
HMS: A Predictive Text Entry Method Using Bigrams

Jon Hasselgren Erik Montnemery Markus Svensson
Lund Institute of Technology

Department of Computer Science
Box 118

S-221 00 Lund, Sweden
{d99jh, d99em, d99msv }@efd.lth.se

Abstract

Due to the emergence of SMS messages,
the significance of effective text entry
on limited-size keyboards has increased.
In this paper, we describe and discuss
a new method to enter text more effi-
ciently using a mobile telephone key-
board. This method, which we called
HMS, predicts words from a sequence
of keystrokes using a dictionary and a
function combining bigram frequencies
and word length.

We implemented the HMS text entry
method on a software-simulated mobile
telephone keyboard and we compared it
to a widely available commercial sys-
tem. We trained the language model on
a corpus of Swedish news and we eval-
uated the method. Although the train-
ing corpus does not reflect the language
used in SMS messages, the results show
a decrease by 7 to 13 percent in the num-
ber of keystrokes needed to enter a text.
These figures are very encouraging even
though the implementation can be opti-
mized in several ways. The HMS text
entry method can easily be transferred
to other languages.

1 Introduction

The entry of text in computer applications has tra-
ditionally been carried out using a 102-key key-
board. These keyboards allow to input charac-
ters in a completely unambiguous way using sin-
gle keys or sometimes key combinations.

However, in the last few years, mobile tele-
phones have introduced a new demand for text en-
try methods. Mobile telephones are usually opti-
mized in size and weight. As a result, the keyboard
is reduced to a minimal 12-button keyboard (Fig-
ure 1).

Figure 1: The 12-button keyboard of a Nokia
3410.

The reduced keyboard makes it hard for the user
to enter text in an efficient way because s/he has to
use multiple tapping or long key combinations to
display and disambiguate the characters. Albeit
tedious, the multiple tapping method was the most
commonly implemented in mobile telephones un-
til some time ago. To spare the user these elements
of frustration, a new class of text entry methods
has appeared. It uses dictionaries in an attempt to
resolve the word ambiguity and requires, in most
cases, only one keystroke per character.

This paper proposes a method that supplements
the dictionary with word and bigram probabili-
ties. The method uses the last written word to im-
prove the prediction of the current word and to de-
crease the number of needed keystrokes even fur-
ther. This method that we refer to as HMS in the



rest of the text, uses the frequencies of common
bigrams that we extracted from a corpus of texts.

2 Current Text Entry Methods

In this section, we summarize the text entry meth-
ods currently in use and some methods under de-
velopment. All the mentioned methods use a key-
board with 12 buttons.

As a measurement of the efficiency of the differ-
ent text entry methods, we will use the number of
keystrokes per character orKSPC (MacKenzie,
2002). A completely unambiguous keyboard en-
ables aKSPC of 1, text prediction methods may
reduce this number even further.

2.1 Multi-Press Methods

The multi-press methods require more than one
keystroke to enter a character. These methods al-
lows for unambigous typing of characters. They
can be used alone or as a fallback for systems us-
ing more complex text entry methods. The multi-
press methods are well suited to type words not
contained in the dictionary.

2.1.1 The Multi-Tap Method

The first and still most common way to enter
text on a mobile telephone is the multi-tap method.
Since ‘a’, ‘b’ and ‘c’ share the same key, the user
presses it once to enter an ‘a’, twice to enter a
‘b’, and three times to enter a ‘c’. To enter the
word dog, the user presses the sequence of keys
“36664”.

As two consecutive characters of a word can
share a same key, as for example the word “no”
where both ‘n’ and ‘o’ are assigned to 6, a timeout
is needed to determine when to stop shifting the
letters and display a new character.

This method results in aKSPC of 2.0342 if
English text is entered (MacKenzie, 2002).

2.1.2 Remapped Keyboard

On current mobile telephone keyboards, char-
acters are assigned alphabetically to keys. This
is not optimal given that, for instance, the most
frequent character in English, ‘e’, is displayed us-
ing two taps. Remapped keyboards assign a sin-
gle key to the most frequent characters. The re-
maining characters are grouped into sets that share

a same key. This method decreases theKSPC
because frequent characters are entered with only
one keystroke.

The program MessagEase (Saied, 2001) of EX-
ideas uses the idea of the remapped keyboard tech-
nique. MessagEase results in aKSPC at 1.8210
(MacKenzie, 2002).

2.2 Single-Press Methods

The single-press methods try to reduce theKSPC
to roughly one. They resort to a dictionary as a
mean of resolving the ambiguity of the input.

2.2.1 The Predictive Text Entry Method

With the predictive text entry method, the user
presses one key per character and the program
matches the key sequence to words in a dictionary
(Haestrup, 2001). Even if several characters are
mapped to the same key, in many cases, only one
word is possible given the sequence. This method
makes it possible to reduce theKSPC to roughly
1. If the key sequence corresponds to two or more
words, the user can browse through the resulting
word list and choose the word s/he intended to
write.

The user, for example, enters the wordcome, by
first pressing 2. The program will then propose the
word a because it matches the entered sequence.
When the user presses 6, 6, and 3, the program
might propose the wordsan, conand finallycome.
The wordsbone, bond, andanod(and some more),
also fit the given sequence. The user can access
these words by pressing a next-key.

Many new mobile telephones use this method.
The most widely used implementation is T9 by
Tegic (Grover et al., 1998). Other implementa-
tions are eZiText by Zi Corporation (Zi Corpora-
tion, 2002) and iTAP by Motorola (Lexicus Divi-
sion, 2002) . Most implementations only match
words with the same length as the key sequence,
resulting in aKSPC of slightly greater than 1
when the user types words that are contained in
the dictionary.

Some implementations propose words longer
than the tapped sequence based on probability in-
formation for the words. These implementations
can reach aKSPC < 1.



2.2.2 WordWise

WordWise developed by Eatoni Ergonomics
uses an auxiliary key. A character on a key is
selected explicitly by simultaneously pressing the
key corresponding to the character and the auxil-
iary key indicating the position of the character on
the key. This decreases the number of matching
words for a key sequence considerably because the
user explicitly disambiguates some characters in
the sequence.

A drawback is that two keys must be pressed
concurrently. With a limited space keyboard, this
can prove difficult to some users.

2.2.3 LetterWise

LetterWise (MacKenzie et al., 2001), also by
Eatoni Ergonomics, is a different approach, which
eliminates the need for a large dictionary. It only
considers the letter digram probabilities. In En-
glish, the letter ‘t’ is often followed by ‘h’ and
hardly ever by ‘g’. The program selects the most
probable letter knowing the previous one. The
user can browse and change the characters by
pressing a ‘Next’ key.

The LetterWise method has aKSPC of 1.1500
(MacKenzie, 2002). One of its main advantages
is the small amount of memory needed. Another
advantage is the fact that it is just as easy to enter
words, which are not in a dictionary. Therefore
this could be a suitable fallback method instead of
the multi-tap methods, to produce faster text input.

3 Predictive Text Entry Using Bigrams

Prediction may further improve the performance
of text entry with a limited keyboard. With it, the
suggested words may be longer than the currently
typed input.

We propose to use word bigrams, i.e. two con-
secutive words, to give a better text prediction, see
inter alia (Shannon, 1948), (Jelinek, 1997), and
(Manning and Sch¨utze, 1999). The list of bigrams
is stored in memory together with their frequency
of occurrence and it is accessed simultaneously
with the character input.

Given a previously written word, the most prob-
able subsequent words are extracted from the bi-
gram list. Using the maximum of likelihood, the
probability of the bigramwn−1, wn given the word

wn−1 is computed as:

PMLE(wn|wn−1) =
C(wn−1, wn)

C(wn−1)
(1)

Since the previously written wordwn−1 is always
known and constant, it is sufficient to use the fre-
quency of the bigrams and set asideC(wn−1).

In practice, bigrams must be combined with a
dictionary. Sparse data from the development cor-
pus and memory constrains make it impossible to
store an exhaustive list of bigrams. To choose
the words to propose, we used a variation of the
Katz model (Katz, 1987). The Katz model takes
the longest available N-gram and uses correction
terms to normalize the probabilities. In the case of
bigrams, the probabilities can be expressed as:

P (wn|wn−1)
={

P (wn|wn−1) C(wn−1, wn) 6= 0
αP (wn) C(wn−1, wn) = 0

(2)

whereα is the correction term.
In our implementation, the bigrams are always

prioritized over the unigrams. The Katz back-off
model is well suited for our implementation as it
allows for a small memory footprint of the bigrams
list, while still ensuring that the system will sup-
port entering of all words in the dictionary.

In addition to the bigram frequencies, the word
length is a useful criterion to present the match-
ing words to the user. This additional parameter is
justified by the navigation through a list of words
with the keys available on mobile telephones.

Bigram probabilities used alone produce a list
of possible words and rank them without regard
to the effort needed to select the intended word.
Since browsing the list is carried out using one
scrolling key, it may take a couple of keystrokes to
reach the word. Even, if corpus frequencies sug-
gest a longer word being preferred to a shorter one,
a presentation by decreasing frequencies may be
inadequate.

The list navigation is in fact easier in some cases
using character input keys. A single keystroke can
resolve a great deal of ambiguity because there is
a total of 8 keys to choose compared to the unique
scrolling key to cycle the list of suggested words.



That’s why the list of proposed words is rescored
and short words are given an additional weight.

4 Implementation

We implemented a software prototype of the HMS
method we described in this paper. We chose
the Java programming language because of its
extensive packages that allow for rapid develop-
ment. Another advantage is Java’s platform inde-
pendence, which should, in theory, make it pos-
sible to run the program on any modern mobile
telephone.

The program was designed to run on a hand-
held device i.e. on the client side of the mobile
network. The memory of a mobile telephone is
very limited and a disadvantage of this strategy is
the memory footprint of the language models we
use. A possible workaround would be to imple-
ment the HMS software on an application server.
All the users would then share the language mod-
els with possible customizations. Modern mobile
telephone infrastructures enable a real-time round
trip of the typed characters and thus the interactive
suggestion of matching words.

The program computes a list of word sugges-
tions every time a key is pressed and the best sug-
gestion is displayed simultaneously on the screen:
The top white window in our Java program (Fig-
ure 2). The user can browse the list of suggestions
using the up and down keys.

4.1 Program Design

The program is divided into two parts: a user in-
teraction module and a lexical database module.

The user interaction module currently consists
of a Graphical User Interface (GUI) whose lay-
out closely resembles that of a mobile telephone.
The simulated keyboard layout makes it possible
to compare the HMS prototype with software run-
ning on mobile telephones.

The lexical database module contains the core
of the program. It is responsible for the gener-
ation of a list of suggested words given the user
input so far. The modules communicate with each
other using an interface. Thus, the two parts are
independent and one may modify the user interac-
tion module in particular to fit different platforms

Figure 2: Screenshot of the HMS Java prototype.

without having to modify the module concerning
the word guessing algorithm.

4.2 Data Structures

A compact encoding structure of the bigram and
unigram lists has a significant impact to achieve
an efficient word proposal.

The data structure we used is comparable to
that of a letter tree ortrie (de la Briandais, 1959).
However, the nodes of the new tree structure cor-
respond to an input key instead of a character
as in the classical tries. For instance, the char-
acters(a, b, c, 2) are associated to a single node.
Thus, the tree structure enables to represent the
keystroke ambiguity and makes it easier to tra-
verse the tree. It also introduces the need to store
a complete list of words that match a keystroke
sequence in the leaves resulting in a somewhat
higher memory overhead.

Searching this type of tree is straightforward.
The keys pressed so far by the user are used as in-
put and the tree is traversed one level down based
on every key pressed. When the traversal is com-
pleted the resulting sub-tree includes all possible
suggested words for the typed key combination.

For the bigrams, a slightly different structure
is needed. Since the previously written word has



been chosen from the list of suggested words, it
can no longer be considered ambiguous. One can-
not simply build a tree of bigrams using the pro-
posed structure because the tree itself is ambigu-
ous. A collection of trees, one tree for each pre-
ceding word, was used. For performance reasons,
a hash table was used to manage the collection.

4.3 Training the Language Model

We trained the language model – unigrams and
bigrams – on the Stockholm-Ume˚a (SU) Corpus
(Ejerhed et al., 1992). The SU corpus is a POS an-
notated, balanced corpus of Swedish news reports,
novels, etc. The SU corpus does not reflect the lan-
guage of SMS messages that differs greatly from
that of the “classical” written Swedish. This re-
sults in a non-optimal language model. We chose
it because of the unavailability of a large-enough
public SMS corpus.

When the input of a single word is completed,
its corresponding bigram and unigram probabili-
ties are updated. It results in a learning system,
which adapts to every user’s style of writing. To
increase the speed of adaptation, language fre-
quencies derived from the user input have higher
priorities than what has been learned from the
training corpus.

All corpora and dictionaries used with the soft-
ware have been in Swedish so far. However, the
HMS program does not carry out any language-
specific parsing or semantic analysis. Hence, the
method could be transferred to any language pro-
vided that a sufficient corpus exists.

5 Evaluation

As an evaluation of the efficiency of our imple-
mentation, we made an initial comparative test
between the HMS program and the Nokia 3410,
which uses the T9 system.

As we said in the previous section, we could
not train a language model optimized for an SMS
application. This certainly biased the evaluation
of the entry methods in our disfavor. Therefore,
we chose to evaluate both programs with a test set
consisting of a sample of SMS messages and short
texts from newspapers.

A total of nine testers entered the texts. They
first had the possibility to get accustomed to both

the HMS and the T9 methods. The testers were
encouraged to compose a short arbitrary SMS
message of 50-100 characters containing everyday
language. They also chose an excerpt of a news-
paper article of approximately the same length
as the typed SMS message from theAftonbladet
Swedish newspaper website. The keystroke count
was recorded and used to calculate theKSPC pa-
rameter.

The entry of new words, i.e. missing from the
dictionary, uses the same technique in the HMS
and T9 methods. We selected texts where all the
words were in the dictionary of both systems.

Table 1 shows the results we obtained in
keystrokes per character.

Table 1: Test results.

Method Type of text KSPC

T9 SMS 1.0806
HMS Bigrams SMS 1.0108
T9 News 1.0088
HMS Bigrams News 0.8807

The HMS entry method shows aKSPC
smaller than that of the T9 system in both tests:
news and SMS texts. The improvement is of, re-
spectively, 7 and 13 percent. The better result for
the bigram method is mainly due to two reasons.
First, the utilization of the previously written word
to predict the next word results in an improvement
of the prediction compared to the methods relying
only on dictionaries such as T9. Secondly, the fact
that words are actually predicted before all charac-
ters are entered improves even further the perfor-
mance of HMS over T9.

6 Discussion

The difference inKSPC between the SMS and
news text with our method is to a large extent
due to the corpus, which does not fit the more ca-
sual language of the typical SMS texts. The T9
method, on the other hand, is optimized for typing
SMS texts.

Another reason for the difference may be that
the news texts in general contain longer words.
The mean word length in our test is about 4
characters for the SMS texts and 5 characters



for the news texts. In general longer words can
be predicted earlier relatively to the wordlength,
since less words are possible given a sequence of
keystrokes. This should imply a smallerKSPC
for longer words. Figure 3 shows theKSPC ac-
cording to the word length and the falling curve
for longer words.

Figure 3:KSPC versus the mean word length in
the HMS bigram method.

A longer word often resolves some ambiguities
and the possible words for a given key sequence
are often fewer than for a short sequence. This
explains why the T9 system also shows a better
result for the news text. However, the T9 can never
reach aKSPC less than 1 since it doesn’t predict
words longer than the given sequence.

Figure 4:KSPC versus mean word length in the
T9 system.

Other significant differences between the SMS
and news texts play a role in the final results. For
example, the SMS texts show a higher frequency
of certain characters such as the question marks,
slashes and exclamation marks, which results in a
higherKSPC. This fact can explain the surpris-
ingly high KSPC for some texts. This property
affects both methods to the same extent though.

7 Conclusion and Perspectives

We implemented a new text entry method adapted
to mobile telephone keyboards and we compared it
to the T9 method widely available on commercial
devices. The HMS method is based on language
models that we trained on the SU corpus.

The training corpus was, to a great extent, col-
lected from Swedish news wires and didn’t fit our
application very well. This is heavily related to
the language used in SMS messages, which tends
to include abbreviations and slang absent from the
SU corpus. However, the results we obtained with
the HMS method show a decrease by 7 to 13 per-
cent in the number of keystrokes needed to enter
a text. These figures are very encouraging even
though the implementation can be optimized in
several ways.

It would be very interesting to evaluate the
KSPC of the bigram method after training the
system with a better-suited corpus. We expect
theKSPC to be significantly lower than with the
present corpus. It is worth once again pointing out
that even with the non-optimal corpus, the results
of the bigram method are on par or superior.

We also observed that the language model
adapts quicker to the users’ individual ways of ex-
pressing themselves than other systems. It thus in-
creases the gain over time.

At the time we wrote this paper, we could not
gain access to a large corpus of SMS messages.
However, we intend to collect texts from Internet
chat rooms and message boards, where the lan-
guage shows strong similarities to SMS language.
We expect a better language model and an im-
provedKSPC from this new corpus.

A problem with the bigram method is its large
memory footprint compared to that of dictionary-
based systems. However, this should not be a
problem on the next generation of mobile tele-



phones like GPRS and 3G. The language mod-
els could be off-loaded on an application server
and the low round-trip time of the network system
should enable a real-time interaction between the
server and the user terminal to carry out the word
selection.

References

Zi Corporation. 2002. eZiText. Technical report,
http://www.zicorp.com.

R. de la Briandais. 1959. File searching using variable
length keys. InProceedings of the Western Joint
Computer Conference, volume 15, pages 285–298,
New York. Institute of Radio Engineers.

Lexicus Division. 2002. iTap. Technical report, Mo-
torola, http://www.motorola.com/lexicus, Decem-
ber.

Eva Ejerhed, Gunnel K¨allgren, Ola Wennstedt, and
MagnusÅström. 1992. The linguistic annotation
system of the Stockholm-Ume˚a project. Technical
report, University of Ume˚a, Department of General
Linguistics.

Dale L. Grover, Martin T. King, and Clifford A. Kush-
ler. 1998. Reduced keyboard disambiguating com-
puter. U.S. Patent no. 5,818,437.

Jan Haestrup. 2001. Communication terminal hav-
ing a predictive editor application. U.S. Patent no.
6,223,059.

Frederick Jelinek. 1997. Statistical Methods for
Speech Recognition. The MIT Press, Cambridge,
Massachusetts.

Slava M. Katz. 1987. Estimation of probabilities
from sparse data for a language model component
of a speech recognizer.IEEE Transaction on Acous-
tics, Speech, and Signal Processing, 35(3):400–401,
March.

I. Scott MacKenzie, Hedy Kober, Derek Smith,
Terry Jones, and Eugene Skepner. 2001. Let-
terwise: Prefix-based disambiguation for mo-
bile text input. Technical report, Eatoni,
http://www.eatoni.com/research/lw-mt.pdf.

I. Scott MacKenzie. 2002. KSPC (keystrokes per char-
acter) as a characteristic of text entry techniques.
In Proceedings of the Fourth International Sym-
posium on Human Computer Interaction with Mo-
bile Devices, pages 195–210, Heidelberg, Germany.
Springer-Verlag.

Christopher D. Manning and Hinrich Sch¨utze. 1999.
Foundations of Statistical Language Processing.
MIT Press, Cambridge, Massachusetts.

Nesbat B Saied. 2001. Fast, full text en-
try using a physical or virtual 12-button
keypad. Technical report, EXideas,
http://www.exideas.com/ME/whitepaper.pdf.

Claude E. Shannon. 1948. A mathematical theory of
communication.The Bell System Technical Journal,
27:379–423, 623–656, July-October.


