereason
thereareonly rudimentaryuserinterfaces.
Theprogramconsistsof two majorparts,thedata
processingpartandtheuserinterfaces.

DatabaseRankerParser

AppletApplication

Figure4: Thedataprocessingpartabove andthe
userinterfacesbelow.

Thedataprocessingpartconsistsof theParser,
Ranker andDatabase.

4.1 Parser

The parserparsesa given text into sentences.At
presentit can only handle uncomplicatedsen-
tencesand has trouble with abbreviations. It is

12



suitablefor text-filesandit can’t readHTML-tags.
Thus it is the practicalobstacleto run the proto-
typeon theInternet.

4.2 Ranker

In order to rank a documentthe Ranker has to
obtain the context factorsin a sentence.This it
doeswith agrammaticalparser, Link grammar.
Link grammar treats the words of a sentence
as blocks with connectors. Every block has
connectorspointing to the right or to the left,
everyconnectoris of specifictype.A left-pointing
connectorconnectswith a right-pointingconnec-
tor of thesametype. Thetwo connectorstogether
form a “link”. Theselinks areusedto decidethe
context factorof aword (seeFigure5).

Context Factors Link types
Major-constituent S,SI, J,O
Subject S,SI
Nested-term AN
Relation R

Figure 5: Link typesand correspondingcontext
factors

Figure 6 gives an example of a parsedsen-
tence with link types. The lower-case letters
are connectorsubscriptsthat are not usedin the
implementationof SalRank(link typeD connects
adeterminerwith anoun).

+—-Os—-+
+-Ds-+—Ss–++-Ds-+F F FGF F

thedog.nchased.vthecat.n

Figure6: Exampleof link grammarrepresentation
of asentence.

Dependingon the link typeof word it a differ-
ent weight is addedto its ACFW. In the example
of Figure 6 3+2 (major+subject)is addedto the
ACFW of “dog” and 3 (major) is addedto the
ACFW of “cat”. The ACFW is the weight of a
word in aspecificdocument.

4.3 Database

The Databaseis implementedas a hashtable
with linked lists. Every entry in the hashtable
correspondswith oneword andcontainsa linked
list. Every link in the list consistsof anurl anda
rankfor thespecificword in thatdocument.
Therankof everywordis computedby theinverse
document frequency using the ACFW instead
of the term frequency. If a documentdoesnot
containaqueriedword therankfor thatword is 0.
Thedocumentis rankedby summingtheranksof
thewordsaccordingto:

5IHJ� 9 � � �����K� �!�MLNH � � �#���$�O%'P(E* if LNH � �J, �.
if LNH � � � .

Where 5IH is therankof documentQ , � runsover
thequeriedwordsandL H � � is theACFWfor word �
in documentQ . Thusthedocumentwith thehigh-
esttotal rankis thebestmatchfor thequery.
It is possibleto save andloadtheDatabase.

4.4 Application & Applet

The applicationitself, SalRank,is mainly a user
interface. The collectionof text documentsto be
indexed will have to be in a specifieddirectory.
Thedocumentsarefetchedby theapplicationand
are then passedon to the data processingpart.
When the dataprocessingis finishedone is able
to querythedatabaseandgetapresentationof the
result,in form of asimplelist with rankandurl for
thedocumentsmatchingthequery.
Theappletis only ableto querya databaseprevi-
ously createdby the application. The resultsare
presentedby theappletin a similar way to theap-
plication.

5 Evaluation

The data processingtakes extremely long time.
In our experimentswe have had a collection of
33 files with a total of about 47000 words. It
takes several hours to processthis collection of
documentson a Sparc167MHz machine. The
mainbottleneckhereis theLink grammarparser.
We testedthe ACFW againstthe term frequency
usinginversedocumentfrequency andanexample
of theresultis presentedin Figure7. In thefigure

13



thereis alsoacomparisonwith Google.

Rankingresultson: housedecoration
ACFW tf Google* Filename
13.81 12.01 4 chinadaily.txt
10.94 6.61 2 speel.txt
7.71 8.70 1 burrows.txt
7.07 8.14 3 philamuseum.txt
4.96 9.96 5 cleanairgardening.txt
3.03 3.96 - house5.txt
1.79 3.19 - house3.txtR Only relative order. “house5”and“house3”are

not in thetop100on Google.
chinadaily.txt: An article in China Daily about
the mishapsof a customertrying to hire a house
decorationcompany.
speel.txt: An historicalreview of Lord Leighton’s
decoration of Arab Hall, Leighton House.
burr ows.txt: Oscar Wilde’s lecture on house
decorationgivenin 1882.
philamuseum.txt: A presentationof House
DecorationThemesby thePark HouseGuidesof
PhiladelphiaMuseumof Art.
cleanairgardening.txt: A commercial page
sellingbird- andbat-houses.Thehousesare“not
decoration”accordingto thetext.
house5.txt: Encyclopedia Brittanica’s entry on
thehousesparrow.
house3.txt: Encyclopedia Brittanica’s entry on
thehousemouse.

Figure7: Testresultof rankingwith ACFW and
termfrequency with inverteddocumentfrequency.

Oursubjective orderingof thedocumentsis en-
tirely consistentwith the orderinggiven by Sal-
Rank. Although the first and the two last docu-
mentsareratedin the sameordertherearesome
differencesinbetween.The secondhighestrated
documentusingterm frequency, “cleanairgarden-
ing”, does not contain any information about
“house decoration”. The term “not decoration”
increasesthe rating for this documentwith term
frequency. With the way the term is mostly used
in thetext e.g. “Bluebird housefor bluebirds,not
decoration!”,thisdoesnot increasetheACFWfor
“decoration”.
Whenit comesto the “speel”-text it is ratedhigh

with ACFW mostly becausethe word “house” in
the’right’ positionin thesentences.
Thedifferencesin ratingsbetweendocumentscan
intuitively bedescribedastherelative importance
of the documents. The differencebetweenthe
highestand lowest ranking documentsis larger
with the ACFW methodthan with the term fre-
quency methodimplying that the ACFW method
is betterin lifting importantdocumentsandsup-
pressingirrelevantdocuments.But this is a fairly
untestedassumption.

6 Conclusions

The idea of SalRankwas to improve the per-
ceived correlationbetweenthe pagecontentand
thesearchquery, on theInternet.We feel we have
achieved this, but we would have benefitedfrom
a larger testcollectionto draw this conclusionfor
certain.At thisstageSalRankmostoftenreturnsa
rankinglist in theexpectedorderof our subjective
ratingof thedocuments.
Someimprovementsof theprogramcanobviously
be made. The Parsershouldbe ableto fetch real
Internetdocumentsand to crawl the net for new
documents,like a realsearchengine.To rank the
documentsonecouldexchangetheLink grammar
parserto a speciallywritten sentenceparserto ex-
tract the context factors. The databasecould be
replacedby a regulardatabase,like SQL.
A further improvementof our methodto calcu-
latethesaliencecouldbeto take referencesof the
words into account. One’s scopewould thenno
longerbe just onesentenceat a time, but several
on eachother following sentences.A word with
many referencesin following sentenceswould
thenreceiveahigherACFW, thanwith thepresent
method.Theadvantageof thismethodis thateven
if a word is only usedonce(or seldom)in a page,
but referredto a lot, it is still importantto thecon-
tentof thepage.

7 Acknowledgements

In our programwe have used java-files written
by Ola Åkerberg andHansSvennson.The most
important file was the java interface to Link
grammarthatis written in C.
We have also used Link grammar from
http://www.link.cs.cmu.edu/link/.

14



References

ChristopherD. Manning and Hinrich Scḧutze, 1999,
Foundations of statistical natural language process-
ing, MIT Press.

CarlaHuls,EdwinBosandWim Claassen,1995,Auto-
matic Referent Resolution of Deictic and Anaphoric
Expressions, Association for ComputationalLin-
guistics

Megumi Kameyama, 1997, Recognizing Referential
Links: An Information Extraction Perspective,
http://acl.ldc.upenn.edu/W/W97/W97-1307.pdf

PierreNugues,2002, Introduction to Language Pro-
cessing and Computational Linguistics, Lecture
notes, Lund Instituteof Technology

Davy Temperly, 1999, An Introduc-
tion to the Link Grammar Parser,
http://www.link.cs.cmu.edu/link/dict/introduction.html

John Lafferty, 2000, The Link Parser
Application Program Interface (API),
http://www.link.cs.cmu.edu/link/api/index.html

15



HMS: A Predictive Text Entry Method Using Bigrams

Jon Hasselgren Erik Montnemery Markus Svensson
Lund Institute of Technology

Department of Computer Science
Box 118

S-221 00 Lund, Sweden
{d99jh, d99em, d99msv }@efd.lth.se

Abstract

Due to the emergence of SMS messages,
the significance of effective text entry
on limited-size keyboards has increased.
In this paper, we describe and discuss
a new method to enter text more effi-
ciently using a mobile telephone key-
board. This method, which we called
HMS, predicts words from a sequence
of keystrokes using a dictionary and a
function combining bigram frequencies
and word length.

We implemented the HMS text entry
method on a software-simulated mobile
telephone keyboard and we compared it
to a widely available commercial sys-
tem. We trained the language model on
a corpus of Swedish news and we eval-
uated the method. Although the train-
ing corpus does not reflect the language
used in SMS messages, the results show
a decrease by 7 to 13 percent in the num-
ber of keystrokes needed to enter a text.
These figures are very encouraging even
though the implementation can be opti-
mized in several ways. The HMS text
entry method can easily be transferred
to other languages.

1 Introduction

The entry of text in computer applications has tra-
ditionally been carried out using a 102-key key-
board. These keyboards allow to input charac-
ters in a completely unambiguous way using sin-
gle keys or sometimes key combinations.

However, in the last few years, mobile tele-
phones have introduced a new demand for text en-
try methods. Mobile telephones are usually opti-
mized in size and weight. As a result, the keyboard
is reduced to a minimal 12-button keyboard (Fig-
ure 1).

Figure 1: The 12-button keyboard of a Nokia
3410.

The reduced keyboard makes it hard for the user
to enter text in an efficient way because s/he has to
use multiple tapping or long key combinations to
display and disambiguate the characters. Albeit
tedious, the multiple tapping method was the most
commonly implemented in mobile telephones un-
til some time ago. To spare the user these elements
of frustration, a new class of text entry methods
has appeared. It uses dictionaries in an attempt to
resolve the word ambiguity and requires, in most
cases, only one keystroke per character.

This paper proposes a method that supplements
the dictionary with word and bigram probabili-
ties. The method uses the last written word to im-
prove the prediction of the current word and to de-
crease the number of needed keystrokes even fur-
ther. This method that we refer to as HMS in the

16



rest of the text, uses the frequencies of common
bigrams that we extracted from a corpus of texts.

2 Current Text Entry Methods

In this section, we summarize the text entry meth-
ods currently in use and some methods under de-
velopment. All the mentioned methods use a key-
board with 12 buttons.

As a measurement of the efficiency of the differ-
ent text entry methods, we will use the number of
keystrokes per character orKSPC (MacKenzie,
2002). A completely unambiguous keyboard en-
ables aKSPC of 1, text prediction methods may
reduce this number even further.

2.1 Multi-Press Methods

The multi-press methods require more than one
keystroke to enter a character. These methods al-
lows for unambigous typing of characters. They
can be used alone or as a fallback for systems us-
ing more complex text entry methods. The multi-
press methods are well suited to type words not
contained in the dictionary.

2.1.1 The Multi-Tap Method

The first and still most common way to enter
text on a mobile telephone is the multi-tap method.
Since ‘a’, ‘b’ and ‘c’ share the same key, the user
presses it once to enter an ‘a’, twice to enter a
‘b’, and three times to enter a ‘c’. To enter the
word dog, the user presses the sequence of keys
“36664”.

As two consecutive characters of a word can
share a same key, as for example the word “no”
where both ‘n’ and ‘o’ are assigned to 6, a timeout
is needed to determine when to stop shifting the
letters and display a new character.

This method results in aKSPC of 2.0342 if
English text is entered (MacKenzie, 2002).

2.1.2 Remapped Keyboard

On current mobile telephone keyboards, char-
acters are assigned alphabetically to keys. This
is not optimal given that, for instance, the most
frequent character in English, ‘e’, is displayed us-
ing two taps. Remapped keyboards assign a sin-
gle key to the most frequent characters. The re-
maining characters are grouped into sets that share

a same key. This method decreases theKSPC
because frequent characters are entered with only
one keystroke.

The program MessagEase (Saied, 2001) of EX-
ideas uses the idea of the remapped keyboard tech-
nique. MessagEase results in aKSPC at 1.8210
(MacKenzie, 2002).

2.2 Single-Press Methods

The single-press methods try to reduce theKSPC
to roughly one. They resort to a dictionary as a
mean of resolving the ambiguity of the input.

2.2.1 The Predictive Text Entry Method

With the predictive text entry method, the user
presses one key per character and the program
matches the key sequence to words in a dictionary
(Haestrup, 2001). Even if several characters are
mapped to the same key, in many cases, only one
word is possible given the sequence. This method
makes it possible to reduce theKSPC to roughly
1. If the key sequence corresponds to two or more
words, the user can browse through the resulting
word list and choose the word s/he intended to
write.

The user, for example, enters the wordcome, by
first pressing 2. The program will then propose the
word a because it matches the entered sequence.
When the user presses 6, 6, and 3, the program
might propose the wordsan, conand finallycome.
The wordsbone, bond, andanod(and some more),
also fit the given sequence. The user can access
these words by pressing a next-key.

Many new mobile telephones use this method.
The most widely used implementation is T9 by
Tegic (Grover et al., 1998). Other implementa-
tions are eZiText by Zi Corporation (Zi Corpora-
tion, 2002) and iTAP by Motorola (Lexicus Divi-
sion, 2002) . Most implementations only match
words with the same length as the key sequence,
resulting in aKSPC of slightly greater than 1
when the user types words that are contained in
the dictionary.

Some implementations propose words longer
than the tapped sequence based on probability in-
formation for the words. These implementations
can reach aKSPC < 1.

17



2.2.2 WordWise

WordWise developed by Eatoni Ergonomics
uses an auxiliary key. A character on a key is
selected explicitly by simultaneously pressing the
key corresponding to the character and the auxil-
iary key indicating the position of the character on
the key. This decreases the number of matching
words for a key sequence considerably because the
user explicitly disambiguates some characters in
the sequence.

A drawback is that two keys must be pressed
concurrently. With a limited space keyboard, this
can prove difficult to some users.

2.2.3 LetterWise

LetterWise (MacKenzie et al., 2001), also by
Eatoni Ergonomics, is a different approach, which
eliminates the need for a large dictionary. It only
considers the letter digram probabilities. In En-
glish, the letter ‘t’ is often followed by ‘h’ and
hardly ever by ‘g’. The program selects the most
probable letter knowing the previous one. The
user can browse and change the characters by
pressing a ‘Next’ key.

The LetterWise method has aKSPC of 1.1500
(MacKenzie, 2002). One of its main advantages
is the small amount of memory needed. Another
advantage is the fact that it is just as easy to enter
words, which are not in a dictionary. Therefore
this could be a suitable fallback method instead of
the multi-tap methods, to produce faster text input.

3 Predictive Text Entry Using Bigrams

Prediction may further improve the performance
of text entry with a limited keyboard. With it, the
suggested words may be longer than the currently
typed input.

We propose to use word bigrams, i.e. two con-
secutive words, to give a better text prediction, see
inter alia (Shannon, 1948), (Jelinek, 1997), and
(Manning and Sch¨utze, 1999). The list of bigrams
is stored in memory together with their frequency
of occurrence and it is accessed simultaneously
with the character input.

Given a previously written word, the most prob-
able subsequent words are extracted from the bi-
gram list. Using the maximum of likelihood, the
probability of the bigramwn−1, wn given the word

wn−1 is computed as:

PMLE(wn|wn−1) =
C(wn−1, wn)

C(wn−1)
(1)

Since the previously written wordwn−1 is always
known and constant, it is sufficient to use the fre-
quency of the bigrams and set asideC(wn−1).

In practice, bigrams must be combined with a
dictionary. Sparse data from the development cor-
pus and memory constrains make it impossible to
store an exhaustive list of bigrams. To choose
the words to propose, we used a variation of the
Katz model (Katz, 1987). The Katz model takes
the longest available N-gram and uses correction
terms to normalize the probabilities. In the case of
bigrams, the probabilities can be expressed as:

P (wn|wn−1)
={

P (wn|wn−1) C(wn−1, wn) 6= 0
αP (wn) C(wn−1, wn) = 0

(2)

whereα is the correction term.
In our implementation, the bigrams are always

prioritized over the unigrams. The Katz back-off
model is well suited for our implementation as it
allows for a small memory footprint of the bigrams
list, while still ensuring that the system will sup-
port entering of all words in the dictionary.

In addition to the bigram frequencies, the word
length is a useful criterion to present the match-
ing words to the user. This additional parameter is
justified by the navigation through a list of words
with the keys available on mobile telephones.

Bigram probabilities used alone produce a list
of possible words and rank them without regard
to the effort needed to select the intended word.
Since browsing the list is carried out using one
scrolling key, it may take a couple of keystrokes to
reach the word. Even, if corpus frequencies sug-
gest a longer word being preferred to a shorter one,
a presentation by decreasing frequencies may be
inadequate.

The list navigation is in fact easier in some cases
using character input keys. A single keystroke can
resolve a great deal of ambiguity because there is
a total of 8 keys to choose compared to the unique
scrolling key to cycle the list of suggested words.

18



That’s why the list of proposed words is rescored
and short words are given an additional weight.

4 Implementation

We implemented a software prototype of the HMS
method we described in this paper. We chose
the Java programming language because of its
extensive packages that allow for rapid develop-
ment. Another advantage is Java’s platform inde-
pendence, which should, in theory, make it pos-
sible to run the program on any modern mobile
telephone.

The program was designed to run on a hand-
held device i.e. on the client side of the mobile
network. The memory of a mobile telephone is
very limited and a disadvantage of this strategy is
the memory footprint of the language models we
use. A possible workaround would be to imple-
ment the HMS software on an application server.
All the users would then share the language mod-
els with possible customizations. Modern mobile
telephone infrastructures enable a real-time round
trip of the typed characters and thus the interactive
suggestion of matching words.

The program computes a list of word sugges-
tions every time a key is pressed and the best sug-
gestion is displayed simultaneously on the screen:
The top white window in our Java program (Fig-
ure 2). The user can browse the list of suggestions
using the up and down keys.

4.1 Program Design

The program is divided into two parts: a user in-
teraction module and a lexical database module.

The user interaction module currently consists
of a Graphical User Interface (GUI) whose lay-
out closely resembles that of a mobile telephone.
The simulated keyboard layout makes it possible
to compare the HMS prototype with software run-
ning on mobile telephones.

The lexical database module contains the core
of the program. It is responsible for the gener-
ation of a list of suggested words given the user
input so far. The modules communicate with each
other using an interface. Thus, the two parts are
independent and one may modify the user interac-
tion module in particular to fit different platforms

Figure 2: Screenshot of the HMS Java prototype.

without having to modify the module concerning
the word guessing algorithm.

4.2 Data Structures

A compact encoding structure of the bigram and
unigram lists has a significant impact to achieve
an efficient word proposal.

The data structure we used is comparable to
that of a letter tree ortrie (de la Briandais, 1959).
However, the nodes of the new tree structure cor-
respond to an input key instead of a character
as in the classical tries. For instance, the char-
acters(a, b, c, 2) are associated to a single node.
Thus, the tree structure enables to represent the
keystroke ambiguity and makes it easier to tra-
verse the tree. It also introduces the need to store
a complete list of words that match a keystroke
sequence in the leaves resulting in a somewhat
higher memory overhead.

Searching this type of tree is straightforward.
The keys pressed so far by the user are used as in-
put and the tree is traversed one level down based
on every key pressed. When the traversal is com-
pleted the resulting sub-tree includes all possible
suggested words for the typed key combination.

For the bigrams, a slightly different structure
is needed. Since the previously written word has

19



been chosen from the list of suggested words, it
can no longer be considered ambiguous. One can-
not simply build a tree of bigrams using the pro-
posed structure because the tree itself is ambigu-
ous. A collection of trees, one tree for each pre-
ceding word, was used. For performance reasons,
a hash table was used to manage the collection.

4.3 Training the Language Model

We trained the language model – unigrams and
bigrams – on the Stockholm-Ume˚a (SU) Corpus
(Ejerhed et al., 1992). The SU corpus is a POS an-
notated, balanced corpus of Swedish news reports,
novels, etc. The SU corpus does not reflect the lan-
guage of SMS messages that differs greatly from
that of the “classical” written Swedish. This re-
sults in a non-optimal language model. We chose
it because of the unavailability of a large-enough
public SMS corpus.

When the input of a single word is completed,
its corresponding bigram and unigram probabili-
ties are updated. It results in a learning system,
which adapts to every user’s style of writing. To
increase the speed of adaptation, language fre-
quencies derived from the user input have higher
priorities than what has been learned from the
training corpus.

All corpora and dictionaries used with the soft-
ware have been in Swedish so far. However, the
HMS program does not carry out any language-
specific parsing or semantic analysis. Hence, the
method could be transferred to any language pro-
vided that a sufficient corpus exists.

5 Evaluation

As an evaluation of the efficiency of our imple-
mentation, we made an initial comparative test
between the HMS program and the Nokia 3410,
which uses the T9 system.

As we said in the previous section, we could
not train a language model optimized for an SMS
application. This certainly biased the evaluation
of the entry methods in our disfavor. Therefore,
we chose to evaluate both programs with a test set
consisting of a sample of SMS messages and short
texts from newspapers.

A total of nine testers entered the texts. They
first had the possibility to get accustomed to both

the HMS and the T9 methods. The testers were
encouraged to compose a short arbitrary SMS
message of 50-100 characters containing everyday
language. They also chose an excerpt of a news-
paper article of approximately the same length
as the typed SMS message from theAftonbladet
Swedish newspaper website. The keystroke count
was recorded and used to calculate theKSPC pa-
rameter.

The entry of new words, i.e. missing from the
dictionary, uses the same technique in the HMS
and T9 methods. We selected texts where all the
words were in the dictionary of both systems.

Table 1 shows the results we obtained in
keystrokes per character.

Table 1: Test results.

Method Type of text KSPC

T9 SMS 1.0806
HMS Bigrams SMS 1.0108
T9 News 1.0088
HMS Bigrams News 0.8807

The HMS entry method shows aKSPC
smaller than that of the T9 system in both tests:
news and SMS texts. The improvement is of, re-
spectively, 7 and 13 percent. The better result for
the bigram method is mainly due to two reasons.
First, the utilization of the previously written word
to predict the next word results in an improvement
of the prediction compared to the methods relying
only on dictionaries such as T9. Secondly, the fact
that words are actually predicted before all charac-
ters are entered improves even further the perfor-
mance of HMS over T9.

6 Discussion

The difference inKSPC between the SMS and
news text with our method is to a large extent
due to the corpus, which does not fit the more ca-
sual language of the typical SMS texts. The T9
method, on the other hand, is optimized for typing
SMS texts.

Another reason for the difference may be that
the news texts in general contain longer words.
The mean word length in our test is about 4
characters for the SMS texts and 5 characters

20



for the news texts. In general longer words can
be predicted earlier relatively to the wordlength,
since less words are possible given a sequence of
keystrokes. This should imply a smallerKSPC
for longer words. Figure 3 shows theKSPC ac-
cording to the word length and the falling curve
for longer words.

Figure 3:KSPC versus the mean word length in
the HMS bigram method.

A longer word often resolves some ambiguities
and the possible words for a given key sequence
are often fewer than for a short sequence. This
explains why the T9 system also shows a better
result for the news text. However, the T9 can never
reach aKSPC less than 1 since it doesn’t predict
words longer than the given sequence.

Figure 4:KSPC versus mean word length in the
T9 system.

Other significant differences between the SMS
and news texts play a role in the final results. For
example, the SMS texts show a higher frequency
of certain characters such as the question marks,
slashes and exclamation marks, which results in a
higherKSPC. This fact can explain the surpris-
ingly high KSPC for some texts. This property
affects both methods to the same extent though.

7 Conclusion and Perspectives

We implemented a new text entry method adapted
to mobile telephone keyboards and we compared it
to the T9 method widely available on commercial
devices. The HMS method is based on language
models that we trained on the SU corpus.

The training corpus was, to a great extent, col-
lected from Swedish news wires and didn’t fit our
application very well. This is heavily related to
the language used in SMS messages, which tends
to include abbreviations and slang absent from the
SU corpus. However, the results we obtained with
the HMS method show a decrease by 7 to 13 per-
cent in the number of keystrokes needed to enter
a text. These figures are very encouraging even
though the implementation can be optimized in
several ways.

It would be very interesting to evaluate the
KSPC of the bigram method after training the
system with a better-suited corpus. We expect
theKSPC to be significantly lower than with the
present corpus. It is worth once again pointing out
that even with the non-optimal corpus, the results
of the bigram method are on par or superior.

We also observed that the language model
adapts quicker to the users’ individual ways of ex-
pressing themselves than other systems. It thus in-
creases the gain over time.

At the time we wrote this paper, we could not
gain access to a large corpus of SMS messages.
However, we intend to collect texts from Internet
chat rooms and message boards, where the lan-
guage shows strong similarities to SMS language.
We expect a better language model and an im-
provedKSPC from this new corpus.

A problem with the bigram method is its large
memory footprint compared to that of dictionary-
based systems. However, this should not be a
problem on the next generation of mobile tele-

21



phones like GPRS and 3G. The language mod-
els could be off-loaded on an application server
and the low round-trip time of the network system
should enable a real-time interaction between the
server and the user terminal to carry out the word
selection.

References

Zi Corporation. 2002. eZiText. Technical report,
http://www.zicorp.com.

R. de la Briandais. 1959. File searching using variable
length keys. InProceedings of the Western Joint
Computer Conference, volume 15, pages 285–298,
New York. Institute of Radio Engineers.

Lexicus Division. 2002. iTap. Technical report, Mo-
torola, http://www.motorola.com/lexicus, Decem-
ber.

Eva Ejerhed, Gunnel K¨allgren, Ola Wennstedt, and
MagnusÅström. 1992. The linguistic annotation
system of the Stockholm-Ume˚a project. Technical
report, University of Ume˚a, Department of General
Linguistics.

Dale L. Grover, Martin T. King, and Clifford A. Kush-
ler. 1998. Reduced keyboard disambiguating com-
puter. U.S. Patent no. 5,818,437.

Jan Haestrup. 2001. Communication terminal hav-
ing a predictive editor application. U.S. Patent no.
6,223,059.

Frederick Jelinek. 1997. Statistical Methods for
Speech Recognition. The MIT Press, Cambridge,
Massachusetts.

Slava M. Katz. 1987. Estimation of probabilities
from sparse data for a language model component
of a speech recognizer.IEEE Transaction on Acous-
tics, Speech, and Signal Processing, 35(3):400–401,
March.

I. Scott MacKenzie, Hedy Kober, Derek Smith,
Terry Jones, and Eugene Skepner. 2001. Let-
terwise: Prefix-based disambiguation for mo-
bile text input. Technical report, Eatoni,
http://www.eatoni.com/research/lw-mt.pdf.

I. Scott MacKenzie. 2002. KSPC (keystrokes per char-
acter) as a characteristic of text entry techniques.
In Proceedings of the Fourth International Sym-
posium on Human Computer Interaction with Mo-
bile Devices, pages 195–210, Heidelberg, Germany.
Springer-Verlag.

Christopher D. Manning and Hinrich Sch¨utze. 1999.
Foundations of Statistical Language Processing.
MIT Press, Cambridge, Massachusetts.

Nesbat B Saied. 2001. Fast, full text en-
try using a physical or virtual 12-button
keypad. Technical report, EXideas,
http://www.exideas.com/ME/whitepaper.pdf.

Claude E. Shannon. 1948. A mathematical theory of
communication.The Bell System Technical Journal,
27:379–423, 623–656, July-October.

22



e98mj@efd.lth.se 
e98jha@efd.lth.se  1 

The Artificial Librarian 
A Database Dialogue System 

 
Mattias Johansson and Jonas Håkansson 

Department of Computer Science 
Lund Institute of Technology 

Lund University, Sweden 
 

January 17, 2003 
 
 
 
1. Introduction 
 
This project is the second part of the course “An Introduction to Language Processing and 
Computational Linguistics”  at the Department of Computer Science. It was defined by us 
together with our teacher Pierre Nugues. The Artificial Librarian is a dialogue system which 
is connected to a database. It parses the user input and searches the database for the 
information. The user can for example ask for a book by a specific author, who has written a 
specific book or where in the library the book is located. The librarian can sometimes ask for 
additional information, for example to narrow down the search. The application is web based 
and can be found at http://www.efd.lth.se/~e98mj/librarian/. It may not always be up and 
running though. There is a screenshot in appendix B to give an idea on how the system looks. 

 
2. Technology overview 
 
The application was decided to be connected to a public book database to make the query 
constraints as few as possible. Since the application was to be connected to the database 
through internet it felt natural to make an internet interface for the whole application. Our 
teacher suggested JSP, Java Server Pages. We had never used this technique, but most of our 
programming courses are based on Java, so it seemed like a good idea.  

 
3. Language processing 
 
The language processing consists of two parts; one that interprets the user input and one that 
generates the response from the librarian. The main technique we use for the user input 
interpretation is decision trees, which simplified works like this: classify the first word, and 
then take the next word and check if it fits with some of the parts-of-speech that are allowed 
after the first one. This way, word by word in the sentence is traversed. The dialogue 
processor, that generates the response from the librarian, is explained in chapter 3.3. 
 
 
 
 

23



e98mj@efd.lth.se 
e98jha@efd.lth.se  2 

3.1 Parts-of-speech 
 
When a word is to be classified it is compared to the list of words in the part-of-speech table. 
Examples of the words are shown in the table below.  
 

Part-of-speech Examples 
Auxiliary do, can, has 
Interjection yes, no, ok, okay 
Noun shelf, books 
Preposition by, on 
Pronoun you, I, anything, something, any 
Proper noun any proper noun, e.g. Stephen King 
Verb have, find, written, wrote 
Wh-word what, where, who, which 

 
3.2 Possible decision trees 
 
The tree consists of part-of-speech phrases. These phrases consist of words of the same part-
of-speech. Which phrases or words that are allowed as the next, are shown in the table below. 
Every sentence begins with the sentence phrase. The first word of a sentence is compared to 
the list in the second column in the table. If it fits, the next word is checked in the same way. 
Not all parts-of-speech are allowed as a last word in a sentence. The rules are shown in the 
third column. Since the phrases not are words, there is no information on those rows. As given 
from that column the only two parts-of-speech that are allowed as last word are proper nouns 
and interjections. There is a special case when the last word not is a proper noun or an 
interjection. When the librarian has asked for something and the user answers with “yes, 
[phrase]” , the phrase part is interpreted, but if the phrase part doesn’ t fit any of the possible 
types of sentences, the phrase part is neglected and the sentence is interpreted as only “ yes” . 
This means that all words are allowed as a last word if it is a phrase that follows a “yes”  or 
“no”  and the phrase couldn’ t be interpreted. 
 
 Root or current leaf Possible subsequent leafs Allowed as last word 
Sentence (phrase) wh-word, preposition phrase, interjection, 

proper noun phrase, auxiliary 
- 

Noun phrase pronoun, noun - 
Preposition phrase preposition - 
Proper noun phrase proper noun - 
Verb phrase verb - 
Auxiliary noun phrase, verb phrase no 
Interjection proper noun phrase, preposition phrase, 

wh-word 
yes 

Noun auxiliary, preposition phrase no 
Preposition proper noun phrase, wh-word no 
Pronoun verb phrase, preposition phrase, noun phrase no 
Proper noun proper noun phrase, preposition phrase yes 
Verb preposition phrase, proper noun phrase, 

noun phrase 
no 

Wh-word auxiliary, noun phrase, verb phrase no 
 

24



e98mj@efd.lth.se 
e98jha@efd.lth.se  3 

3.3 Dialogue processor 
 
The user input is searched for special words so that the system knows what the user wants. 
For example if the user begins the sentence with “who”, the system knows that the user is 
looking for authors. When a successful interpretation of the user input is done, the query is 
sent to the database. Otherwise, if it could not be interpreted, the librarian has to ask the user 
to type something else. When the answer is received from the database, and the result is 
extracted, the system can decide what the answer should be. The system now checks how 
many results the database returned and builds different answers based on that information. On 
some occasions the systems gives more information then the user asked for, e.g. on what shelf 
the books are located. All possible dialogues are listed in a tree structure in appendix A. 

 
4. Information extraction from web database 
 
The web database we decided to use was Amazon.com. This is an online book store which 
provides a huge amount of books, so that it will look like there are that many books in the 
library. The draw back of using a book store is that there are sometimes different editions of a 
book. If you for example ask “What do you have by Tolkien?” , the answer would be: 

I found more than 25 titles. The five most popular, I think, are: 
 ¤ The Hobbit and The Lord of the Rings [BOX SET]   
 ¤ The Lord of the Rings [BOX SET]   
 ¤ The Lord of the Rings (Leatherette Collector's Edition) 
 ¤ The Hobbit (Leatherette Collector's Edition) 
 ¤ The Silmarillion 
Is it any special book you are interested in? 

This is not the answer you expect when it is a library. It should only answer with the title and 
not with multiple versions of the same book.  
 
4.1 Retrieve result from web page 
 
Amazon.com only provides an html based version of the database available to people outside 
the company. This means that when we send our database queries we get an html page as an 
answer. Since Amazon.com is one of the largest online book stores, it has a lot of commercial 
banners and special offers on the site. This made it a little more difficult to extract the 
significant results from the answer. If Amazon.com doesn’ t find any book or it only finds one, 
the answer page looks completely different, but we managed to find some patterns to 
recognise the significant results, even in such cases. For example, there was a number on the 
page that told how many results that was found, but the number only showed if there were 
two or more results. Another potential problem with getting the result page in html format is 
that it shows a maximum of only 25 hits per page. As the system is built now that is not a 
problem, but if we sometime are going to develop it further it might be a limitation. To get the 
most likely answer when the user asks for an author or a title, we chosen to use 
Amazon.com’s feature of sorting the results by best selling. Then, when the system suggests 
an author or a title it picks the top item of the list. 

 

25



e98mj@efd.lth.se 
e98jha@efd.lth.se  4 

5. Development 
 
To give an overview of the way our work proceeded, we have put together some milestones. 
 
- Selected techniques: Since we have programmed a lot using Java earlier, we chose to use a 

Java based environment; Apache Tomcat which is a web server supporting JSP (Java 
Server Pages). As we run the server on our school account, we can not have it up and 
running when we are not logged on. We looked around for an online book store to use as 
the database for our project, and found that Amazon.com would be the best choice, even 
though it sometimes could be a little slow, because of its large number of books and the 
consistent way it presents the search results. 

- Extracted search results: In the beginning we had some difficulties to decode the result 
pages, because of the large amount of commercials and special offers on the result pages, 
but managed to solve the problems and wrote code for searching by author, title and both. 

- The Language Processing module: Initially we wrote code that could handle a couple of 
types of sentences. Before we decided to use decision trees to represent the allowed 
sentence structures, we tried a couple of other homemade variants. This was probably the 
part of the project that chewed the most time. 

- Connected the modules: We developed the Language Processing module and the Web 
Database module separately to have better control over eventual misbehaviours. As we got 
them both to work independently, we connected them and for the first time got a working 
web application. 

- The dialog history: To be able to get an overview of the dialog (since each turn can take 
quite a while to process, see selected techniques above), we added the history to returned 
web pages. 

- The multi-turn dialogs: To make a more interesting application, we implemented multi-
turn dialogs, so that the user would be able to give answers to the librarian’s following-up 
questions. The recognized answers would be “yes” , “no”  and “okay” . The user may also 
continue a “yes”-answer with a supported sentence that would be used if correct. 

- Conversation enders: To reset the dialog and its history, we added conversation enders 
like “goodbye” and “ thank you”  

- Map of library: We added a simple map as a complement to the referred sections of the 
library. It makes the visualisation of the artificial library easier. 

- Testing the application: We let people not involved in the project try The Artificial 
Librarian to get opinions about it, to see what kind of sentences they asked, and to find 
eventual bugs. 

 

26



e98mj@efd.lth.se 
e98jha@efd.lth.se  5 

6. Examples 
 
To give you a picture of how The Artificial Librarian works, we have provided a 
demonstration with four examples. 
 
Example 1: 

U: Who has written Pippi Långstrump?   

L: I found over 25 matching titles. Could it 
perhaps be Astrid Lindgren, Michael 
Chesworth (Illustrator)? Otherwise, you have 
to be more specific.   

U: Yes, that's right   

L: Great, I'm glad I could help you! 

Example 2: 

U: What books do you have by King?   

L: I found more than 25 titles. The five most 
popular, I think, are: 
 ¤ From a Buick 8: A Novel 
 ¤ Everything's Eventual: 14 Dark Tales 
 ¤ On Writing: A Memoir of the Craft 
 ¤ Brunelleschi's Dome: How a Renaissance 
Genius Reinvented Architecture 
 ¤ The Foster's Market Cookbook 
Is it any special book you are interested in?   

U: Yes 

L: Which one would that be? 

U: Everything’s Eventual 

L: It would be to your left in the ‘K’  section. 

Example 3: 

U: What do you have by Jan Guillou?   

L: I found 18 titles. The most popular ones 
are: 
 ¤ Enemy's Enemy 
 ¤ Vèagen till Jerusalem 
 ¤ Tempelriddaren 
 ¤ Irak--det nya Arabien 
 ¤ Artister : intervjuer och portrèatt 
Is it any special book you are interested in? 

U: Yes, on which shelf can I find 
Tempelriddaren?   

L: It would be to your left in the 'G' 
section. 

Example 4: 

U: Where can I find books by 
Långstrump?   

L: I'm sorry, but it seems like we don't 
have anything by Långstrump.   

U: Okay   

L: What else can I do for you? 

U: Nothing

27



e98mj@efd.lth.se 
e98jha@efd.lth.se  6 

7. Conclusions 
 
The problem discussed in chapter 4, that the system answers with different versions of the 
same book, should be dealed with. If we some day would decide to develop The Artificial 
Librarian further, we would probably use a library database to make it more realistic. Another 
solution is that we could change the library to an information desk in a book store. This would 
be much easier of course, but it could have other features as price information and price 
limitation in a search. 
 
When we started with this project we did not really know what result we could expect because 
we were all new to computational linguistics. We started with a not very high ambition level, 
but our teacher encouraged us to make it more and more extensive. Now when we are 
finished, the most important lesson we have learned is that it doesn’ t take a huge program to 
make an interactive dialogue system which work fairly well, although there are some 
linguistic tricks that make our system look smarter then it is. 
 
Overall we are satisfied with the result of this project. Of course there are things that could be 
better, but it was only a two university points (two weeks) project. 

 
8. References 
 
J Boye, M Wirén, M Rayner, I Lewin, D Carter and R Becket, July 1999, Language-
Processing Strategies and Mixed-Initiative Dialogues, IJCAI-99 Workshop on Knowledge 
and Reasoning in Practical Dialogue Systems 
 
S Abney, M Collins and A Singhal, 2000, Answer Extraction, AT&T Shannon Laboratory 
 
P Nugues, 2002, Lecture notes: Introduction to Language Processing and Computational 
Linguistics, Department of Computer Science, Lund Institute of Technology 
 
Apache Tomcat of The Apache Jakarta Project, http://jakarta.apache.org/tomcat/ 
 
Amazon.com, http://www.amazon.com/

28



e98mj@efd.lth.se 
e98jha@efd.lth.se  7 

Appendix A. Structure of implemented dialogs 
 
This appendix shows the structure of all implemented types of possible and successful 
dialogs. A "new" dialog (beginning with one of the three main types below) can be started at 
any point in the current dialog. 
 
Upper case words within brackets indicate information supplied by the user or other dynamic 
information generated by the program. Below follows a list of descriptions of such words. 
 

[ TI TLE]  Title supplied by user or found during search 
[ AUTHOR]  Author supplied by user or found during search 
[ SECTI ON]  First letter in author’s last name indicating a section 
[ HI TS]  Number of hits found during search 
[ DI RECTI ON]  Side of the artificial library (left or right) 

[ LOCATI ON_SENTENCE]  A possible sentence of the third main type of dialog 
starters below 

[ ANYTHI NG]  Any sentence/text 
 
• Asking for a title (e.g. "What do you have by Stephen King?") 
 Search result returns no titles: 
 -  I ' m sor r y,  but  i t  seems l i ke we have no books by [ AUTHOR] .  

 -  Okay 

 -  What  el se can I  do f or  you? 

 Search result returns just one title: 
 -  I  can onl y f i nd [ TI TLE]  by [ AUTHOR] .  I s t hi s t he one you ar e l ooki ng f or ? 

 -  Yes 

 -  You wi l l  f i nd i t  i n t he ' [ SECTI ON] '  sect i on.  

 -  Okay 

 -  I  am gl ad I  coul d hel p you!  

 -  No or No,  [ ANYTHI NG]  

 -  I ' m sor r y but  i t  seems l i ke we don' t  have any ot her  books by 

  [ AUTHOR] .  

 -  Okay 

 -  What  el se can I  do f or  you? 

 Search result returns more than one but fewer than six titles: 
 -  I  f ound [ HI TS]  t i t l es:  
  [ TI TLE]  … [ TI TLE]  
  I s i t  any speci al  book you ar e i nt er est ed i n? 
 -  Yes 

 -  Whi ch one woul d t hat  be? 

 -  [ TI TLE]  

 -  I t  woul d be t o your  [ DI RECTI ON]  i n t he ' [ SECTI ON] '  

  sect i on.  

 -  Okay 

 -  I  am gl ad I  coul d hel p you!  

 -  Yes,  [ TI TLE]  or Yes,  [ LOCATI ON_SENTENCE]  

 -  I t  woul d be t o your  [ DI RECTI ON]  i n t he ' [ SECTI ON] '  sect i on.  

 -  Okay 

 -  I  am gl ad I  coul d hel p you!  

 -  No or No,  [ ANYTHI NG]  

 -  Okay,  I  hope you f i nd t hem i nt er est i ng!  

29



e98mj@efd.lth.se 
e98jha@efd.lth.se  8 

 Search result returns more than five but fewer than twenty six titles: 
 -  I  f ound [ HI TS]  t i t l es.  The most  popul ar  ones ar e:  
  [ TI TLE]  … [ TI TLE]  
  I s i t  any speci al  book you ar e i nt er est ed i n? 
 -  Yes 

 -  Whi ch one woul d t hat  be? 

 -  [ TI TLE]  

 -  I t  woul d be t o your  [ DI RECTI ON]  i n t he ' [ SECTI ON] '  

  sect i on.  

 -  Okay 

 -  I  am gl ad I  coul d hel p you!  

 -  Yes,  [ TI TLE]  or Yes,  [ LOCATI ON_SENTENCE]  

 -  I t  woul d be t o your  [ DI RECTI ON]  i n t he ' [ SECTI ON] '  sect i on.  

 -  Okay 

 -  I  am gl ad I  coul d hel p you!  

 -  No or No,  [ ANYTHI NG]  

 -  Okay,  I  hope you f i nd t hem i nt er est i ng!  

 Search result returns more than twenty five titles: 
 -  I  f ound mor e t han 25 t i t l es.  The f i ve most  popul ar ,  I  t hi nk,  ar e:  
  [ TI TLE]  … [ TI TLE]  
  I s i t  any speci al  book you ar e i nt er est ed i n? 
 -  Yes 

 -  Whi ch one woul d t hat  be? 

 -  [ TI TLE]  

 -  I t  woul d be t o your  [ DI RECTI ON]  i n t he ' [ SECTI ON] '  

  sect i on.  

 -  Okay 

 -  I  am gl ad I  coul d hel p you!  

 -  Yes,  [ TI TLE]  or Yes,  [ LOCATI ON_SENTENCE]  

 -  I t  woul d be t o your  [ DI RECTI ON]  i n t he ' [ SECTI ON] '  sect i on.  

 -  Okay 

 -  I  am gl ad I  coul d hel p you!  

 -  No or No,  [ ANYTHI NG]  

 -  Okay,  I  hope you f i nd t hem i nt er est i ng!  

• Asking for an author (e.g. "Who has written The Hitchhiker's Guide To The Galaxy?") 
 Search result returns no titles: 
 -  I ' m sor r y,  but  I  don' t  know who t he aut hor  i s of  [ TI TLE] .  

 -  Okay 

 -  What  el se can I  do f or  you? 

 Search result returns one or more but fewer than twenty six titles: 
 -  I  f ound [ HI TS]  mat chi ng t i t l es.  Coul d i t  per haps be [ AUTHOR] ? 

  Ot her wi se,  you have t o be mor e speci f i c .  

 -  Yes 

 -  Gr eat ,  I ' m gl ad I  coul d hel p you!  

 -  No or No,  [ ANYTHI NG]  

 -  You have t o be mor e speci f i c .  

  Ot her wi se,  t hat  i s  t he onl y aut hor  I  can f i nd on [ TI TLE] .  

 -  Okay 

 -  What  el se can I  do f or  you? 

30



e98mj@efd.lth.se 
e98jha@efd.lth.se  9 

 Search result returns more than twenty five titles: 
 -  I  f ound over  25 mat chi ng t i t l es.  Coul d i t  per haps be [ AUTHOR] ? 

  Ot her wi se,  you have t o be mor e speci f i c .  

 -  Yes 

 -  Gr eat ,  I ' m gl ad I  coul d hel p you!  

 -  No or No,  [ ANYTHI NG]  

 -  You have t o be mor e speci f i c .  

  Ot her wi se,  t hat  i s  t he onl y aut hor  I  can f i nd on [ TI TLE] .  

 -  Okay 

 -  What  el se can I  do f or  you? 

• Asking for a location (e.g. "On which shelf can I find The Testament by John Grisham?") 
 Search result returns no titles: 
 User supplied both the title and the author in the question: 
 -  I ' m sor r y,  but  i t  seems l i ke we do not  have [ TI TLE]  by [ AUTHOR] .  

 -  Okay 

 -  What  el se can I  do f or  you? 

 User only supplied the title in the question: 
 -  I ' m sor r y,  but  I  can not  f i nd any books named [ TI TLE] .  

 -  Okay 

 -  What  el se can I  do f or  you? 

 User only supplied the author in the question: 
 -  I ' m sor r y,  but  i t  seems l i ke we don' t  have anyt hi ng by [ AUTHOR] .  

 -  Okay 

 -  What  el se can I  do f or  you? 

 Search result returns one or more titles: 
 User supplied both the title and the author or just the author in the question: 
 -  I t  woul d be t o your  [ DI RECTI ON]  i n t he ' [ SECTI ON] '  sect i on.  

 -  Okay 

 -  I  am gl ad I  coul d hel p you!  

 User only supplied the title in the question: 
 -  I f  you mean [ TI TLE]  by [ AUTHOR] ,  i t ' s  t o your  [ DI RECTI ON]  

  i n t he ' [ SECTI ON] '  sect i on.  Ot her wi se,  you have t o be mor e speci f i c .  

 -  Okay 

 -  I  am gl ad I  coul d hel p you!  

 

31



e98mj@efd.lth.se 
e98jha@efd.lth.se  10 

Appendix B. Screenshot 
 

 

32



A Morphological Parser for Estonian

Richard Johansson

d99rj@efd.lth.se

Abstract

This report describes how a prototype morphological parser for Estonian, a language with a relatively

complex morphology, was implemented. The implementation uses a two-level model which was hand-coded

in Prolog. Some background material on the Estonian language and the two-level model is presented.

1 Introduction

A morphological parser is a computer tool that accepts a given in�ected word (or sequence of words) and
determines which its root word is and which in�ections it has undergone. It can be used alone, as a kind
of intelligent dictionary for the learner of a language, or as a morphological backend for a high-level natural
language tool such as a dialogue system.

Morphology has been a neglected area of research in computational linguistics, mainly due to the fact that
English has a trivial morphology. A simple morphology eliminates the need for morphological parsers since
the in�ectional forms are few enough to be stored in the dictionary along with their root words. But in a
language with a complex morphology, where a noun or verb can take hundreds of shapes, an automatic tool is
needed to extract the root word and interpret the in�ectional information.

This report describes the implementation of a morphological parser for Estonian, a Finno-Ugric language
with a relatively complex morphology. Although quite incomplete, the morphological parser is currently run-
ning for everyone to try at its web interface at http://www.df.lth.se/~richardj/parser.

The report is organized as follows: In Section 2 a short introduction to the Estonian language is given.
The implementation of the parser is described in Section 3. In the following section, Section 4, the parser is
evaluated and compared to existing tools on the web, and in Section 5 we discuss why the result is imperfect.
Finally, a conclusion is given in Section 6.

Linguistic terms are for the sake of brevity only explained only when they are speci�c to Estonian. When
using linguistic terminology, I have tried to stick to the Glossary of Linguistic Terms by SIL
(http://www.sil.org/linguistics/GlossaryOfLinguisticTerms/).

2 An Introduction to the Estonian Language

2.1 Background

Estonian is spoken by approximately 1100000 people in the world. Most of them live in Estonia, located on
the east side of the Baltic Sea in the north of Europe, but there is also a large diaspora. The language is a
Finno-Ugric language closely related to Finnish and some nearly extinct languages in the St. Petersburg area
in Russia.
Some characteristics of the Finno-Ugric languages compared to the Indo-European are:

� absence of gender (the same pronoun for both he and she),

� absence of de�nite-inde�nite articles (a and the in English),

� long words due to the structure of the language,

� numerous noun cases,

1
33



� postpositions rather than prepositions, and

� no syntactic equivalent of the verb �to have�.

Estonian has been more in�uenced by Indo-European languages (above all German) than Finnish has been,
which is visible not only in the numerous loan words but also in the German-in�uenced word order and the
use of genitive forms instead of possessive su�xes. Another striking feature of Finnish, the vowel harmony,
has also disappeared in Estonian.

When the nationalist movement in Estonia emerged, and Estonian needed to be remade from a peasant's
language into a language for all levels of society, the language was arti�cially reconstructed grammatically and
many new words were invented to purge the language from unwanted loan words and to cover concepts for
which Estonian earlier had no suitable words.

A readable and thorough Estonian language course (written in Swedish) is [8]. A linguistic overview can
be found in [1]. The dictionary data and in�ection tables used when implementing the morphological parser
were taken from Õigekeelsussõnaraamat [2] (from now on called the ÕS ), the standard reference dictionary
used in Estonia. The best Estonian-English dictionary is [7].

2.2 Letters and Sounds

Estonian uses the Latin alphabet with the following non-ASCII additions: ä, ö, ü, õ, ² and º. The letters c, f,
q, w, x, y, z, ² and º are only used in words of foreign origin. In computer systems various encodings are used.
This morphological parser, like most other computer systems using Estonian, uses the ISO-8859-1 encoding.

One interesting feature of Estonian phonology is that there are three degrees of quantity (length) of vowels
and consonants. To indicate the �rst degree of quantity, a single letter is used. Unfortunately, the distinction
between the second and third degree is not always indicated in the spelling. Here are two examples where this
leads to ambiguity:

saada (second) send! linna (second) of the town
saada (third) to get linna (third) into town

Beside quantity, there is another source of ambiguity in Estonian spelling: palatalization of consonants.
This means that dental consonants are pronounced with the tongue in the position of an i-sound, slightly
similar to the sound ñ in Spanish. The letters d, t, l, s and n can all denote an unpalatalized as well as a
palatalized sound.

Except for the quantity and the palatalization, Estonian spelling is simple. One letter generally stands for
one sound. A single letter denotes a short sound and a doubled a long (second or third quantity).

The pronunciation of letters in Estonian is usually similar to the pronunciation in German, its greatest
in�uence. There are although some di�erences: b, d and g are distinguished from p, t and k mainly in
quantity (the former are pronounced with the �rst degree of quantity and the latter with the second) rather
than voicing. The letter v is always pronounced voiced and s always voiceless. The umlauted letters ö and ü
are pronounced like their German counterparts, but ä is open like the a in the English word fan. The letter
õ is an indescribable sound speci�c to Estonian, but it can be approximated by the u in the Swedish word
Mumintrollen with a deep Finland-Swedish pronunciation. The letters z, º and ², which are used in loan words
only, denote sounds similar to the English zoo, measure and shoe, respectively.

2.3 General Picture of Morphology

Originally Estonian, like its neighbour language Finnish still is, was a highly agglutinative language where
separately identi�able and independent morphemes were added to the word stem. But due to in�uence from
Indo-European languages and phonological attrition, morphemes in word-endings are not always separable in
present-day Estonian. For example, the present tense person and number endings are today di�erent from
the past tense endings. But Estonian still has some agglutinative features, like most of the noun case endings
(which are simply added to the genitive endings) and the clitic -gi/-ki.

2
34



Central to the morphology of Estonian is the concept of gradation. This is a process where a word changes
phonetically, usually in the form of a syllable shortening or loss of a stop consonant, when the word is put into
certain in�ections. For example, the verb õppima, �to study�, (where pp signi�es a third degree stop) becomes
õpin (with a second degree stop) in the present tense �rst person singular, and the noun lind, �bird� (with a
short stop at the end) becomes linnu in the genitive singular (the stop is lost).

2.4 Morphology of Verbs

The verb morphology is more complex in Estonian than in English but comparable in structure and complexity
to Romanic languages like French or Spanish. The �nite forms of the verbs are constructed according to the
following morphological features:

� Mood : Indicative, conditional, imperative or oblique (reported speech),

� Voice: Active or passive,

� Tense: Present or past (perfect and pluperfect are constructed with participle forms),

� Polarity : A�rmative or negative,

� Person: First, second or third,

� Number : Singular or plural.

As one can see, the Estonian verb features are rougly the same as in many Indo-European languages, with
the main di�erence being that the verb has an a�rmative � negative polarity feature. In the negative polarity,
the verbs lose their person and number endings (except for in the imperative mood). The oblique mood, which
tells what one is said to or supposed to do, is also notable.

There are also non�nite forms such as participles, a gerund and two kinds of in�nitive. The dictionary
form for verbs is the �rst in�ninitive.

In Appendix A we can see an example verb minema, which is the most irregular verb of the Estonian
language, conjugated in most forms.

2.5 Morphology of Nouns and Adjectives

While the verb morphology of Estonian is relatively similar to those of some Indo-European languages, the
morphology of nouns is radically di�erent. As mentioned above, Estonian has a wealth of noun cases. From a
morphological point of view, the cases can roughly be divided as follows:

� Fundamental : Nominative (denoting the subject of the sentence), genitive (denoting possessor or the
object of the sentence) and partitive (denoting a quantity or the object of the sentence),

� Nonfundamental : Illative (into what?), inessive (in what?), elative (from the inside of what?), allative
(onto what?), adessive (on what?), ablative (from the outside of what?), translative (into the state of
what?), terminative (until what?), essive (as what?), abessive (without what?) and comitative (with
what?).

The nonfundamental cases are usually formed by adding their respective ending to the genitive form. For
example, if we wish to construct the inessive plural we add the ending -s to the genitive plural form.

Adjectives in Estonian are from a morphological point of view just nouns which can form the comparative
or superlative forms. The dictionary form for nouns and adjectives is the nominative singular. The nouns and
adjectives are declined in singular and plural. Many alternate forms are possible.

In Appendix B we can see the nouns raamat and mägi in all in�ectional forms. For raamat, alternate
plural forms are available for many cases � the case ending may be added both to the genitive plural and to
the partitive plural (which is considered somewhat archaic). For the other example noun, mägi, we see that a
short form of the illative case is possible. If the short form is available, it is generally preferred.

Nouns in the nominative singular or genitive singular or plural may form a compound with another noun.

3
35



2.6 Syntax

As mentioned above, Estonian word order is in�uenced by the German one. But that is more a question of
preferred style than a rigid rule, and generally speaking the word order is free for the speaker to vary according
to taste and style or for emphasis or clarity.

One of the fundamental concepts in Estonian syntax, which is also notable from a morphological point of
view, is the distinction between total and partial objects, which rougly means that the object was a�ected
�totally� or �partially�. This manifests itself in the use of the genitive or nominative case for the total object
and partitive case for the partial object. For example:

Ma lugesin raamatut. I read (or was reading) a book.
Ma lugesin raamatu läbi. I read the book through.

Here raamat, �book�, is in the partitive case in the �rst example and in the genitive case in the second.
The word läbi, �through�, is one of a number of particles used to emphasize that the action is complete. These
particles have come into use relatively recently and the reason they are used is that for many words in present-
day Estonian, the genitive and the partitive forms coincide. For example:

Koer sõi vana muna. The dog ate (or was eating) an old egg.
Koer sõi vana muna ära. The dog ate the old egg (up).

Here vana, �old�, and muna, �egg�, have identical genitive and partitive forms.

3 Implementation

3.1 Goals

The following goals of the parser project were set:

� The parser should be able to parse all in�ected forms of nouns, pronouns, adjectives and verbs,

� it should be reasonably fast,

� it should be able to handle all possible compounds, not just the most frequent ones,

� it should be able to handle the most regularly appearing derivations.

3.2 Two-level Morphology

The model used in this implementation is the two-level model introduced by Kimmo Koskenniemi, which
presently is the most widespread one for implementations of morphology systems. This model is useful be-
cause it is conceptually very simple and because it easily can be implemented e�ciently using �nite-state
techniques. In [4], an introduction to the subject is given by its original inventor.

In the two-level model, a word is thought to have a surface form � what appears to the speaker � and
an underlying form � the theoretical form consisting of root word and in�ection information. The relations
between these two forms are called two-level rules. The two-level rules are bidirectional � one can go from the
surface form to the underlying form or vice versa.

The two-level rules usually operate symbol by symbol. To handle the case where a symbol is present in the
underlying form but not in the surface form (or vice versa), a zero symbol is inserted.

Here is an example of a two-level rule for a group of Estonian nouns. For these nouns, which consist of
two vowels separated by b, d or g, the surface genitive singular form is formed from the underlying nominative
form by removing the separating consonant and mutating the vowels in the following way: i becomes e, u
becomes o and ü becomes ö. Here we can see how a two-level rule could relate the surface form sea (�of the
pig�) to the underlying form siga (�pig�) Singular Genitive.

Surface form s e 0 a 0 0
Underlying form s i g a S G

4
36



3.3 Finite-state Transducers

The two-level rules are usually implemented using �nite-state transducers, which are nondeterministic �nite-
state automata where the arcs are labelled with pairs of surface-underlying symbols.

In [6] and [5], there are introductions to the theory of �nite-state transducers, with theorems about their
basic properties presented.

0:Singular 0:Genitive
C:C

0:b
0:d
0:g

e:i

ö:ü
V:V

o:u
e:i
o:u
ö:ü
V:V

Figure 1: A �nite-state transducer

In �gure 1 we see a transducer which implements the two-level rule for forming the genitive for the noun
group mentioned in Subsection 3.2. Here, C means any consonant and (for the sake of brevity) V means any
vowel except i, u or ü.

To make a transduction from the surface string sea to the underlying string siga Singular Genitive, we
�rst follow the arc from the start state back to itself, while consuming the s in both the surface and the
underlying form. Then we jump to the next state, this time consuming the e in the surface form and the i in
the underlying form. We follow arcs and consume symbol pairs in this way until there are no more symbols
left, and if we are then in a �nal state (marked in the �gure as a double circle), the transduction was successful.

Note that in this transducer, the transduction from surface form to underlying form is not a function,
that is the underlying form is not uniquely determined by the surface form. In this example �ve additional
underlying forms, for example the nonexistent *seba Singular Genitive, are produced by the transducer. When
trying to �nd correct underlying forms, the results need to be checked with a dictionary.

3.4 Implementation of Transducers

The transducers for this morphological parser were hand-written in Prolog. Using Prolog is particularly conve-
nient from a programming point of view: the nondeterminism of the transducers and their bidirectional nature
can both be implemented almost without e�ort.

In Appendix C a Prolog code example implementing the described transducer is given.

The reason that no existing two-level morphology system was used instead of hand-writing was mainly the
time constraints � there was simply no time to learn how to use for example the Kimmo system [3].

3.5 The Dictionary

As mentioned above, the transducers produce lots of hypothetical forms which usually are incorrect. This
means that for every word, many dictionary lookup need to be made. An e�cient dictionary data structure is
therefore essential.

The dictionary was implemented with a letter tree or trie. In a letter tree the words are stored as paths
in a tree, with the nodes representing letters. In the leaf nodes, grammatical information such as conjugation
pattern numbers could be stored. Two words which begin with the same letters share a common entry path.
This leads to a compact dictionary data structure, where the search time is proportional to the number of
letters of the word. In �gure 2 a letter tree with two words is shown.

The dictionary used for the morphological parser is the online version of the ÕS. Since the transducers
should be able to construct any possible compound word, those compound words which were already present
in the dictionary could be removed. This reduced the size of the dictionary from about 120000 words to 50087

5
37



s i g a

l m

start

Figure 2: A letter tree

words.

3.6 Other Implementation Details

The parser system consists of a client containing the transducer code and a server handling the dictionary.
This division was made for development reasons since the startup of the dictionary takes several minutes, and
while developing and debugging the transducers the program frequently needs to be restarted.

The executables are built as compiled Prolog code and currently run on an UltraSPARC-II 300 MHz
machine.

4 Evaluation

To evaluate the quality of the implementation, the parser was compared to two existing parsers on the web:
Filosoft's at http://www.filosoft.ee and the one at Estonian Language Institute, http://kiisu.eki.ee.
The prototype was run once with compound words enabled and once with compound words disabled. The
100-word test data used can be seen in Appendix D. The results were the following:

� When compound word handling was enabled the parser produced a result after 1 minute and 40 seconds
with 69 percent correct parses.

� When compound word handling was disabled the result was produced in 20 seconds with 63 percent
correct parses.

� The parsers at Filosoft and at Estonian Language Institute both parse the test data in a couple of
seconds.

The bene�t of compound words is questionable since it may lead to an explosion of possible constituent
words of the compound. For example, when the word patsiendiorganisatsiooniks (�patient organization� in the
translative case, which is just a two-word compound) was input, the parser produced no output at all (at least
the report author did not have the time to wait for it).

5 Improvements

5.1 Program Speed

The main problem with the parser is, as we have seen in the previous section, its speed. There are a number
of reasons for this:

The client-server division of the program should not have been done between the transducers and the
dictionary, since all the dictionary lookups will lead to excessive process communication. This is currently not
a big issue since the processes run on the same machine (and time measurements have shown that communi-
cation is only a small part of the execution time), but making another division could lead to a more e�cient
program. But as mentioned previously, the reason for this division was the development cycle time and this
should only be used as a last resort.

6
38



A less attractive implementation improvement could be to abandon Prolog as implementation program
language and �ne-tune the implementation in a low-level language such as C. The current implementation
uses Prolog features such as atom uni�cation and backtracking extensively. Abandoning Prolog would how-
ever surely increase the development time drastically.

The parser behaves acceptably when compound word handling is disabled, but when compound words
are handled the output may be produced after many minutes. The naïve implementation of compound word
handling used here (just connecting nominative and genitive �nal states to the start of the noun transducer)
is obviously not a good strategy. Limiting the number of allowed constituents is a strategy taken in the im-
plementation of the two parsers which were compared to the prototype � they both allow a maximum of four
nouns to be compounded. Memoization is obviously also a necessity when handling compound words. Another
simple option is to disallow arbitrary compound words and just use the ones given in the ÕS.

5.2 Maintainability

Another obvious problem seen when inspecting the code is that it is unreadable, which is the result of the
decision to hand-write the transducers in Prolog. This leads to code that is di�cult to change and debug. It
is obvious that such code could be generated by an automatic tool (for example a graph-drawing program),
which could be produced in relatively little time. Another option could be to use existing rule-based two-level
morphology systems such as Kimmo [3].

6 Conclusion

6.1 Goals Met

A prototype of the parser was implemented and set up to run with a web user interface. The verb morphology
was completely implemented (except for some nonstandard forms), but due to time constraints the noun mor-
phology was only partially implemented. The most common personal pronouns are handled, but no adjective
features (comparative and superlative). Derivations are not handled except for the verbal noun forms (like
�the eating�). The clitic -gi/-ki is not handled. The success rate of the prototype the test data in Appendix D
was 63 percent when compound words were disabled.

As we saw in the Section 4, the parser prototype is acceptably fast when compound words are disabled but
still much slower than the other ones tested. Compound words can be handled but expose a severe implemen-
tation problem, as the number of possible constituent words of the compound becomes enormous for long words.

6.2 Final Words

The parser project has been relatively successful and its goals have to a certain degree been met. But to
overcome the speed and maintainability problems and produce a high-quality product such as the two existing
parsers compared to the prototype, much work would need to be done.

7
39



A A Verb Example: minema, �to go�

A.1 Finite forms

Mood Voice Tense A�rmative polarity Negative polarity
1st Person Singular, ..., 3rd Person Plural

Indicative Active Present lähen, lähed, läheb, läheme, lähete, lähevad lähe
Past läksin, läksid, läks, läksime, läksite, läksid läinud

Passive Present minnakse minda
Past mindi mindud

Conditional Active Present läheksin, läheksid, läheks, läheksime, läheksite, läheksid läheks
Past läinuksin, läinuksid, läinuks, läinuksime, läinuksite, läinuksid läinuks

Imperative mingu, mine, mingu, mingem, minge, mingu mingu, mine, ...
Oblique Active Present minevat minevat

Passive Present mindavat mindavat

A.2 Non�nite forms

First in�nitive minema
Second in�nitive minna
Progressive form minev

Gerund minnes
Active past participle läinud
Passive past participle mindud

B Two Noun Examples

B.1 raamat, �book�

Singular Plural

Nominative raamat raamatud
Genitive raamatu raamatute
Partitive raamatut raamatuid
Illative raamatusse raamatutesse raamatuisse

Inessive raamatus raamatutes raamatuis

Elative raamatust raamatutest raamatuist

Allative raamatule raamatutele raamatuile

Adessive raamatul raamatutel raamatuil

Ablative raamatult raamatutelt raamatuilt

Translative raamatuks raamatuteks raamatuiks

Terminative raamatuni raamatuteni raamatuini

Essive raamatuna raamatutena raamatuina
Abessive raamatuta raamatuteta
Comitative raamatuga raamatutega

8
40



B.2 mägi, �mountain�

Singular Plural

Nominative mägi mäed
Genitive mäe mägede
Partitive mäge mägesid

Illative mäesse mäkke mägede
Inessive mäes mägedes
Elative mäest mägedest
Allative mäele mägedele
Adessive mäel mägedel
Ablative mäelt mägedelt
Translative mäeks mägedeks
Terminative mäeni mägedeni
Essive mäena mägedena
Abessive mäeta mägedeta
Comitative mäega mägedega

C Prolog Code Example

arc(start, start, C, C) :- consonant(C).

arc(start, state1, i, e).
arc(start, state1, u, o).
arc(start, state1, ü, ö).
arc(start, state1, V, V) :- member(V, [a, e, o, y, ä, ö, õ]).

arc(state1, state2, b, 0).
arc(state1, state2, d, 0).
arc(state1, state2, g, 0).

arc(state2, state3, i, e).
arc(state2, state3, u, o).
arc(state2, state3, ü, ö).
arc(state2, state3, V, V) :- member(V, [a, e, o, y, ä, ö, õ]).

arc(state3, state4, 'Singular', 0).
arc(state4, final, 'Genitive', 0).

final_state(final).

transduce(Start, Final, [U | UnderlyingString], SurfaceString) :-
arc(Start, Next, U, 0),
U \== 0,
transduce(Next, Final, UnderlyingString, SurfaceString).

transduce(Start, Final, UnderlyingString, [S | SurfaceString]) :-
arc(Start, Next, 0, S),
S \== 0,
transduce(Next, Final, UnderlyingString, SurfaceString).

transduce(Start, Final, Under, Surface) :-
arc(Start, Next, 0, 0),
transduce(Next, Final, Under, Surface).

transduce(Start, Final, [U | UnderlyingString], [S | SurfaceString]) :-
arc(Start, Next, U, S),
U \== 0,
S \== 0,
transduce(Next, Final, UnderlyingString, SurfaceString).

9
41



transduce(Final, Final, [], []) :-
final_state(Final).

D Test Data

The following test data was used in the performance tests. The text consists of 100 words and was taken from
the website of the Estonian daily Eesti Päevaleht (http://www.epl.ee).

Kahju kui see nii läheb ütles Arstide Liidu eestseisuse liige Andres Lehtmets
kelle sõnul on patsiente esindav organisatsioon demokraatliku
ühiskonna üheks tunnuseks
Ühingul on laiem ja tasakaalustav roll kui ainult üksikisikute abistamine
lisas Lehtmets Mingil juhul pole see arstide vastane ühing vaid aitab välja
tuua kitsaskohti meditsiinis
Patsiendil kaob sõltumatu abi Praegu on esindusühingul kabinetid neljas linnas
Kahju on mitte inimeste koondamisest vaid sellest et patsiendil puudub edaspidi
abiline ja võimalus kaebuste korral nõu saada praegugi on meil mitu juhtumit
pooleli märkis Ilves kelle sõnul on ühing juhtumi lahendamisel inimesi
tõhusalt aidanud
Tappo kinnitusel pakkus ministeerium ühe lahendusena et esindusühing

References

[1] Aavik, Johannes. 2000. Introduction. In Saagpakk, Paul F., Estonian-English Dictionary. Koolibri.

[2] Erelt, T., R. Kull, V. Põlma, K. Torop. 1976. Õigekeelsussõnaraamat. Eesti NSV TA Keele ja Kirjanduse
Instituut. (http://ee.www.ee/QS)

[3] PC-KIMMO. A Morphological Parser. http://www.sil.org/pckimmo

[4] Koskenniemi, Kimmo. 1997. Representations and Finite-State Components in Natural Language. In
Roche, E. and Y. Schabes, editor, Finite State Natural Language Processing. MIT Press, pages 99�116.

[5] Mohri, Mehryar. 1997. On the Use of Sequential Transducers in Natural Language Processing. In Roche,
E. and Y. Schabes, editor, Finite State Natural Language Processing. MIT Press, pages 355�382.

[6] Roche, Emanuel and Yves Schabes. 1997. Introduction. In Roche, E. and Y. Schabes, editor, Finite State
Natural Language Processing. MIT Press, pages 1�65.

[7] Saagpakk, Paul F. 2000. Estonian-English Dictionary. Koolibri.

[8] Tuldava, Juhan. 1997. Lärobok i estniska. Pangloss.

10
42



Extracting Inf ormation fr om Sport Articles in SwedishUsingPattern
Recognition

Erik Lindv all
LundUniversity

f98el@efd.lth.se

JohanNilsson
LundUniversity

f98jn@efd.lth.se

Abstract

Sport articles from newspaperscontai-
ning end resultsof oneor multiple ga-
mes is a specialapplicationof the in-
formationextractiontask,in thatalmost
all interestinginformation is available
in patternswhich areeasyto recognize.
Useof patternrecognitionto extractthis
informationyields good resultsespeci-
cially consideringthesimpleimplemen-
tation. Such a sytem has been imple-
mentedand testedfor Swedishand the
resultsareconsideredsatisfactory.

1 Intr oduction

Thesubjectof this reportis to describea method
to extractinformationfrom sportsarticlesin Swe-
dishtakenfrom thewebpagesof variousSwedish
newspapers.A systemusingthis methodhasbeen
implementedand the resultsof this implementa-
tion arediscussedin the reportaswell. The idea
hasbeento utilize specializedtools for extracting
information which is known to be available in a
specificform.

Our strategy for extractinginformationhasbe-
en a very ”shallow” one,focusingwholly on ob-
taining the relevant information and not on con-
structing a full grammarwhich would result in
a deeperunderstandingof the texts. The articles
typically containsa lot of irrelevant information
which in thisapplicationis not interesting.A shal-
low approachwill save time by skippingproces-
singof this information.

Someimprovementsto our methodaresugges-
ted,aswell asa brief discussionon somealterna-
tive approachesto achieve thesameend.A small
dictionary, containingEnglish translationsof the
Swedishtermsusedin this report,canbefoundin
appendixC.

1.1 InterestingInf ormation

Theapplicationfocusesonsportarticleswhichare
basicallyreportsfrom football or ice hockey ga-
mesin Swedishor foreignleagues.Fromthesere-
portswewish to extractthefollowing information
from every gamementionedin thearticle:

1. Theteamnames

2. The endresult,i.e. which team(if any) won
thegame

3. Thefinal score

This is informationwhich asgoodascertainly
is availablein someform in thearticle.

In an improved versionthe programcould in-
clude detectionof for instancegoalscorers,ho-
me/away team,refereeor evenwhich sportthear-
ticle is about.This information is not certain to
be includedin thearticlehowever (exceptfor the
sportwhich in mostcasesis very implicit), which
raisessomequestionswhenit comesto evaluating
theprogram.Ourfirst versionhasbeenfocusedon
extracting informationknown to be available for
simplicity in bothimplementationandevaluation.

43



2 Method

2.1 BasicStrategy

The basicstrategy for obtaining the information
is simplepatternrecognition.Thefirst stepof the
algorithm will detectkey patterns,such as sco-
res,teamnamesandcertain”winning” or ”losing”
words.Theoutputfrom this stepwill undergo so-
me local (meaningsamesentence)processingto
getastandardizedoutputfrom every sentence.

The output from the sentencesin the pattern
recognition-steparecompletedby a global logic
which will take a larger discourseinto accountto
improve theoutputfrom thelocal logic whenthis
logic is incomplete.For example,theoutputfrom
asentencemayconsistin somethingequivalentto
”team1 loses”.The global logic will in this case
try to determinethe winner of that specificgame
from thelargerdiscourse.

Theoutputfrom theglobal logic will consistin
anumberof facts with agivenpriority, whichwill
undergo furtherprocessingin thefinal step.In this
final cleanupstepsomefactsareabsorbedinto ot-
hersandotherfactsareoutright discarded,based
on thepriority every fact received in the laststep.
For example,the fact ”team1wins” canbeabsor-
bedinto thefact”team1defeatsteam2”,andif this
facthasahighpriority it cancausethefact”team1
loses”to bediscarded.

When this is donea list of factsand their re-
spective priorities will remain.This list will not
includefactswhich areinconsistentwith eachot-
her, and no two factswhich say the samething.
Theoutputwill consistof all factsthathave a pri-
ority higherthanacertainthreshold,whichwill be
tunedto give thebestpossibleresult.

2.2 Initial Pattern Recognition

The first stepis to detectthe interestingpatterns.
The patternswhich are detectedhave basically
four different forms: the team-pattern,the score-
pattern,thewin/lose-patternandthedraw-pattern.

One of thesepatterns,the win/lose-pattern,is
morecomplicatedthantheotherthree.Thescore-
andteam-patternsneedsomeexplanationaswell.
The draw-pattern simply exist of a draw-key,
whichin thisversiononly canconsistin oneword:
”oavgjort” and its different forms. For more di-

scussionon thedraw pattern,see3.2.1.Theother
patternsaredescribedbelow in moredetail.

2.2.1 The Team-pattern

Theteam-patternis simply a teamname,which
canconsistof aprefix,a location andasuffix (alt-
houghmostof the timesnot with bothprefix and
suffix), solelya prefix/suffux or solelya location.
An exampleof a teamwith a prefix anda location
is ”IFK Göteborg”. An exampleof a teamwith a
locationandasuffix is ”ÖrgryteIS”.

Theteam-patternis very similar to a multiword
sincetheprefix/suffix mustcomeright before/after
thelocationin thetext for thepatternto berecog-
nized.However, onemoretermis includedin the
team-pattern,sinceit hascrucialimportancefor in
what context the teamappearsin the text: if the-
re is a prepositionof a specialkind in front of the
teamthis is includedin thepattern.

The prepositionswe are interestedin are six
in number:”av”, ”till”, ”för”, ”på”, ”över” and
”mot”. Wewantto save theseprepositionfor furt-
herprocessingbecauseof their implicationsonthe
teamfollowing themin thetext.

2.2.2 The Score-pattern

The scorepatterncan also be seenas a kind
of multiword. It consistsin a constructionon the
form Number1 - Number2 , where Number1
andNumber2 arenaturalnumbersseparatedby a
dash.This is theform which is usedfor reporting
gamescores.

2.2.3 The Win/lose-pattern

This is the most complicatedof the basicpat-
terns,andis differentin that it cannotbe reduced
to amultiword.This patternis on theform

Team1 [...] Key [...]
Team2 [...] Team3

where Team1, Team2 and Team3 are team-
patternsandKey is a word which sayssomething
abouttheresultof thegame.Theellipsesareme-
ant to representthe fact that therecanbe words,
which areirrelevant for our application,between
thepartsof thepattern.

Further, a maximum of 2 teamsare detected
in every pattern(seebelow). As an example,the
sentence“IFK Göteborg lyckadestill slut besegra

44



ett svagt Örgryte efter en spännandematch.” will
matchthepatternabovewith Team1= ”IFK Göte-
borg”, Key = ”besegra” andTeam2 = ”Örgryte”.
Team3will beunassignedin thiscase.

Therearealsodifferenttypesof patternsdepen-
ding on what thekey-word is. Keys canbeactive
or passive and winning or losing words,genera-
ting a total of four differentpatterns.Thedistinc-
tion betweenwinningandlosingkeys is obviously
importantsinceweareinterestedin whowon,and
the active/passive distinction is importantfor the
samereasondue to its implicationson the word
order.

2.2.4 Active/passive Distinction

Most key-wordsareactive. This includesverbs
in active form suchas”vinna” and”förlora”, cer-
tain nounssuchas”förlust” and”seger” andeven
someverbsin passive form suchas”slogs”. The
reasonfor the last onesto be includedis purely
empirical - we found that if the last example is
consideredactive rather than passive the results
improve.This is alsoratheruncontroversialif one
takes into accountthe symmetryof winning and
losingrespectively.

The sentences”Göteborg besegradeAIK” and
”Göteborg besegradesav AIK” aresimilar for our
purposesbut needto yield oppositeresults.It se-
emslogical to count”besegrades”asanactive lo-
singverbeventhoughthiswill complicatetheter-
minology. In fact, in thecurrentversiononly two
constructionsareconsideredpassive: ”vinnas” in
differenttensesand”förloras” in differenttenses.

Note thedifferencebetween”Matchenförlora-
desav AIK.”, which will matchKey = ”förlora-
des”, Team2 = ”AIK” and ”IFK besegradesav
AIK” which will matchTeam1 = ”IFK”, Key =
”besegrades”,Team2= ”AIK”. In thefirstexamp-
le AIK is the loserandin the secondthe winner.
Theseneedto be separated,andsinceour detec-
tion of thewinneris basedsolelyon thekey-word
and the word order, it is necessaryto take acti-
ve/passive distinctioninto account.

2.2.5 Conflicting Patterns and Priorities

Sometimesa sentencewill be ambigousin the
sensethat it canmatchmultiple patterns.Consi-
der for example ”IFK besegradeAIK som tidi-
gare i veckanhadevunnit mot Örgryte.” In this

sentencewe canmatch(amongothers)Team1 =
”IFK”, Key = ”besegrade”, Team2 = ”AIK” or
Key = ”besegrade”,Team2 = ”AIK”, Team3 =
”Örgryte”. It is importantto have a clearpriority-
order so it is known which patternsarematched
and which are discarded.The order of matching
attemptsgoesasfollows:

1. Team1Key Team2

2. Team1Key

3. Key Team2Team3

4. Key Team2

5. Key

In other words, we try to fill as many slots
as possiblefrom the beginning of a sentence.In
the exampleabove the first matchingmentioned
would be the onedetected.Note that if no teams
aredetecteda key-word will still generatea pat-
tern. In later stepsthis key can be connectedto
teams mentionedin the current discourse(see
2.4.1).

2.2.6 Output

Outputfrom thefirst stepwill include,for every
sentence:

1. A list of teamsmentionedin thesentence

2. A list of scoresmentionedin thesentence

3. A list of win/lose- and/ordraw-patternsde-
tectedin thesentence

2.3 Local Logic

The output from the initial patternrecognitionis
takenasinput to thesecondstep,which is a local
logic for extractinginformationwhich is available
in every sentence.In this stepthe active/passive
distinction and the win/lose keys disappear, and
the result is simply somethinglike ”IFK wins”
or ”IFK defeatsAIK”. Dependingon the key-
variablein every fact(which canbeof four types:
win_act, win_ps, lose_act, lose_ps) andtheword
order, new factslike theonesabove areobtained.
A moredetailedspecificationof this processcan
befoundin appendixA.

45



2.3.1 PrepositionsActing on Teams

In this stepfurther processingof the teamsis
alsodone.A crudedivisionof theprepositionsin-
to subject and object prepositionsis madein an
attemptto decidein what context the teamappe-
ars.It is importantto note that the termssubject
andobjecthere(andmoreimportantlyin thenext
step)doesnot appearin their grammaticalsenses.
In our terminologya subjectis a teamwhich the
text is ”about”, andan object is a teamwhich is
mentionedrelative to thesubject.

Prepositionswhichappearbeforetheteamscan
be a clue to whetherthe teamis a subjector an
objectin this sense,which is why thesearelabel-
led subjectand object preposition.For example,
”mot” is a typicalobjectpreposition.If thepattern
”mot IFK” appearsin a sentenceit is reasonable
to believe that this sentenceis aboutanotherteam
which playedagainstIFK. IFK is thusan object
in thissentencesinceit appearsrelative to another
team.Our crudedivision of prepositionidentifies
subjectprepositionsas ”till”, ”för” and”av” and
objectprepositionas”mot”, ”över” and”på”.

2.3.2 Output

Theoutputfrom thelocal logic will include,for
every sentence:

1. A list of teamsandwhetherthey areprecee-
ded by subjectprepositions,object preposi-
tionsor noprepositions.

2. A list of facts on the form ”Team1 defe-
ats Team2”, ”Team1wins”, ”Team1loses”,
”win” or ”lose”

3. A list of scoresunchangedfrom theprevious
step

2.4 Global Logic

2.4.1 Discourses

Whenprocessinglanguageon a discourselevel
it is usualto keeptrackof a numberof discourse
entities, which are termsthat the text is ”about”
andreferto implicitly (seee.g.Nugues(2002)).

Our approachcanbecomparedto theoneabo-
ve.Thediscoursein our applicationis simply one
teamwhich we assumethetext to be”about”. Af-
terstudyinggamereportsof thekind wewantedto

processwe found that usually the text wasabout
oneteamprimarily, with commentson what team
wastheopponentof themainteam,whatthescore
wasetc.Sometimesthemainteamchangedduring
the text. To reflectthis, a ”subject” for every sen-
tenceis determinedduring the global stepin an
attemptto decidethemainteamfor thatsentence.

2.4.2 Finding the Subject

The subject of a sentenceis determinedas
follows (andin thisorder):

1. If a sentencecontainsa teamwhich is not an
object,andthesameteamis thesubjectin the
preceedingsentence,the teamis setassub-
ject in thecurrentsentence.

2. Else,if a sentencecontainsa teampreceeded
by asubjectprepositiontheteamissetassub-
ject in thesentence.

3. Else, if a sentencecontainsa teamnot pre-
ceededby any prepositionthe teamis setas
subjectin thesentence.

4. Elsethesubjectof thecurrentsentenceis set
equal to the subjectin the preceedingsen-
tence.

5. If the first sentencedoesnot containa team
its subjectis considerednot assignedor un-
determined.

All sentencesexceptpossiblysomeinitial ones
arethusassignedasubject.

2.4.3 Completing Facts

After thesubjectsaredeterminedthey areused
to completesomefactswhich areincomplete(for
example”Team1loses”).A priority is alsoassig-
nedheredependingon how certainthefactis jud-
gedto be.For a detailedreferenceon how andin
which orderthefactsarecompletedandwhatpat-
ternsgivewhatprioritiesseeappendixB. A higher
priority meansamorecertainfact.

2.4.4 AssigningScoresto Facts

Oncethe factsarecompletedan attemptto as-
sign scoresto all factsis made.The scoreis also
assigneda priority in a simliar mannerasabove.
Threedifferent priorities can be set: 0, 1 and 3.

46



For every fact,all sentencesarechecked for sco-
res,andthe scorewith the highestpriority found
is set as scorefor the fact. Scorepriority is as
followswhenmatchingthepattern[Team1 de-
feats Team2] againstasentence:

� If the list of teamsof the sentenceincludes
eitherTeam1 or Team2andthescore-listof
the sentenceis non-empty, a memberof the
score-listis set as scorefor the currentfact
with apriority of 3.

� If thesubjectof thesentenceis eitherTeam1
or Team2 andthe score-listof the sentence
is non-empty, a memberof the score-listis
setasscorefor thecurrentfactwith apriority
of 1.

� Else,thescoreis consideredunassignedand
hasapriority of 0.

A possiblecomplicationhereis the casewhen
thescore-listof asentencecontainsmorethanone
entry. This rarely happens,but a betterapproach
which will take only a minor improvementof the
systemwould beto choosethehighestscorefrom
thescore-listinsteadof justanarbitraryone.

2.4.5 Output

The global logic will have a list of factsand
theirscoreswith prioritiesassignedbothto thefact
andthescoreasoutput.

2.5 Cleanup

In thefinal stepthelist of factsis processedandso-
mefactsareremovedbeforethefinal output.First,
acombinedpriority is assigned,which is theprio-
rity for both the factandthescorein one.This is
calculatedfrom theprioritiesof factandscoresas�����

(factpriority) � (scorepriority) to reflectthat
it is moreimportantfor thefactsto becertain.The
cleanupis thendonein two steps.

2.5.1 Unification

In this stepfactsarecomparedandif possibly
unified.This is doneby taking the fact with hig-
hestcombinedpriority andcomparingit with all
otherfacts.Thiswill createalist of new factswho-
sepriority is set to the priority of the generating

fact.After this, the factwith secondhighestprio-
rity will unify with the (remaining)list andsoon
until the list is empty. For example,given the list
of facts:

[IFK, wins, noopp]
[AIK, loses, noopp]
[MIF, loses, noopp]
[IFK, wins, AIK]

thefirst stepwill unify thelist to:

[IFK, wins, AIK]
[IFK, wins, MIF]

giventhatthefirst facthasthehighestpriority. No-
te thatfor this to happen,thedifferentfactscannot
have differentscores.

2.5.2 Inconsistencies

In the secondstepentrieswhich arenot consi-
stentaredeletedfrom thelist. Two entriesarecon-
sideredinconsistentif the teamsarethesamebut
theresultis different.In suchacasetheentrywith
lowestpriority is deletedfrom thelist of facts.

2.5.3 Priority Thr eshold

Finally, a thresholdis set and all entrieswith
prioritiesbelow this thresholdaredeleted.This is
doneto allow tuningof thesytemin asimpleway.
In ourapplicationthethresholdis set0.

3 Results

Theoutputfrom thesystemis alist of games(with
teams,endresultandfinal score),for instance

[[[’IFK’, ’Göteborg’], wins,
[’AIK’], [2,’-’,1]],
[[’Djurgården’], draws,
[’Halmstad’], [1,’-’,1]]]

In thisexampletwo gameswerefound,IFK Göte-
borg vs.AIK andDjurgårdenvs.Halmstad.

Eachentry in the list of gamesconsistsof four
fields:

[First_team, wins|draws,
Second_team, Score]

One of First_team and Second_team (but
not both) can be noopp when no opponentis
found. Also, Score can be noscore when no
scoreis found.

47



3.1 Method of Scoring

The scoring is done as follows: for eachgame
entry in the output, find an entry in the templa-
te that matchesthe gameconsidered,i.e. find an
entryin thetemplatecontainingat leastoneof the
teamsin theconsideredoutputentry.

If severalmatchingsarepossible,theoneresul-
ting in thehighestscoreis used.Notethatnoopp
and noscore fields are countedas empty, i.e.
they arenot consideredasirrelevant whencalcu-
lating theprecision.

The first field in an entry is consideredcorrect
if it matchesthefirst or third field in thecorrespo-
ningentryin thepre-filledtemplate.

For the secondfield to be consideredcorrect
it is requiredthat it matchesthe secondfield in
the pre-filled entry. In the caseof wins it is al-
so required that the first and/or the secondfi-
elds in the two entriesmatch(i.e. the secondfi-
eld is incorrect for instancewhen the entry is
[T1, wins, T2, S] and the matchingpre-
filled entryis [T2, wins, T1, S] ).

Thesecondteam(third field) is correctif it mat-
chesthefirst or secondcorrectteam(seeabove).

Finally, thescoreis correctif it matchesthesco-
re in the pre-filled template.Note that it is also
correctwhenit is reversed.i.e. [2,’-’,1] mat-
ches[1,’-’,2] sinceit is obviousfrom field 2
which teamwon.

Consider

[[’IFK’, ’Göteborg’], wins,
[’AIK’], [2,’-’,1]]

vs. thecorrect

[[’AIK’], wins, [’IFK’,
’Göteborg’], [2,’-’,1]]

Field 1,3, and 4 are correct while field 2 is in-
correct.

Now considertheoutput

[[[’IFK’, ’Göteborg’], wins,
[’AIK’], [2,’-’,1],
[[’Djurgården’ ], draws,
[’Halmstad’], [2,’-’,2]]]

vs.

[[[’AIK’], wins, [’IFK’,
’Göteborg’], [2,’-’,1]],
[[’AIK’], draws, [’Elfsborg’],

[1,’-’,1]]]

Thesecondentryin theoutputhasnomatchin the
correctresults,andthesecondentryin thecorrect
resultsis not representedin theoutput.In thefirst
entry of the output, three of the four fields are
correct.Henceboth recall and precisionare �	��

is thisexample.

3.2 Scores

Testedonthecorpusconsistingof 45articlesfrom
Aftonbladet,20 articlesfrom DagensNyheter, 14
articlesfrom Expressenand8 articlesfrom Syd-
svenskaDagbladet(i.e. 87 articles)thesystemac-
hievesarecallof 56%andandaprecisionof 66%.

Comparedto thenumbersFASTUSachievedin
MUC-6 (recall 44% andprecision61%) (Appelt
etal., 1993)our resultseemsverygood.However,
sincethe taskis mostlikely mucheasierthanthe
one in MUC-6, it is not unreasonableto believe
thata FASTUS-like systemwould performconsi-
derablybetterthanours.Evena very simpleheu-
ristic, which ouput the two most commonteams
in the text andthe highestscore,would probably
performdecently.

On articleswhereonly onegameis mentioned
(which arequite commonin the corpus),the sy-
stemscoresevenbetterthattheabovefigures,with
recall of approximately75%andprecisionof ap-
proximately85%. As expected,the performance
getsworsewhenthenumberof teamsandgames
mentionedin anarticleincreases.

3.2.1 The Problem with Draws

It is noteworthy thatthesystemperformsconsi-
derablyweaker on articlescontaininga gameen-
dingin adraw. Especiallytherecall(36%)is much
worsewhen only articlesmentioninga draw are
considered.As notedabove, our draw-patternis
very simple,which resultsin this ratherweakper-
formance.

However, it is not quite obvious how to con-
structmoreefficientdraw-patterns;it seemslike a
draw is muchmoreoftenexpressedin an indirect
way than a win or a loss.One way of detecting
drawswouldof coursebeto utilize scores(e.g.”2-
2” impliesa draw), but it is oftennot very easyto
tie the right scoreto the right game,andto make

48



sureit is final, whenthereareseveralgamesmen-
tionedin anarticle.

4 Alter nate Solutionsand Further
Development

4.1 Full Grammar

It is of coursepossibleto constructa complete
grammarfor thetext from knowledgeof theSwe-
dishlanguagein anattemptto generateamorefull
understandingof thetext. Fromthisfull understan-
ding the piecesof interestinginformation could
thenbeextracted.To dothisaparts-of-speechtag-
gerwhoseoutputwasinsertedinto (for example)
a DCG grammarcouldhave beenused.After this
had beencompletedreferenceson the local and
globalscalewouldbeworkedout.

Thisapproachwouldtakealot of work andcon-
siderablymoretime to execute,andit is our opi-
nion that it would be difficult to significantlyim-
provetheresultswith thiskindof system.Thefinal
stepswouldhaveto beveryaccurateto localizethe
interestinginformationandalot of work wouldbe
doneon text that is not interestingfor theapplica-
tion.

4.2 Local Grammar

A better approachis to constructonly a local
grammar. This could probably improve the sy-
stemif it wasdoneproperly. With a goodparts-
of-speechtaggerit would be possibleto make a
grammarspecifically suited for this application.
This wasin fact our first approach,but initial re-
sults weredisappointing(particularlydue to bad
PoS-tagging).However, a grammarof this kind
would help in that it would be possibleto more
thoroughlyinvestigatein what context the teams
appear, andnotcompletelyrely onpreceedingpre-
positionsandwordorder.

For amoredifficult task(likedetectinggoalsco-
rersor more)thegrammarwould probablysigni-
ficantly improve the results.For the limited task
investigatedin this report the resultswould most
likely beasmall improvement.

4.3 Why Pattern Recognition?

Therearetwo factorswhich make patternrecog-
nition a goodapproachto choose:thefactthatthe

patterns(suchasteamsandscores)areeasyto re-
cognize,andtheratherspecializedtopicsof thear-
ticles.Often,thereaderof anarticleis expectedto
know thingsnot explicit in thearticle(suchasthe
resultof pastgames).Referencesto suchknowled-
geis equallyunattainablefor bothpatternrecogni-
tion andalocal (or global)grammar. It thenseems
reasonableto regardthis informationas”lost” and
chosethesimplerapproach.Thealternative would
beto have a largedatabaseof pastevents,but that
taskis on awholeotherscale.

4.4 Impr ovementsin Curr ent Program

A very crudebut probablyeffective improvement
would be to do a simplecheckbeforethe output
to make surea gamebetweenthe two mostcom-
monteamsin thearticleis included.In mostcases
the article is aboutprimarily onegamewith per-
hapssomeothergamesmentionedbriefly. If these
brief interludesaffect theoutputsothattheprima-
ry gameis lost (which in somecaseshappened),
we wouldwish to make at leasta crudeguessof a
gamebetweenthesetwo teams.

Other improvementswould be to addpatterns,
specifically to betterdetectdraw games.This is
a matterof finding suitablepatternsand adding
them to the code.More dramaticimprovements
would be along the lines mentionedabove, i.e.
constructinga localgrammarfor sentences.

References

D. Appelt, J. Hobbs,J. Bear, D. Israel, M. Kameya-
ma,A. Kehler, D. Martin, K. Meyers,andM. Tyson.
1993. SRI InternationalFASTUS system:MUC-
6 test resultsandanalysis. In Proceedings of 16th
MUC, Columbia,MD.

Pierre Nugues. 2002. Manuscript. Departmentof
ComputerScience,LundUniversity. Usedaslecture
notesin the course”Introduction to LanguagePro-
cessingandComputationalLinguistics” 2002.

49



A Local Logic

Below is a tablewhich describeshow thepatternsfrom theinitial stepstranslatesinto local ”f acts”.The
higherup in this tablea matchoccurs,the higherpriority it has(i.e. testsfor matchingaremadetop
to bottomof the table).ObjectPrepis anobjectpreposition,win_act,win_ps,lose_actandlose_psare
active/passive, winning/losingkeys respectively anda TeamClauseis a teampossiblypreceededby a
preposition.Team1etc areteamsandin the casewhereTeam1andTeamClause1appearsin the same
entryTeam1is theteamcontainedin theteamclause(thesamegoesfor Team2andTeamClause2 etc).

Pattern Translatedinto

[draw] [draw]
[[ObjectPrep, Team1], win_act, TeamClause2] [Team2, defeats, Team1]
[[ObjectPrep, Team1], lose_act, TeamClause2] [Team1, defeats, Team2]
[[ObjectPrep, Team1], win_act] [Team1, loses]
[[ObjectPrep, Team1], lose_act] [Team1, wins]
[TeamClause1, win_act, TeamClause2] [Team1, defeats, Team2]
[TeamClause1, lose_act, TeamClause2] [Team2, defeats, Team1]
[win_act, [ObjectPrep, Team1], TeamClause2] [Team2, defeats, Team1]
[lose_act, [ObjectPrep, Team1], TeamClause2] [Team1, defeats, Team2]
[win_act, TeamClause1, TeamClause2] [Team1, defeats, Team2]
[lose_act, TeamClause1, TeamClause2] [Team2, defeats, Team1]
[win_act, TeamClause1] [Team1, loses]
[lose_act, TeamClause1] [Team1, wins]
[win_act] [win]
[lose_act] [lose]
[[ObjectPrep, Team1], win_ps, [av, Team2]] [Team2, defeats, Team1]
[win_ps, [av, Team2]] [Team2, wins]
[win_ps, Team2] [Team2, wins]
[win_ps, [av, Team1], [Team2]] [Team1, defeats, Team2]
[[ObjectPrep, Team1], lose_ps, [av, Team2]] [Team1, defeats, Team2]
[lose_ps, [av, Team2]] [Team2, loses]
[lose_ps, Team2] [Team2, loses]
[lose_ps, [av, Team1], [Team2]] [Team2, defeats, Team1]

50



B Completing Facts

Wehave threedifferentcaseswhenwewish to completethefactsdependingon how thefactlooks:

1. The fact is [Str] , where Str is either win, lose or draw. The fact is completed to
[Subject, Str+s] andprocessedagain.

2. The fact is [Team1, defeats, Team2] . This fact is alreadycomplete.It is given priority 5
(highestpriority) to reflectthatthetwo teamswerefoundin thesamesentencetogetherwith akey.

3. Thefactis [Team1, Str] , whereStr is eitherwins,losesor draws.Suchafactis comparedto all
othersentencesandcompleteddependingon subjectsandfactsin thesesentences.Seetablebelow
for details.Thefinal completionwill betheonewith highestpriority.

The”Fact” below is theprocessedfact.The”Local Fact” is a factoccuringin thesentencethatthefact
is currentlycomparedto. ”Subject” is thesubjectof thecurrentsentence,”Team”is a teambelongingto
thecurrentsentence(with mark”obj” if it is preceededby anobjectpreposition)and”P” is thepriority
givento thecompletedfact.T1 andT2 are(different)teams.

Fact Local Fact Subject Team CompleteFact P

[T1, draws] T1 [obj T2] [T1, draws, T2] 5
[T1, draws] T1 T2 [T1, draws, T2] 3
[T1, wins] [T1, defeats, T2] [T1, wins, T2] 5
[T1, loses] [T2, defeats, T1] [T1, loses, T2] 5
[T1, wins] [T2, loses] T1 [T1, wins, T2] 3
[T1, loses] [T2, wins] T1 [T2, loses, T1] 3
[T1, wins] T1 [obj T2] [T1, wins, T2] 2
[T1, loses] T1 [obj T2] [T1, loses, T2] 2
[T1, wins] [lose] T2 [T1, wins, T2] 1
[T1, loses] [win] T2 [T1, loses, T2] 1

51



C A Small Dictionary fr om Swedish

Below is adictionaryof all Swedishtermsusedin this reportin examplesandexplanations.

av by
besegra defeat(vb)
besegrades wasdefeated
för for
förlora lose
förlust loss,defeat(n)
mot against
oavgjort draw (The game ended in a draw.)
över over
på on
seger victory
slogs wasdefeated
till to (prep)
vinna win (vb)
vinnas bewon (The game can be won.)
över over

Finally a translationof all Swedishsentencesin thetext:

IFK Göteborg lyckadestill slutbesegraettsvagtÖrgrytei enspännandematch.= IFK Göteborg finally
managedto defeataweakÖrgrytein anexciting game.

Göteborg besegradeAIK. = Göteborg defeatedAIK.

Göteborg besegradesav AIK. = Göteborg wasdefeatedby AIK.

Matchenförloradesav AIK. = Thegamewaslost by AIK.

IFK besegradesav AIK. = IFK wasdefeatedby AIK.

IFK besegradeAIK somtidigarei veckanhadevunnit mot Örgryte.= IFK defeatedAIK who earlier
in theweekhadwonagainstÖrgryte.

52



A Spoken Dialogue System to Control Robots

Hossein Motallebipour, August Bering

Dept. of Computer Science, Lund Institute of Technology,

SE-221 00 Lund, Sweden;

E-mail: d97hm@efd.lth.se, d98abe@efd.lth.se

Abstract

Speech recognition is available on
ordinary personal computers and is
starting to appear in standard soft-
ware applications. A known prob-
lem with speech interfaces is their
integration into current graphical
user interfaces. This paper re-
ports on a prototype developed for
studying integration of speech dia-
logue into graphical interfaces aimed
towards programming of industrial
robot arms. The aim of the proto-
type is to develop a speech dialogue
system for solving simple relocation
tasks in a robot workcell using an in-
dustrial robot arm.

1 Introduction

Industrial robot programming interfaces
provide a challenging experimental context for
researching integration issues on speech and
graphical interfaces. Most programming issues
are inherently abstract and therefore difficult
to visualize and discuss, but robot program-
ming revolves around the task of making a
robot move in a desired manner. It is easy to
visualize and discuss task accomplishments in
terms of robot movements. At the same time
robot programming is quite complex, requir-
ing large feature-rich user interfaces to design
a program, implying a high learning threshold
and specialist competence. This is the kind of

interface that would probably benefit the most
from a multi-modal approach.

This paper reports on two extensions to an
earlier prototype speech user interface devel-
oped for studying multi-modal user interfaces
in the context of industrial robot program-
ming (0). The extended prototype gives the
robot the ability of understanding spoken nat-
ural language instructions and perform simple
tasks. The user/operator will be able to refer
to objects in the robot’s environment either
spatially, or using descriptive object names.
The prototype is restricted to manipulator-
oriented robot programming. Examples of
spoken instructions that the robot should be
able to understand and perform are:

Robot, please move 10 steps to the
right.
Move up slightly.
Grip the cube.
Move forward and a bit up.
Please move 15 steps to the right
and down to the table.

The spoken language instructions are used
within a restricted task domain. This has sev-
eral advantages:

• The speech vocabulary can be quite lim-
ited because the interface is concerned
with a specific task. The number of nat-
ural sentences tend to be limited as well.

• A complete system decoupled from exist-
ing programming tools may be developed

53



to allow precise experiment control.

• It is feasible to integrate the system into
an existing tool in order to test it in a
live environment. The prototype could
be integrated into existing CAD software
where it would enhance a dialogue, or a
design tool, in the larger CAD tool.

Further motivation for keeping speech vo-
cabularies limited lies in the fact that current
available speech interfaces seem to be capa-
ble of handling small vocabularies efficiently,
with performance gradually decreasing as the
size of the vocabulary increases. This also
makes it interesting to examine the impact
of small domain-specific speech interfaces on
larger user interface designs, perhaps having
several different domains and collecting them
in user interface dialogues.

The general purpose of the prototype is to
provide an experimental platform for investi-
gating the usefulness of speech in robot pro-
gramming tools. The high learning threshold
and complexity of available programming tools
makes it important to find means to increase
usability. The prototype extensions presented
in this paper are summarized below:

• Implemention of a human-robot dialogue
system that is capable of handling spa-
tial references and named references to
workspace objects.

• Utilization of XML for experimental se-
tups in order to test different dialogue sit-
uations. This includes modifying experi-
ment geometry (robots and workspace) as
well as using different speech grammars
and vocabularies.

Organization of this paper is as follows: we
will first take a look at the methods used for
the implementation, such as ASR and NLP.
Then, the experiment and the prototype it-
self are presented. A subjective evaluation and
results of the implementation and the experi-
ments with the prototype are then presented.
The paper will conclude with a short discus-
sion about the result.

Figure 1: Components of a speech recogni-
tion system and factors affecting system per-
formance. See (0).

2 ASR, NLP and CFG

An overview of dialogue systems is given
in (0). The language tools used in this pa-
per are basically automatic speech recogni-
tion (ASR) combined with natural language
processing (NLP) using context-free grammars
(CFG).

2.1 Automatic Speech Recognition
(ASR)

ASR could be defined as the ability of ma-
chines to recognize human speech in a specific
language.

There are three basic uses of ASR:

• Command and control: give commands to
the system that it will then execute. Sys-
tems for this purpose are usually speaker-
independent.

• Dictation: spoken sentences will be tran-
scribed into written text. Systems for this
purpose are usually speaker-dependent.

• Speaker verification: the voice is used to
identify a person uniquely.

The common components of an ASR system
include the person speaking to the system, in-
put devices to the system (i.e. microphones)
and the ASR system itself.

An ASR system is shown in Figure 1. The
figure show factors affecting the performance
of an ASR system, for example health and
mood of the speaker.

54



2.2 Natural Language Processing
(NLP)

NLP is about building computational mod-
els for understanding natural language. NLP
models will, from a natural language text,
compute a representation of the semantic
meaning of that text.

Several levels of analysis and knowledge are
commonly applied in NLP (0):

• Morphological analysis looking into the
construction of words, prefixes and suf-
fixes.

• Syntactical analysis using the structural
relationships between words.

• Semantical analysis finding the meanings
of words, phrases, and expressions.

• Discourse analysis to find the rela-
tionships across different sentences or
thoughts with contextual effects taken
into account.

• Pragmatic analysis looking for the pur-
pose of a statement trying to investigate
what the used language is used to com-
municate.

• Applying world knowledge (facts about
the world at large, common sense) for in-
terpreting sentences in a general context.

NLP is attractive and has several applica-
tion areas like database query interfaces, ma-
chine translation, fact extraction, information
retrieval / search engines, categorization, lan-
guage filtering, text summarization, question
answering systems, speech recognition and
spoken language understanding and intelligent
tutoring systems.

2.3 Context Free Grammars (CFG)

Many grammars used for NLP systems are
CFG since they have been widely studied and
understood and hence highly efficient parsing
mechanisms have been developed using them.

In basic terms, a CFG define sentences that
are valid using a parse tree. The parse tree

Figure 2: Scheme showing outline of imple-
mentation of prototype CFG grammar.

breaks down the sentence into structured parts
that can be easily understood and processed.
A parse tree is usually constructed using a set
of rewrite rules which describes legal language
structures.

In the definition of the grammar rules a
state graph can be used to illustrate how sen-
tences are to be constructed. Each sentence
following the paths in the graph will be recog-
nized as a correct phrase. For instance, the se-
mantic meaning: Grip cube number 1! should
accept phrases like:

Robot, please grip cube number 1
Robot, please grab cube number 1
Robot, please grasp cube number 1

and:

Robot please grip the cube number 1
Please grip the cube number 1
Robot grip the cube number 1
Grip the cube number 1
Grab the number 1
Grab cube 1
...

The scheme in the figure 2 show an outline of
the graph of the CFG grammar for controlling
the robot arm in the prototype. Two paths in
the grammar are marked. The straight line at
the bottom pointing to the right corresponds
to the sentence: Robot, please move the cube
number one slightly to the right. The broken
line at the top of the scheme corresponds to
the sentence: This is cube number 2.

55



Figure 3: Prototype system dataflow.

3 The Prototype

The prototype presented here is a user in-
terface where speech has been chosen to be
the primary interaction modality but is used
in the presence of several feedback modalities.
Available feedback modalities are text, speech
synthesis and 3D graphics.

The prototype system utilizes the speech
recognition available in the Microsoft Speech
API 5.1 software development kit (SAPI).
SAPI can work in two modes: command mode
recognizing limited vocabularies and dictation
mode recognizing a large set of words using
statistical word phrase corrections. The pro-
totype uses the command mode. It is thus able
to recognize isolated words or short phrases.

The system architecture (see Figure 3) con-
sists of several applications:

• The ASR application uses SAPI 5.1 to
recognize a limited domain of spoken user
commands. Visual feedback is provided
in the Voice Panel window. Recognized
words and phrases are received from the
SAPI 5 ASR engine graded with a confi-
dence value. This information, as well as
extracted semantic information, is sent to
the action logic application.

• The Action Logic application controls the

user interface system dataflow and is the
heart of the prototype. Basically it re-
ceives phrases from the ASR application
and acts upon them. For instance, if
the semantic information of a phrase in-
cludes robot arm movement, correspond-
ing RAPID code is generated for the
robot1. A phrase that reads Move two
steps left, will generate the RAPID code
MoveL (0,2,0). In this instance the
RAPID code will be sent to the 3D robot
application for execution providing 3D
feedback, and to the XEmacs application
for storage and textual feedback.

• The Text-To-Speech application provides
user voice feedback.

• The XEmacs application acts as a
database of robot movement commands
written in the robot programming lan-
guage RAPID, since it is an editor it also
allows direct editing of RAPID programs.

• The 3D Robot application provides a
3D visualization of the robot arm with
workspace. It understands and can per-
form a subset of RAPID commands.

The applications forms a distributed sys-
tem. Inter-application communication is per-
formed using TCP/IP.

The ASR application uses SAPI 5 in com-
mand mode (as opposed to the also available
dictation mode). The command mode uses
CFG grammars to recognize single words and
short phrases. The CFG format in SAPI 5 de-
fines the structure of grammars and grammar
rules using XML2. In the prototype, this XML
format is used for implementing the prototype
NLP capabilities.

3.1 SAPI 5 XML CFG Grammar
Format

The reference document describing the
XML SAPI 5.0 speech recognition grammar

1RAPID is a programming language for industrial
robot arms developed and used by the ABB company.

2A SAPI 5 included XML CFG grammar applica-
tion compiles CFG XML grammars into the binary for-
mat required by the SAPI 5 speech recognition engine.

56



format (based on the Microsoft schema lan-
guage and not fully W3C compliant3,4) is in-
cluded in the SAPI SDK documentation.

Below is an example of a grammar rule writ-
ten in SAPI 5 XML:

<RULE NAME="grip">
<LIST>

<P>grip</P>
<P>grab</P>
<P>grasp</P>

</LIST>

<P>cube</P>

<LIST PROPID="CUBENR">
<P VAL="1">one</P>
<P VAL="2">two</P>
<P VAL="3">three</P>

</LIST>
</RULE>

The grammar rule corresponds to sentences
like ”grip cube two”. Only words between
<P> tags are recognized. Furthermore, the
rule is augmented with semantic information
(enclosed as name-value pairs within XML
tags). This information is extracted during
sentence recognition by the ASR application
and provides the means for a simple context-
independent NLP analysis performed by the
prototype. The sentence ”grip cube two”
would provide the ASR application with the
following semantic information:

RULE: grip
CUBENR: 2

4 Experiment

A series of Wizard-of-Oz experiment tran-
scripts were recorded before the work on the
prototype began. Below is an example of a
dialogue between the user and the system
derived from the transcribed Wizard-of-Oz

3The World Wide Web Consortium (W3C),
http://www.w3.org

4Although the MS Speech SDK (SAPI 5.1) docu-
mentation says that the schema will be rewritten and
compliant with W3C once it has been approved by
W3C.

experiments:

Robot, please move 10 steps to the right!
Move down to the table!
Move up slightly!
Move 1 step to the right! Move down!
Grip!
This is cube 1.
Move forward and a bit up!
Move 4 steps to the left!
Move a bit down and drop the cube!
Move up slightly!
Could you move 15 steps to the right
and down to the table?
Grab the cube!
This is cube 2.
Put it on cube 1!
Please move 2 steps up and 6 steps left!
Move 2 steps down!
Grab the cube number 3!
Put it on the cube number 2!

The robot knows the position of the table. It
has no information about the cubes and where
they are situated. The user should guide the
robot arm to each cube, where each cube is
denoted a specific name by the user, e.g. cube
number one. The robot remembers the loca-
tion of the specified cubes.

The goal for the user is to instruct a vir-
tual robot arm, using natural spoken English,
to identify and put three cubes on top of each
other on the table. Figure 4 shows the exper-
imental setup as well as the user interface.

Three non-native English-speakers has
tested the ASR and NLP part of the proto-
type system using dialogues similar to the one
above. Dialogue sentences are recognized with
good accuracy using SAPI 5. However, at the
time of the test the prototype implementation
partially lacked 3D and textual feedback for
part of the dialogue. Evaluation of the proto-
type system with full multimodal feedback will
be performed at completion of these parts.

5 Discussion

The experiment with three subjects showed
the SAPI command mode and the CFG gram-
mar used in the presented prototype to be

57



Figure 4: The prototype system user interface
consists of four windows; 1. The voice panel
containing lists of available voice commands.
2. The XEmacs editor containing the RAPID
program statements. 3. The 3D visualization
showing the current state of the hardware. 4.
The TTS application showing the spoken text.

rather stable. The feedback from the system
gave clear signals that it could hear and tran-
scribe the spoken sentences well. Subjective
impressions from test subjects were positive.

The dictation mode of SAPI 5 were tried
in the initial stages of prototype development.
The mode uses a large set of words and should
potentially suppart a larger set of English sen-
tences than the chosen solution. However,
recognition accuracy proved insufficient. The
command mode with smaller vocabulary was
more accurate. Although the grammar and set
of used words in the system is limited the test
subjects felt the dialogue came natural.

6 Conclusion

A prototype user interface for examining
spoken dialogues for controlling simple reloca-
tion tasks to be performed by robot arms has
been developed.

• The prototype uses SAPI 5 and CFGs for
processing and understanding spoken nat-
ural language robot instructions.

• The prototype dialogue system supports
spatial referencing with respect to the

robot arm and identification and ob-
ject referencing by name in the robot
workspace.

• Feedback is provided by several modali-
ties.

7 Acknowledgements

We would like to thank Pierre Nugues and
Mathias Haage at the Department of Com-
puter Science at Lund University for valuable
insights and comments during our work.

References

M Haage, S Schötz and P Nugues. A Prototype
Robot Speech Interface with Multimodal Feed-
back. Proceedings of the 2002 IEEE, Int. Work-
shop on Robot and Human Interactive Commu-
nication. Berling, Germany, Sept. 25-27, 2002.

J Hollingum and G Cassford. Speech Technology
at Work. New York: IFS Publications Ltd, 1988

Microsoft SAPI homepage. http://research .mi-
crosoft.com/srg/sapi.aspx. 2003.

P Nugues. Lecture Notes: Introduction to Lan-
guage Processing and Computational Linguis-
tics. 2002. Contact P Nugues at Department of
Computer Science, Lund Institute of Technol-
ogy, Sweden.

Spoken dialogue technology: enabling the conver-
sational user interface, ACM Computing Sur-
veys (CSUR), vol. 34, nbr 1, 2002, pp. 90-169,
ACM Press.

58



 

Clustering documents with vector space 
model using n-grams 

 
 

Klas Skogmar, d97ksk@efd.lth.se 
Johan Olsson, d97jo@efd.lth.se 

 
Lund Institute of Technology 

 
 

Supervised by: 
Pierre Nugues, Pierre.Nugues@cs.lth.se 

 

 

 

 

Abstract 
This paper describe a method to cluster documents using the linear space algorithm 
together with unigrams, bigrams, trigrams and n-grams in an attempt to enhance the 
clustering performance compared to unigrams only. Our tests did not reveal an 
improvement, but shows that the technique has a potential, especially in certain 
specific areas like finding citations or versions of the same document. The extra effort 
required for implementation and the speed loss could make it less interesting however. 

59

mailto:d97jo@efd.lth.se


Introduction 
This paper is the result of a project 
done for a course in language 
processing at Lund Institute of 
Technology. The project was 
mandatory, but the topic of the project 
was optional. We chose to use our 
newly acquired knowledge on the 
benefits of n-grams versus unigrams, 
but on a different area, namely: 
document clustering. 
 
We wanted to use basic standard 
algorithms for everything, because we 
wanted to focus on the differences that 
n-grams versus unigrams could make 
for the accuracy of clustering. 
Therefore we chose the vector space 
model for determining similarities 
between documents, and k-means for 
clustering. 
 
We expected that the benefits of our 
suggested solution would be that it 
enhanced the accuracy of clustering, 
that it worked with all available 
solutions (with some minor 
modifications), and that it gave better 
retrieving of keywords (which we will 
not consider in this paper).  
 
The accuracy should increase in 
documents, where similar words occur, 
but when the ordering is different. An 
example is “Avoid a written door 
code…” and “… code written to avoid 
the Trojan back door…”, where they 
would be considered quite similar 
using unigrams, but not as similar 
using bigrams or trigrams. In the 
example above “Trojan back door” is 
an example of the benefits of trigrams 
over bigrams. 
 
The proposed algorithm will not give 
as many benefits in languages where 
words are compound words, as in 
Swedish (in contrast to English). 
 

As far as we know, most existing 
algorithms only use unigrams, 
although the advantages of n-grams 
have proven most successful in many 
language processing areas. 
 

The problem 
Clustering is the ability to 
automatically group similar 
documents, only using the text in the 
document itself. To do this one needs 
to determine the similarity between 
documents. There is also a need to 
create reference documents when 
combining two or more documents. 
 
Clustering is done in many areas of 
computer science, and there are a lot of 
different techniques, like algorithms, 
neural networks, genetic algorithms, et 
cetera. The different techniques used 
depend on the application area. 
 
There are many applications for 
clustering documents. Some examples 
are: Internet search engines, 
knowledge management systems or 
document databases. Similarities 
between documents could be used for 
searching the local computer for 
documents or automatically acquiring 
meta-data from documents for use in 
version management systems. 
 
Usually clustering of documents can be 
combined with several other 
techniques to enhance the clustering 
accuracy. These techniques can be: 
determining grammar, omitting 
common words or putting weights to 
the words. 
 

Our solution 
We chose to use the k-means clustering 
algorithm. This algorithm requires a 
distance value between documents. For 
this we used one of the most widely 

60



used techniques for determining 
similarities: the Vector space model.  
 
The reason for the choice of these 
algorithms is that they are very 
common and therefore known by most 
computer linguists. The fact that they 
are well documented make them easy 
to implement and easy to read for 
others. Also, we wanted to focus on the 
benefits of n-grams compared to 
unigrams. 
 
We chose to implement the project in 
Java. In addition to the fact that it is 
object oriented and that we are familiar 
with the language, we could also show 
our progress using an Applet on the 
Internet. Since this is a commonly used 
language, others will be able to copy 
our source code and modify it for their 
own purposes. Since we had used 
regular expressions in the course, we 
thought it would be good to include 
that functionality in this project as 
well. This makes the parsing of the 
documents very flexible. We used 
Java’s standard implementation of 
regular expressions (included since 
Java 1.4). 
 

Vector space model 
The vector space model is widely used 
for determining similarity between 
documents [5]. 
This method sees each document as a 
vector in a word-space. The dimension 
(number of axis) of this word-space is 
the number of different words in the 
two documents. The number of 
occurrences of each word determines 
the “length” of that axis for that 
document. Then the vector space 
model determines the angle (cosine 
coefficient) or some other value (for 
example Jaccard or Dice coefficients) 
[4] between the documents. This 
represents the similarity between the 
documents.  

 
When using n-grams instead of 
unigrams, each axis consists of more 
than one word. Since we used Java as 
the programming language, we did 
some simple inheritance to solve this.  
 
We chose to use the cosine coefficient, 
which determines the angle between 
the documents. [1] presented the 
algorithm for VSM as follows: 

∑∑

∑

==

==
n

i
i

n

i
i

n

i
ii

dq

dq
dq

1

2

1

2

1),cos(
rr ,  

where q is the query, d is the document 
and n the number of different words. 
 
Since we used only the number of 
words as the coefficient, only those 
words, which have a word count higher 
than zero in both documents, will 
produce a value. Therefore we 
simplified this algorithm, so that we 
would only need to multiply the 
common words in the nominator. This 
way the algorithm we use does not 
require any computations on the words 
that are not part of both the documents. 
 

∑∑

∑

==

==
dq

qd

n

i
i

n

i
i

n

i
ii

dd

dd
dd

1

2

1

2

1

21

21
)2,1cos(

rr
,  

where d1 is document 1, d2 is 
document 2, and nqd the number of 
common words. 
 
We extract the words from the 
documents using regular expressions, 
which make it flexible to redefine the 
smallest parts that are analyzed. Then 
we sort using Java’s Mergesort for 
O(nlogn) performance, instead of 
putting in the words in a sorted list 
directly, which would give O(n2) 
performance. 
 

61



Clustering 
According to [1], the k-means 
algorithm “is the conceptually simplest 
method and should probably be used 
first on a new data set because its 
results are often sufficient”. This 
summarizes the reasons why we used 
this algorithm.  
 
The k-means method is really simple; 
first some cluster centers (center of 
mass) are randomly chosen (we picked 
randomly chosen documents). Each 
document is assigned to one of these 
clusters (defined by the closest centre). 
Then a new cluster centre is calculated 
for each cluster. In the next iteration 
each document is assigned to one of 
the new cluster centers that were 
previously calculated. Currently we 
iterate a given number of times, instead 
of having a stop criterion. 
 
The calculation of new cluster centers 
was done using only the words of all 
the documents in that cluster. An 
alternative would have been to include 
all words in all documents instead, but 
that would have required more 
computational power. 
 

Results 
We have only tested our algorithm on a 
limited test, due to time restrictions. 
We have also constructed examples 
where our algorithm outperforms 
traditional (unigram) methods. For 
example our method can see 
differences in texts with words that are 
the same, but that come in a different 
order. In our test texts there are not 
many cases where this arises. In some 
areas there are two words that are 
belonging to each other, though, which 
make our algorithm work better. 
 
When calculating a Vector space 
model value between two documents, a 

choice has to be made between 
unigrams, bigrams, trigrams, et cetera. 
Since we wanted to analyze the 
benefits of n-grams, we did both 
separate tests using them individually 
and a weighed sum of the unigrams, 
bigrams and trigrams. 
 
We found that the Vector space model 
between arbitrary documents is only 
applicable using up to 4-grams or 5-
grams, unless you want to spot 
citations or versions of exactly the 
same documents. We have chosen to 
only use the first three values (up to 
trigrams) in our clustering tests. 
 
When we tested to cluster 6 texts from 
the New Scientist web page, 3 texts 
about neutrinos and 3 texts about 
transistors, they were clustered 
correctly using both unigrams and our 
extended version, which included 
bigrams and trigrams. When analyzing 
the output of the Vector space model 
(the similarities), we found that our 
approach using only bigrams changed 
the outcome of the clustering 
somewhat in the wrong direction to 
what we had expected. Clustering with 
only trigrams made it cluster properly 
again, as did the combination of the 
three. One reason to the failure of 
bigrams could be the small quantity of 
texts, or the fact that we did not choose 
texts that were different enough. 
 

Conclusion 
Our limited testing shows that looking 
at more than one word at a time won’t 
necessarily give accuracy, but can 
potentially give other benefits when 
comparing documents. In the few texts 
we have used, there is no obvious 
advantage of using our suggested 
algorithm, although it could be our 
handpicked documents that are not 
adequately belonging to other areas. 
The extra time of implementing the 

62



algorithm probably makes it even less 
interesting. We hope that people can 
reuse, and make use of, our source 
code, though.  
 
Besides clustering, n-grams could be 
used to spot citations from one 
document to another, or versions of the 
same document, with some small 
changes in the source code. The 
method could also be used to extract 
key n-grams, instead of extracting 
keywords from texts. These would 
probably describe the document even 
better than single words. 
 
We think there are a lot of potentially 
interesting areas where n-grams can be 
used, and clustering is one of them. We 
have shown that it has potential, but 
the current benefits are too small. 
Maybe a combination of n-grams and 
other techniques will prove to work 
best? Further testing of our proposed 
algorithm needs to be done. 

 

Applet, Java source, and 
test texts 
To make it easier to analyze our 
results, and to present the code used, a 
web page was created for the project. It 
is located at: 
http://www.efd.lth.se/~d97ksk/languag
e. There we have the source code for 
the project, together with javadoc, an 
example Applet, the test text samples 
we used and this report. 

63

http://www.efd.lth.se/~d97ksk/language
http://www.efd.lth.se/~d97ksk/language


References 
 
[1] Christopher D. Manning and 

Hinrich Schütze, 1999, Foundations 
of statistical natural language 
processing, MIT Press. 

 
[2] Andrei Z. Broder, Steven C. 

Glassman, Mark S. Manasse, 
Geoffrey Zweig, 1997, Syntactic 
Clustering of the Web, Digital SRC 
Technical Note 1997-015, 
http://gatekeeper.dec.com/pub/DEC/
SRC/technical-notes/abstracts/src-tn-
1997-015.html 

 
[3] Pierre Nugues, 2002, Introduction 

to Language Processing and 
Computational Linguistics, Lecture 
Notes, Lund Institute of Technology. 

 
[4] Danmarks Tekniske Universitet, 

2002, Introduction: Vector Space 
Model, Technical report, 
http://isp.imm.dtu.dk/thor/projects/m
ultimedia/textmining/node5.html 

 
[5] Gerard Salton, A. Wong, C.S 

Yang, 1975, A Vector Space Model 
for Automatic Indexing, 
Communications of the ACM, 
18(11), November. 

 
[6] John Zukowski, 2002, Java Tech 

Tips on using regular expressions in 
Java, Sun JDC Technical notes, 
http://developer.java.sun.com/develo
per/JDCTechTips/2002/tt0423.html 

 

64

http://gatekeeper.dec.com/pub/DEC/SRC/technical-notes/abstracts/src-tn-1997-015.html
http://gatekeeper.dec.com/pub/DEC/SRC/technical-notes/abstracts/src-tn-1997-015.html
http://gatekeeper.dec.com/pub/DEC/SRC/technical-notes/abstracts/src-tn-1997-015.html
http://isp.imm.dtu.dk/thor/projects/multimedia/textmining/node5.html
http://isp.imm.dtu.dk/thor/projects/multimedia/textmining/node5.html
http://developer.java.sun.com/developer/JDCTechTips/2002/tt0423.html
http://developer.java.sun.com/developer/JDCTechTips/2002/tt0423.html


HORACE
—an artificial columnist

Marcus Uneson, Jan 2003

Abstract

After a brief outlook on the field of random text generation, in particular on 
Andrew Bulhak’s Postmodernism generator, the present paper describes a 
program for generation of random, meaningless but grammatically correct 
text in Swedish. The program, named Horace, is intended to simulate the 
abstract reasoning of (some) literary columnists. 

Horace is written in Prolog using the DCG formalism. It handles agreement 
and permits weights to be assigned to competing rules. A first version can be 
tested at Horace www (embedded in a Perl CGI for www access). The paper 
is concluded with suggestions of  various experimental, application-specific 
extensions to the program.

Introduction

Automatic text generation
Automatic generation of text from some underlying, formal semantic 
representation is an important research field. Generally, the point of automatic 
text generation (or “natural language generation”) is to adequately render 
a system- and application-specific machine representation (which is very 
opaque to human beings) in natural language (which is, at least sometimes, 
immediately and effortlessly accessible).

For restricted domains good results have been attained. On a more 
general level, however, most things remain to be done. Automatic generation 
of text in the sense of transforming a formal semantic representation into a 
grammatical and (above all) coherent text is a very demanding task (for a 
first introduction, see for instance Gal et al 1991). Nevertheless, the field is 
most central to improvements on the interface between man and machine. 
Research in the field is quite vivid; for instance,  the 2nd International Natural 
Language Generation Conference was held 2002 and there have been several 
international workshops sponsored by the Association for Computational 
Linguistics (ACL www). There is also an ACL Special Interest Group on Text 
Generation, SIGGEN (Siggen www). 

Random texts
The topic of the present paper, however, is another: generation of random 
texts. This task is easier by several orders of magnitude. For such completely 
meaningless texts, there is no semantic representation at all to be conveyed. 
Several difficult models (of semantics, pragmatics, world knowledge, and 
discourse structure, among others) are thereby made superfluous. 

Random text generation may seem as pointless as the texts themselves. 

65



Admittedly, the applications from a practical point of view are few: Turing 
tests, tests of a grammar under construction, perhaps generation of sentences 
for language education, when the teacher’s imagination is exhausted. The AI 
and computational linguistics research communities seem to have largely lost 
interest in the field (perhaps after the successful but now terminated attempts 
with the semantically clueless ELIZA and PARRY), turning the attention to 
automatic text generation in the sense described in previous section.

However, the main raison d’être of random texts is diversion, and 
diversion will probably never become out of date. For a more general 
audience, simulation of texts produced by humans in different genres continue 
to attract interest. On the web one may find for instance randomly generated 
poetry (Kurzweil www, Zawinski www), buzz-word spoof commercials (Lee 
www), pulp fiction covers (Romance writer www), pseudo-philosophical 
ranting (Kant www), or postmodern discourse (Postmodernism www). See 
the link collections Toolworx www and Charabia www for more links.

On the present program
The current program, named Horace, is certainly not intended for anything but 
amusement. It attempts to imitate the discourse of certain cultural columnists 
of the Swedish intelligentia. As pointed out by Bulhak 1996, the vocabulary 
of such writers is often abstract, dense, and replete with jargon; additionally, 
the disciplines they comment (art criticism, philosophy, cultural theory, 
among others) are inherently subjective, with reasoning based on analogies, 
comparisons and references to text-external sources, rather than on logic. Thus, 
this kind of writing should be easier than the average to simulate. The texts 
generated by computers certainly may appear incoherent, incomprehensible, 
and difficult to follow; but then again, for this specific genre, so may those 
generated by humans. 

It is by pure coincidence that Horace bears the same name as Horace 
Engdahl, permanent secretary of the Swedish Academy and notorious for his 
esoteric literary reviews.

Strategies for random text generation

The most popular approaches for random text generation may roughly be 
divided into statistical modelling and explicit grammars. They are briefly 
commented on below.

Statistical modelling
Statistical modelling is stable, easy to implement and covers inherently 
collocation (at least for immediate neighbouring words, such as carry through, 
state senate), which probably is an important cue for naturalness. A common 
method is to construct a training corpus; to divide it into units (most often 
words, sometimes individual characters); and to construct a probability table 
(a language model) wherein a probability is assigned to each unit, given some 
preceding sequence of a certain length (the degree of the model; for words, 
typically three or four).

Such a model encodes very little or no linguistic knowledge—the text 
is treated as a sequence of arbitrary symbols from a given alphabet and 
would need very few modifications to analyse, say, amino acid or DNA 
sequences. While this is perhaps a weakness only from a linguist’s point of 
view, there are more substantial drawbacks as well. Thus, a training corpus 

66



must be prepared—for some purposes, this task may amount to downloading 
a collection of texts from www, but it may also include very laborious and 
tedious work (as in this case—corpora of newspaper text exist, but a large 
enough corpus of literary criticism in Swedish, preferably by one or two 
particularly abstruse authors, is not easily found). 

Furthermore, the statistical model has structural deficiencies: for one 
thing, it does not easily handle dependencies reaching outside the window 
width set by the model’s degree. This may be less obvious in English than 
in most other languages, for which agreement is more important. In modern 
standard Swedish, verbal agreement is even simpler than in English (i.e. 
non-existent); the rules for NP agreement, however, are quite complex (for 
instance, different adjectival agreement for definite and indefinite and for 
attributive and predicative position). Some simple examples of agreement 
outside the span (for a 4-gram model) are given below:

[1a]  de otroligt stora, gröna ängarna 
’the incredibly large, green meadows’

[1b]  *de otroligt stora, gröna ängen
 
[2a]  den otroligt stora, gröna ängen 

’the incredibly large, green meadow’

[2b]  *den otroligt stora, gröna ängarna 

Given the sequence {otroligt, stora, gröna}, there is no way in a 4-gram model 
to correctly choose between the singular [1a] and the plural [2a] by pure 
statistics. 

Explicit formal grammars
Grammatical correctness (on which agreement is but one aspect) seems to be 
sine qua non for successful simulation. Whereas many writers may get away 
with flawed reasoning, blurred semantics or general incoherence (I suppose 
most of us do, occasionally), such failures are not as immediately obvious to 
a casual reader as are incorrect endings, erroneous number of verb arguments, 
or (for languages which so require) failure to include subject and/or finite verb 
in each clause. To model long and complicated but immaculately grammatical 
(in the Chomskyan sense) sentences, an explicit formal grammar is called 
for. 

It should be noted that writing a grammar for generating text is far easier 
than writing one for parsing (on a general level, that is). In parsing, it is 
necessary to foresee and formalize the possible constructions of a language, 
which is a tremendous challenge; in generation, by contrast, it is enough 
to specify the constructions wanted in the generated text. Grammatically 
correct but highly unlikely constructions (such as nested relative clauses, or 
recursively called prepositional phrases beyond a depth of, say, three) may 
be discarded with no immediate drawbacks. Furthermore, if the output isn’t 
very long (as in the current case), some perfectly normal constructions that 
happen to be difficult to formalize or implement efficiently (in Swedish, for 
instance, movements, particle verbs, prepositional complements), can be left 
out without losing much naturalness. Repetitions of a certain grammatical 
structure is by no means as conspicuous to a human reader as repetitions of an 
unusual lexeme, and we note what’s there rather than what’s not.

67



Explicit grammars in use: The postmodernism generator
Most of the examples of web sites featuring computer-writed texts cited 
above appear to use some kind of statistical modelling; those that do not 
are mostly extremely simple (offering perhaps a three-word phrase with a 
randomly chosen verb, followed by a randomly chosen adjective, followed 
by a randomly chosen noun). One notable exception is the aforementioned 
“postmodernism generator” (Postmodernism www), the most ambitious 
attempt at simulating genre-specific text I have come across. 

As mentioned before, random text generation has generally not 
attracted much interest from the research community in the latest years. The 
postmodernism generator is an exception in this sense as well: it is described 
in the paper, “On the Simulation of Postmodernism and Mental Debility 
using Recursive Transition Networks” by Andrew C. Bulhak (1996). The 
paper presents briefly a system called “The Dada engine”, which accepts as 
input a script defining a set of rules in form of recursive transition networks 
(RTNs) in an especially devised format called pb (slightly reminding of the 
Backus-Naur form). Bulhak has provided some extensions to the basic RTN 
approach; in particular, the rules may take parameters, which permits lambda 
abstraction. The engine traverses the RTNs, choosing rules at random, and 
outputs strings.

A particularly successful set of RTNs simulating postmodern discourse in 
the style of a journal article is also described in the paper (Postmodernism www 
offers an online version). A few excerpts from the randomized postmodernist 
article “Realities of Stasis: Subsemiotic materialism and Foucaultist power 
relations” (included as a sample in Bulhak’s paper) are given below:

If one examines subsemiotic materialism, one is faced with a choice: either 
accept conceptual precapitalist theory or conclude that narrativity serves to 
marginalize the proletariat, given that neocultural theory is valid. Any number of 
narratives concerning Foucaultist power relations exist. Subsemiotic materialism 
implies that sexuality has objective value. 
(...)

Lyotard promotes the use of Marxist socialism to attack the status quo. 
Foucaultist power relations suggests that culture is capable of deconstruction. 
However, several deconstructions concerning subsemiotic materialism exist.
(...)

In a sense, a number of narratives concerning subsemiotic materialism exist.
(...)

If one examines textual capitalism, one is faced with a choice: either 
accept Foucaultist power relations or conclude that the goal of the reader is 
deconstruction.
(...)

If one examines Foucaultist power relations, one is faced with a choice: either 
reject textual capitalism or conclude that truth is capable of intention, given that 
art is equal to narrativity.

The approach does have its limitations. Judging from the sample article 
document cited above, Bulhak has attacked the problem from a computer 
scientist’s point of view (rather than a linguist’s). Terminals may have any 
length, with little consideration of linguistic relevance, so some parts remind 
of filled-in templates. Furthermore, the RTNs do not easily handle agreement 
(not even with Bulhak’s extensions), which makes the engine difficult to 
rewrite for other natural languages. (At times this is noticable even in English. 
All verbs output by the postmodernism generator are in third person singular, 
present tense. So are almost all subjects as well, but occasional exceptions 

68



are not considered—note the ungrammatical “Foucaultist power relations 
suggests” above). Another weakness is the primitive way of assigning 
individual weights to rules; currently, any rule with proper head is as likely to 
be chosen as another, and doubling its probability is done by including it twice 
in the script. This is not a very sophisticated approach, and  not something you 
would like to use to assign weights {10000, 30, 1} to {rule1, rule2, rule3}.

Still, the overall impression of a paper produced by the postmodernism 
generator is quite convincing. The repertoire of constructions is large enough 
not to make the repeated structures too obvious (the quotes above are chosen 
from a three-page document), and the output even includes made-up quotes 
and references. The program has attracted a fair amount of attention. In 
October 2002, it participated in an art exhibition called Electrohype 2002 
(Malmö, Sweden; Electrohype www).

Horace

Issues of formal grammars for Swedish
The modelling of Swedish grammar for random text generation presents 
some difficulties which are absent or at least less cumbersome in English. In 
particular, they concern agreement constraints and word order. Some other 
difficulties, less ubiquituous (e.g. particle verbs, movements, prepositional 
objects), have simply been outlawed—see under “Restrictions” below.

Agreement
Agreement constraints in Swedish concern in particular the nominal phrase 
(see also examples [1-2]). Adjectives can be regarded as having inflections 
for number, gender, species (definite/indefinite; compare [3a] to [3b], and also 
[3c] to [3d]), and position (attributive/predicative; compare [3b] to [3d]). 

 [3a]  en färglös idé/ett färglöst minne/färglösa idéer
’a colourless idea/a colourless memory/colourless ideas’ (attributive position, indefinite)

 [3b]  den färglösa idén/det färglösa minnet/de färglösa idéerna
’the colourless idea/the colourless memory/the colourless ideas’ (attributive position, definite)

 [3c]  en idé är färglös/ett minne är färglöst/idéer är färglösa
’an idea is colourless/a memory is colourless/ideas are colourless’ (predicative position, 
indefinite)

 [3d]  idén är färglös/ minnet är färglöst/idéerna  är färglösa
’the idea is colourless/the memory is colourless/ideas are colourless’ (predicative position, 
definite)

A fifth conceivable category is natural gender. In written Swedish, the 
adjective ending is often -e for masculine persons in definite singular 
attributive; compare [4a] and [4b].

[4a] den store hjälten
’the great hero’ (masculine)

[4b] den stora hjältinnan
’the great heroine’ (feminine)

69



However, for many writers, this is not a compulsory distinction, and it is 
currently unimplemented in Horace.

Word order
Swedish is a Germanic language and, like several others of those, it has 
strict rules for where to place the finite verb. The constituent order is often 
described by means of the Danish linguist Paul Diderichsen’s position schema 
(originally for Danish), as in Figure 1:

Foundation Nexus field Content field

V1 N1 A1 V2 N2 A2
finite verb subject

(when 
not in 
foundation)

clausal 
adverbials, 
short 
adverbials

infinite 
verb/s,
verb 
particles

object/s,
predicative

time, place, 
manner etc 
adverbials

Figure 1a. Diderichsen’s position schema, main clause

Subjunction 
field

Nexus field Content field

N1 A1 V1 V2 N2 A2
subject clausal 

adverbials, 
short 
adverbials

finite verb infinite 
verb/s,
verb 
particles

object/s, 
predicative

time, place, 
manner etc 
adverbials

Figure 1b. Diderichsen’s position schema, subordinate clause

Basically, there are two different schemata, one for main clauses  and one for 
subordinate clauses. In virtually all declarative main clauses, the verb goes 
into the second slot (Fig 1a), and the first slot (the foundation, Diderichsen’s 
Fundament) can and must be filled with exactly one of the other constituents1. 
The entire phenomenon is known as “V2”, which may be interpreted as 
“verb in second slot”. The by far most common content of the foundation is 
either subject (N1) or clausal/short adverbials (A1). The constituent order of 
subordinate clauses is more rigid.

Implementation

Requirement specification
Horace is expected to generate a text consisting of grammatically immaculate 
sentences composed from an entirely abstract vocabulary. A later step is to 
include a rudimentary simulation of discourse structure (such as rhetorical 
markers and/or references to other fictive writers).

Formalism
Horace is written in Prolog, using the DCG formalism (Pereira and Warren, 
1980). DCG was initially chosen for Horace as a convenient way of handling 
agreement. However, with one argument for probability, one for unique ID 
(more on these below); perhaps three or four for morphological and agreement 
categories; and two for difference lists (when treating the implicit lists of  
DCG rules in ordinary prolog code), the argument lists may appear quite 
cluttered. For rules involving many constituents, such as instance ditransitive 
verbs with optional adverbials, the notation does become cumbersome. 

70



Additionally, DCG does not handle the V2-mechanism in some obvious way. 
The program may one day be rewritten in some other formalism, such as 
Constraint Grammar.

Allowed constructions
For the purposes of Horace, it is enough to provide a grammar which is extensive 
enough to generate some 40 lines of text without too obviously repeating 
grammatical constructions. As pointed out, human language perception is not 
very easy to offend in this sense—if the vocabulary is varied, a readable article 
may be generated with rather few rules. Quite a few constructions may thus 
be simplified or disregarded. The V2 phenomenon can be reduced to the two 
most common cases: subject or adverbial in the foundation. Wh-movements 
may be disregarded, as may particle verbs, prepositional complements, any 
recursive categories, ellipses, extragrammatical utterances etc

Non-terminals
It is in fact easier to state what the grammar does cater for, than what has been 
disregarded. Table 1 gives an overview over the non-terminals currently used, 
with an informal use of regular expression modifiers ({}|?) for quantification 
and disjunction, and DCG-style square brackets ([]) for terminals. All DCG 
arguments (for weights, rule ID, morphological categories, agreement etc) 
have been left out for clarity, as well as methods for choosing terminals and 
rewrite rules at random (see below). Variations for main and subordinate 
clause have also been left out; they include active vs passive clauses, finite 
vs compound verb forms, optional adverbial phrases, and (for main clauses) 
subjects vs clausal adverbials in the foundation.

Table 1. 
Non-terminals of Horace. 
heading [Art] [Adj] [N] heading
critic  paragraph{3} critic
paragraph  s{6,9} paragraph
s  mcl | mcl scl | scl mcl | mcl [Conj] mcl sentence
mcl cl_advl [Aux] np

(vit | vmt np | vdt np np | vkp np | vkp adjp)
main clause 
(only one type shown)

scl subj np cl_advl 
(vit | vmt np | vdt np np | vkp np | vkp adjp)

subordinate clause 
(only one type shown)

np  n_grp (pp)? nominal phrase
np  gen_attr (adjp)? [N]
subst_adjp  [Art] (advp)? subst_adj substantivized adjectival phrase
gen_attr  n_grp genitive attribute
n_grp  ([Art] (adjp)?)? [N] noun group
n_grp  subst_adjp
adjp  (advp)? [Adj] adjectival phrase
pp [P], n_grp prepositional phrase
agent [Agent_marker] np agent
advp [Adv] adverbial phrase
cl_advl scl | advp | [Cl_adv] clausal adverbial

Terminals
Terminals are handled by an abstraction layer which hides details like 
inflection class (declination or conjugation), implemented as follows:

The available vocabulary is read in from a separate file (lexicon.txt) at 
start-up. As an example, let’s consider a small sample from noun declination 
3:

71



%%% in file ‘lexicon.txt’

noun([decl3, utr],
 [intighet, poststrukturalitet, kausalitet]).

%%% directive in file ’horace.dcg’ (last in file)

:-
        consult(‘lexicon.txt’),

        abolish(nouns_/1),
        nouns(N),
        assert(nouns_(N)).

%%% in file ‘horace.dcg’

nouns(N) :-
        setof(Decl, List^noun(Decl, List), Decls),
        list_all_infl(noun, Decls, N).

decline_noun(Nlemma, sg, indef, decl3, N) :- ccat(Nlemma, ‘’, N).
decline_noun(Nlemma, sg,   def, decl3, N) :- ccat(Nlemma, ‘en’, N).
decline_noun(Nlemma, pl, indef, decl3, N) :- ccat(Nlemma, ‘er’, N).
decline_noun(Nlemma, pl,   def, decl3, N) :- ccat(Nlemma, ‘erna’, N).

case_inflect_noun(N, nom, N).
case_inflect_noun(Nnom, gen, N) :- ccat(Nnom, ‘s’, N).

noun_agreement(pl, _, pl).
noun_agreement(Num, Gen, Gen) :-
 Num ¥= pl.

%%% general pos-list-building predicates

%builds a list of form pos
list_all_infl(_, [], []).
list_all_infl(POS, [Infl1|InflRest], Out) :-
        list_one_infl(POS, Infl1, Out1),
        list_all_infl(POS, InflRest, OutRest),
        append(Out1, OutRest, Out).

list_one_infl(POS, Infl, Out) :-
        Term =.. [POS, Infl, Wordlist],
        clause(Term, true),
        make_list(Wordlist, Infl, Out).

make_list([], _, []).
make_list([Word1|WordRest], Infl, [[Word1, Infl]|Rest]) :-
        make_list(WordRest, Infl, Rest).

%returns an Element randomly chosen from List
randomize(Element, List) :-
        length(List, Max),
        Random is random(Max),
        length(Left, Random),
        append(Left, [Element|_], List).

%concatenates atoms X and Y to atom Z
ccat(X, Y, Z) :-
        atom(X), atom(Y), var(Z),
        name(X, XL), name(Y, YL),
        append(XL, YL, ZL),
        name(Z, ZL).

After these preparations, a predicate find_declined_noun may be defined as 
below, which returns a random noun in specified number, species, and case; it 
also returns the GenNum agreement marker for further processing. This marker 

72



has one of three string values: ‘ntr’ for the neuter and ‘utr’ for the reale (also 
known as “common gender”, “non-neuter”, or “uter”) in singular, and ‘pl’ in 
the plural. 

%(+Num, +Spec, +Case, -GenNum, -N)
find_declined_noun(Num, Spec, Case, GenNum, N):-
        nouns_(Ns),
        randomize([NLemma, [Decl, Gen]], Ns),
        decline_noun(NLemma, Num, Spec, Decl, Nnom),
        case_inflect_noun(Nnom, Case, N),
        noun_agreement(Num, Gen, GenNum).

Most other parts-of-speech are treated similarly. Verbs with different arities 
(intransitives, monotransitives, ditransitives) are treated as belonging to 
separate parts-of-speech. For the open classes, terminals may thus be specified 
using this type of “find_one_random_X_with_this_inflection” predicate.

In some cases, generation of inflected forms by simple concatenation of 
atoms (as in decline_noun/5 above) isn’t enough. An unstressed ending vowel 
present in the lemma is generally not part of the stem and therefore lost in 
inflected forms (pojke-ar > pojkar, blomma-or > blommor). Another common 
mechanism is the deletion of a stem-final dental stop (/d/, /t/) before inflecting 
adjectives and participles for the neuter (skadad-t > skadat; immanent - t > 
immanent). 

While Horace does handle these two standard cases, several computational 
challenges from a morphological point of view has been disregarded. Some 
of them (e.g., umlaut) aren’t easy to handle with simple string concatenation. 
However, the intended, abstract vocabulary of Horace is almost entirely of 
Latin or Greek origin (for the open classes). Such late loans are generally quite 
regular morphologically. For instance, in Swedish, almost all verbs of Latin 
origin end up in the very regular first conjugation (abstrahera, -r, -de, -t, -s, 
-s, -des, -ts, -nde, -d, -t  ‘to abstract’); and many adjectives end in -isk (logisk, 
ironisk  ‘logical, ironical’ etc)

Lexicon
The lexicon is constructed by hand, to keep the abstraction level as high as 
possible. As pointed out, the late loans aimed at are morphologically very 
regular; thus, a few searches on ‘-isk’ and ‘-era’ in a larger Swedish corpus 
(e.g. Språkbanken www) provided valuable help.

Weighting
In contrast to the postmodernism generator, Horace does permit the assignment 
of user-specified weights to each rule. For competing rules, individual integer 
weights are assigned as the first argument, and a unique rule ID as the second. 
The weights could conceivably be extracted automatically from a training 
corpus yet to be built; currently, however, they are somewhat arbitrarily set by 
hand. The predicate find_idx(Q, IDX) then

1. takes Q (a non-terminal to be rewritten, perhaps with some arguments 
specified) as input;

2. searches through all rules which are applicable for the particular 
combination of constraint arguments; 

3. sums weights of the applicable rules (first argument); 
4. picks a random number integer i, 0 < i < sum_weights; 
5. maps i to an ID considering the weights;
6. returns that ID.

73



find_idx(Q, IDX) :-
        findall([ID, Wt],
                        (       clause(Q, _),
                                arg(1, Q, ID),
                                arg(2, Q, Wt)
                        ), IdWts),
        sum_wts(IdWts, 0, TotIdWt, IdAccWts),
        N is random(TotIdWt),
        id(N, IdAccWts, IDX).

id(N, [[_, AccWt]|RestIdAccWts], IDX) :-
        AccWt < N,
        id(N, RestIdAccWts, IDX).

id(N, [[IDX, AccWt]|_], IDX) :-
        AccWt >= N,
        !.

sum_wts([], Acc, Acc, []).
sum_wts([[ID, Wt]|Rest], Acc, TotIdWt, [[ID, NewAcc]|RestIdWts]) :-
        NewAcc is Acc + Wt,
        sum_wts(Rest, NewAcc, TotIdWt, RestIdWts).

DCG extensions
Horace is likely to be expanded according to the feedback it elicitates. The 
following are suggestions of future extensions to the DCG used in the current 
program. They are all experimental at most; some are very sketchy at the time 
of writing and may indeed never be implemented. On the other hand, there 
may be others instead. 

The extensions typically work with entire phrases and should not be 
regarded as grammatical statements about an entire genre; rather, they 
are implementationally cheap, application-specific enhancements of the 
impression of an erudite columnist. 

Simulation of discourse (experimental)
The general impression of reasoning is highly enhanced by the presence of 
(some simulation of) organized discourse. This is (in Swedish, as in most 
Western languages) most naturally attained by using discourse keywords, 
giving the impression of collecting pros and contras, arguments and 
objections, before arriving at a conclusion. Like before, the task is far easier in 
generation than in parsing, since for a reasonably short text, the human reader 
will concentrate on what’s present in the text, rather than what is not.

A way of simulating a trace of reasoning is to add a few categories, 
say <statement>, <concession>,  and <conclusion> for rhetorical structure 
organizers. A pseudo-code style attempt (with little attention paid to word 
order and clause borders) could go along the following lines:

rhetoric_segment --> reasoning, conclusion
reasoning --> statement, concession
statement --> mcl

concession --> concession_phrase, scl
concession --> concession_marker, mcl
concession_phrase --> [det, är], concession_marker [sant, att] 
%while it is true that...
concession_phrase --> [det, är], concession_marker [så , att]  

concession_marker --> [i, och, för, sig]; [visserligen]  

74



conclusion --> conclusion_phrase, scl
conclusion --> conclusion_marker, mcl
conclusion_phrase --> [det, är], conclusion_marker, [klart, att] 
%it is clear that...
conclusion_phrase --> [det, är], conclusion_marker, [tydligt, att]
conclusion_phrase --> [det, är], conclusion_marker, [uppenbart, att]
conclusion_marker --> [följaktligen]; [sålunda]; [alltså; [således]

Keywords and phrases (not yet implemented)
A conspicuous property of the output of the postmodernism generator is the 
high frequency of recurring short phrases, typically NP:s such as N +N, Adj 
+ N, or Adj + N + N (in the essay quoted above, for instance ‘subsemiotic 
materialism’, ‘neocultural theory’, ‘Foucaultist power relations’). It is 
interesting to note that these repetitions, while probably unnatural in a novel 
or most other genres, in the pseudo-scientific jargon of the thesis quoted rather 
contribute to a vague impression of terminological consistence.

Horace aims rather at a newspaper columnist writing style, and repetitions 
of this type are somewhat less likely to occur. However, there may certainly 
be a point in having a few named concepts recurring. Most obviously, for a 
review in literature or art, the name of the artist and the work reviewed should 
be mentioned now and again.

In the Postmodernism generator, such fixed phrases are hard-coded, 
recurring in essay after essay. Another approach is to generate a few phrases 
at run-time and to have them repeated with a certain probability (for the artist, 
perhaps in subject position only). 

A related question is that of pronominalization. An ordinary text with no 
pronominalizations appear highly unnatural and over-specified. However, 
for the highly specific impression aimed at here, with loads of piled-up 
abstractions, they are less crucial. Still, whenever a person is mentioned (most 
notably the artist), it is natural to use a pronoun within the following clause 
or two. 

Parenthetic clarifications (experimental)
Horace could explain or expand difficult concepts to the reader by including a 
quoted clarification in parentheses:

koreografien i det voyeuristiska blir extasens poststrukturalism (“det suberotiska 
elementet”).
’the choreography of the voyeuristic turns into the poststructuralism of ecstasy 
(”the suberotic element”) ’

The explanation pertains to the same syntactic category as the phrase explained 
and thus needs little extra modelling. In principle, any phrase type could be 
expanded in this way; however, the idea seems to work most efficiently with 
NP:s, in which case the added explanation somewhat reminds of a definition. 

Quotes from other great thinkers (not yet implemented)
Horace could easily find support for its claims by enclosing arbitrary clauses in 
double quotes and ascribing them to some authority on the subject, perhaps:

Som Derrida påpekar: “intighetens sant labyrintiska kontrapunktik delegerar 
konstruktivismen i det enigmatiska”
’As Derrida points out: ”the truly labyrinthic counterpoint of nullity delegates 
the constructivism of the enigmatic” ’

Neologisms (experimental)
Any abstract noun or adjective (transcendental, intighet, modernistisk 

75



‘transcendental, nullity, modernistic’) may be combined at random with 
a derivational prefix, such as for instance meta-, neo-, hyper, hypo-, sub-
, pseudo-, kvasi- ‘meta-, neo-, hyper-, hypo-, sub-, pseudo-, quasi-’ . The 
result is an even more abstract neologism (kvasiintighet, metamodernistisk, 
subtranscendental ‘quasi-nullity, meta-modernistic, subtranscendental’). A 
given prefix should be used no more than once per article.

Web presentation
Horace is currently available at Horace www (not including the experimental 
features). Input (name and sex of artist; sex is at the time of writing not used 
but will be needed for planned extensions like pronominalization) is validated 
by a cgi script in Perl and then forwarded to the prolog DCG. The simple, 
xml-like output of the DCG is returned to the cgi script in Perl, which pours 
it into an HTML template in newspaper column style. The fake article also 
carries an illustration (an abstract painting randomly chosen at runtime; the 
painting is currently chosen from a collection by the abstract expressionist 
Jackson Pollack).

Sample output:
as for version of Dec 10, 2002 (text only).
Det kosmetiska i det illusoriska debatteras av en ekosofi, eftersom de geometriska 
surrealismernas retorik har förlänat det dekonstruktivistiska de obevekligt akademiska 
anomiernas eugeni. Trots att det disharmoniskas asymmetri har deklarerat 
fanatismen blir det efterhängset dialogiska musikantiskt. Symbiotiker har applåderat, 
eftersom surrealismens postfotografism förlänar morfologismer i de kaleidoskopiska 
allegorierna sekterismens semiotik. Naturligtvis abstraherar det postmodernistiska 
i det oundvikligt elegiska kameleontismer. De pandemiska hermeneutismerna blir 
inte symfoniska, emedan aristokratiens obevekligt nupsykologiska ekvilibrism 
förlänar de holistiska gnosticismerna det övergripande atlantiskas plastisk. Det sant 
konstruktivistiska i pekoralismen har aktualiserats, emedan arkaismer har förlänat 
letargismens hermesi allegorien. Trots att neoklassicismen inte har abstraherat det 
sant apokalyptiska blir de sant idealistiska arketypernas efterhängset klaustrofobiska 
heraldism antidemokratisk. 

De sarkastiska ekvilibrismerna kan inte bli koreografiska, enär symbolismen kan 
bli fullständigt asymmetrisk. Kanske balanserar relativismens geopoliticism de 
stilistiska fanatismernas metafysik. Arkaismer kan bli harmoniciteter. Det sant 
profetiskas holism blir det elliptiska. Ickestrategiens tragikomik har troligen agiterats 
av en eugeni i symbolismen, enär koreografien i det voyeuristiska blir extasens 
poststrukturalism. Geometrien i hypotoniciteten har inte attraherats av en rytmik, 
enär de sant pyrotekniska tragikomikerna alternerar de asymmetriska kategorierna 
i interimismen. Melodier blir amoraliska. De utopiska dekonstruktivismerna i 
geopoliticismen debuterar inte, emedan intighetens sant labyrintiska kontrapunktik 
delegerar konstruktivismen i det enigmatiska. De absurdistiska narcissismernas 
monologism har artikulerats av en analys. 

Det atavistiskas helautomatism har avancerat. Det obevekligt absurdistiska förlänar 
de kameleontiska kvadraturerna de anagogiska jovialismerna. Trots att fanatismens 
morfologism har agerat plastisken i det materialistiska delegerar det efterhängset 
symboliskas arkaism fobien. De efterhängset isolationistiska ekosofierna förlänar 
dialektens fullständigt gigantomaniska plastisk de amoraliska monismernas 
fullständigt relativistiska autokrati, enär metafysiken i protektionismen förlänar 
det obevekligt megalomaniska i autokratien det dramaturgiska. Hypokondrier 
attackeras inte. Kameleontismen avancerar. Naturligtvis förlänar de sant antiheroiska 
opportunismernas mytologi de fullständigt pedantiska minimalismernas plastisk 
voyeurismer. 

HORACE 

76



References

Literature
Ahrenberg, Lars. 1990. A Grammar Combining Phrase Structure and Field Structure. In Hans 

Karlgren (ed.) Proceedings of COLING-90, Helsinki, August 1990, Vol. 1: 1-6.
Bulhak, Andrew C. 1996. On the Simulation of Postmodernism and Mental Debility using 

Recursive Transition Networks. Monash University Department of Computer Science, 
Technical Report 96/264. Available at:
http://www.csse.monash.edu.au/publications/1996/tr-cs96-264.ps.gz

Gal, Annie, Guy Lapalme, Patrick St-Dizier and Harold Somers. 1991. Prolog for Natural 
Language Processing. Chichester: John Wiley.

Pereira, F. C. N. and D.H.D. Warren. 1980. Definite clauses for language analysis. Artificial 
Intelligence, 13:231--278, 1980.

WWW
 (as for Dec 10, 2002)

ACL www
http://www.aclweb.org/

Charabia www
http://www.charabia.net/generation/index.php?voir=liens&mode=

Electrohype www
http://www.electrohype.org/electrohype2002/artist.html

Horace www
http://www.ling.lu.se/persons/Marcusu/misc/horace/index.html

Kant www
http://macinsearch.com/infomac2/textprocessing/kant-generator-pro-131.html

Kurzweil www
http://www.kurzweilcyberart.com/poetry/rkcp_overview.php3

Lee www
http://www.dack.com/web/bullshit.html

Postmodernism www
http://www.elsewhere.org/cgi-bin/postmodern/

Romance writer www
http://www.familygames.com/features/humor/romance.html

SIGGEN www
http://www.dynamicmultimedia.com.au/siggen/

Språkbanken www
http://spraakdata.gu.se/lb/konk/

Toolworx www
http://www.burningpress.org/toolbox/

Zawinski www
http://www.jwz.org/dadadodo/

Notes
1 This confusion between field and constituent structure is good enough for 
the purposes of this paper. It may be criticized, however; among other things, 
it invites to circularly defining constituent as ”that which fits into a field” and 
field as ”the container of a constituent”. Constituents should really be defined 
independently. See for instance Ahrenberg 1990.

77



Institutionen för Datavetenskap

http://www.cs.lth.se

Pr
od

uk
tio

n:
 J

on
as

 W
is

br
an

t 
• 

20
04

78


	klas_johan.pdf
	Clustering documents with vector space model using n-grams
	Abstract
	Introduction
	The problem
	Our solution
	Vector space model
	Clustering
	Results
	Conclusion
	Applet, Java source, and test texts
	References


	klas_johan.pdf
	Clustering documents with vector space model using n-grams
	Abstract
	Introduction
	The problem
	Our solution
	Vector space model
	Clustering
	Results
	Conclusion
	Applet, Java source, and test texts
	References





