

Clustering documents with vector space
model using n-grams

Klas Skogmar, d97ksk@efd.lth.se
Johan Olsson, d97jo@efd.lth.se

Lund Institute of Technology

Supervised by:
Pierre Nugues, Pierre.Nugues@cs.lth.se

Abstract
This paper describe a method to cluster documents using the linear space algorithm
together with unigrams, bigrams, trigrams and n-grams in an attempt to enhance the
clustering performance compared to unigrams only. Our tests did not reveal an
improvement, but shows that the technique has a potential, especially in certain
specific areas like finding citations or versions of the same document. The extra effort
required for implementation and the speed loss could make it less interesting however.

mailto:d97jo@efd.lth.se

Introduction
This paper is the result of a project
done for a course in language
processing at Lund Institute of
Technology. The project was
mandatory, but the topic of the project
was optional. We chose to use our
newly acquired knowledge on the
benefits of n-grams versus unigrams,
but on a different area, namely:
document clustering.

We wanted to use basic standard
algorithms for everything, because we
wanted to focus on the differences that
n-grams versus unigrams could make
for the accuracy of clustering.
Therefore we chose the vector space
model for determining similarities
between documents, and k-means for
clustering.

We expected that the benefits of our
suggested solution would be that it
enhanced the accuracy of clustering,
that it worked with all available
solutions (with some minor
modifications), and that it gave better
retrieving of keywords (which we will
not consider in this paper).

The accuracy should increase in
documents, where similar words occur,
but when the ordering is different. An
example is “Avoid a written door
code…” and “… code written to avoid
the Trojan back door…”, where they
would be considered quite similar
using unigrams, but not as similar
using bigrams or trigrams. In the
example above “Trojan back door” is
an example of the benefits of trigrams
over bigrams.

The proposed algorithm will not give
as many benefits in languages where
words are compound words, as in
Swedish (in contrast to English).

As far as we know, most existing
algorithms only use unigrams,
although the advantages of n-grams
have proven most successful in many
language processing areas.

The problem
Clustering is the ability to
automatically group similar
documents, only using the text in the
document itself. To do this one needs
to determine the similarity between
documents. There is also a need to
create reference documents when
combining two or more documents.

Clustering is done in many areas of
computer science, and there are a lot of
different techniques, like algorithms,
neural networks, genetic algorithms, et
cetera. The different techniques used
depend on the application area.

There are many applications for
clustering documents. Some examples
are: Internet search engines,
knowledge management systems or
document databases. Similarities
between documents could be used for
searching the local computer for
documents or automatically acquiring
meta-data from documents for use in
version management systems.

Usually clustering of documents can be
combined with several other
techniques to enhance the clustering
accuracy. These techniques can be:
determining grammar, omitting
common words or putting weights to
the words.

Our solution
We chose to use the k-means clustering
algorithm. This algorithm requires a
distance value between documents. For
this we used one of the most widely

used techniques for determining
similarities: the Vector space model.

The reason for the choice of these
algorithms is that they are very
common and therefore known by most
computer linguists. The fact that they
are well documented make them easy
to implement and easy to read for
others. Also, we wanted to focus on the
benefits of n-grams compared to
unigrams.

We chose to implement the project in
Java. In addition to the fact that it is
object oriented and that we are familiar
with the language, we could also show
our progress using an Applet on the
Internet. Since this is a commonly used
language, others will be able to copy
our source code and modify it for their
own purposes. Since we had used
regular expressions in the course, we
thought it would be good to include
that functionality in this project as
well. This makes the parsing of the
documents very flexible. We used
Java’s standard implementation of
regular expressions (included since
Java 1.4).

Vector space model
The vector space model is widely used
for determining similarity between
documents [5].
This method sees each document as a
vector in a word-space. The dimension
(number of axis) of this word-space is
the number of different words in the
two documents. The number of
occurrences of each word determines
the “length” of that axis for that
document. Then the vector space
model determines the angle (cosine
coefficient) or some other value (for
example Jaccard or Dice coefficients)
[4] between the documents. This
represents the similarity between the
documents.

When using n-grams instead of
unigrams, each axis consists of more
than one word. Since we used Java as
the programming language, we did
some simple inheritance to solve this.

We chose to use the cosine coefficient,
which determines the angle between
the documents. [1] presented the
algorithm for VSM as follows:

∑∑

∑

==

==
n

i
i

n

i
i

n

i
ii

dq

dq
dq

1

2

1

2

1),cos(
rr ,

where q is the query, d is the document
and n the number of different words.

Since we used only the number of
words as the coefficient, only those
words, which have a word count higher
than zero in both documents, will
produce a value. Therefore we
simplified this algorithm, so that we
would only need to multiply the
common words in the nominator. This
way the algorithm we use does not
require any computations on the words
that are not part of both the documents.

∑∑

∑

==

==
dq

qd

n

i
i

n

i
i

n

i
ii

dd

dd
dd

1

2

1

2

1

21

21
)2,1cos(

rr
,

where d1 is document 1, d2 is
document 2, and nqd the number of
common words.

We extract the words from the
documents using regular expressions,
which make it flexible to redefine the
smallest parts that are analyzed. Then
we sort using Java’s Mergesort for
O(nlogn) performance, instead of
putting in the words in a sorted list
directly, which would give O(n2)
performance.

Clustering
According to [1], the k-means
algorithm “is the conceptually simplest
method and should probably be used
first on a new data set because its
results are often sufficient”. This
summarizes the reasons why we used
this algorithm.

The k-means method is really simple;
first some cluster centers (center of
mass) are randomly chosen (we picked
randomly chosen documents). Each
document is assigned to one of these
clusters (defined by the closest centre).
Then a new cluster centre is calculated
for each cluster. In the next iteration
each document is assigned to one of
the new cluster centers that were
previously calculated. Currently we
iterate a given number of times, instead
of having a stop criterion.

The calculation of new cluster centers
was done using only the words of all
the documents in that cluster. An
alternative would have been to include
all words in all documents instead, but
that would have required more
computational power.

Results
We have only tested our algorithm on a
limited test, due to time restrictions.
We have also constructed examples
where our algorithm outperforms
traditional (unigram) methods. For
example our method can see
differences in texts with words that are
the same, but that come in a different
order. In our test texts there are not
many cases where this arises. In some
areas there are two words that are
belonging to each other, though, which
make our algorithm work better.

When calculating a Vector space
model value between two documents, a

choice has to be made between
unigrams, bigrams, trigrams, et cetera.
Since we wanted to analyze the
benefits of n-grams, we did both
separate tests using them individually
and a weighed sum of the unigrams,
bigrams and trigrams.

We found that the Vector space model
between arbitrary documents is only
applicable using up to 4-grams or 5-
grams, unless you want to spot
citations or versions of exactly the
same documents. We have chosen to
only use the first three values (up to
trigrams) in our clustering tests.

When we tested to cluster 6 texts from
the New Scientist web page, 3 texts
about neutrinos and 3 texts about
transistors, they were clustered
correctly using both unigrams and our
extended version, which included
bigrams and trigrams. When analyzing
the output of the Vector space model
(the similarities), we found that our
approach using only bigrams changed
the outcome of the clustering
somewhat in the wrong direction to
what we had expected. Clustering with
only trigrams made it cluster properly
again, as did the combination of the
three. One reason to the failure of
bigrams could be the small quantity of
texts, or the fact that we did not choose
texts that were different enough.

Conclusion
Our limited testing shows that looking
at more than one word at a time won’t
necessarily give accuracy, but can
potentially give other benefits when
comparing documents. In the few texts
we have used, there is no obvious
advantage of using our suggested
algorithm, although it could be our
handpicked documents that are not
adequately belonging to other areas.
The extra time of implementing the

algorithm probably makes it even less
interesting. We hope that people can
reuse, and make use of, our source
code, though.

Besides clustering, n-grams could be
used to spot citations from one
document to another, or versions of the
same document, with some small
changes in the source code. The
method could also be used to extract
key n-grams, instead of extracting
keywords from texts. These would
probably describe the document even
better than single words.

We think there are a lot of potentially
interesting areas where n-grams can be
used, and clustering is one of them. We
have shown that it has potential, but
the current benefits are too small.
Maybe a combination of n-grams and
other techniques will prove to work
best? Further testing of our proposed
algorithm needs to be done.

Applet, Java source, and
test texts
To make it easier to analyze our
results, and to present the code used, a
web page was created for the project. It
is located at:
http://www.efd.lth.se/~d97ksk/languag
e. There we have the source code for
the project, together with javadoc, an
example Applet, the test text samples
we used and this report.

http://www.efd.lth.se/~d97ksk/language
http://www.efd.lth.se/~d97ksk/language

References

[1] Christopher D. Manning and

Hinrich Schütze, 1999, Foundations
of statistical natural language
processing, MIT Press.

[2] Andrei Z. Broder, Steven C.

Glassman, Mark S. Manasse,
Geoffrey Zweig, 1997, Syntactic
Clustering of the Web, Digital SRC
Technical Note 1997-015,
http://gatekeeper.dec.com/pub/DEC/
SRC/technical-notes/abstracts/src-tn-
1997-015.html

[3] Pierre Nugues, 2002, Introduction

to Language Processing and
Computational Linguistics, Lecture
Notes, Lund Institute of Technology.

[4] Danmarks Tekniske Universitet,

2002, Introduction: Vector Space
Model, Technical report,
http://isp.imm.dtu.dk/thor/projects/m
ultimedia/textmining/node5.html

[5] Gerard Salton, A. Wong, C.S

Yang, 1975, A Vector Space Model
for Automatic Indexing,
Communications of the ACM,
18(11), November.

[6] John Zukowski, 2002, Java Tech

Tips on using regular expressions in
Java, Sun JDC Technical notes,
http://developer.java.sun.com/develo
per/JDCTechTips/2002/tt0423.html

http://gatekeeper.dec.com/pub/DEC/SRC/technical-notes/abstracts/src-tn-1997-015.html
http://gatekeeper.dec.com/pub/DEC/SRC/technical-notes/abstracts/src-tn-1997-015.html
http://gatekeeper.dec.com/pub/DEC/SRC/technical-notes/abstracts/src-tn-1997-015.html
http://isp.imm.dtu.dk/thor/projects/multimedia/textmining/node5.html
http://isp.imm.dtu.dk/thor/projects/multimedia/textmining/node5.html
http://developer.java.sun.com/developer/JDCTechTips/2002/tt0423.html
http://developer.java.sun.com/developer/JDCTechTips/2002/tt0423.html

	Clustering documents with vector space model using n-grams
	Abstract
	Introduction
	The problem
	Our solution
	Vector space model
	Clustering
	Results
	Conclusion
	Applet, Java source, and test texts
	References

