
Institutionen för Datavetenskap

http://www.cs.lth.se

Språkbehandling och datalingvistik

Projektarbeten 2001

Handledare: Pierre Nugues

Printed in Sweden
Lund 2004

Institutionen för Datavetenskap

http://www.cs.lth.se

Torbjörn Ekman and Anders Nilsson:
Identifying Collisions in NTSB Accident Summary Reports 5

Ana Fuentes Martínez and Flavius Gruian:
Document Classification for Computer Science Related Articles 16

Sven Gestegård Robertz:
Anagram generation using sentence probabilities 24

Magdalene Grantson:
Lexical Functional Grammar: Analysis and Implementation 32

Johan Natt och Dag and Kerstin Lindmark:
Selecting an Appropriate Language Base for Automated Requirements Analysis 47

Mathias Haage, Susanne Schötz, Pierre Nugues:
A Prototype Robot Speech Interface with Multimodal Feedbac
Reprint from Proceedings of the 2002 IEEE Int. Workshop on Robot and Human Interactive
Communication Berlin, Germany, Sept. 25-27, 2002

Innehåll

Identifying Collisions in NTSB Accident
Summary Reports

Torbjörn Ekman
Anders Nilsson

Dept. of Computer Science, Lund University
Box 118

S-221 00 SWEDEN
Tel: +46 46 222 01 85
Fax: +46 46 13 10 21

email: {torbjorn|andersn}@cs.lth.se

June 13, 2002

Abstract

Insurance companies are often faced with the task of analyzing car ac-
cident reports in order to try to find out how the accident took place, and
who to blame for it. The analysis could in many cases become much easier
if the accident could be automatically visualized by extracting information
from the accident report.

This paper describes the collision detection functionality of the text
processing system that is used with CarSim, a car accident visualization
system. Using Link Grammar and regular expression pattern matching,
we have correctly extracted 60.5% of the collisions found in 30 authentic
accident reports.

1 Introduction

CarSim [DELN01] is system for visualizing car accidents from natural language
descriptions developed at the University of Caen, France. The aim of the Car-
Sim system is to help users to better understand how a car accident took place by
visualizing it from the description given by the participants in natural language.
The visualization process is performed in two steps. First comes an information
extraction step where the natural language texts are analyzed, relevant infor-
mation is extracted1 and templates are filled with the extracted information.
The second step reads templates and constructs the actual visualization.

As part of further improvements in CarSim, a new information extraction
system for English texts is being developed at the Department of Computer
Science, Lund University. This paper describes how collisions are detected, and
how to find extract collision verbs together with their subject/object pairs. In
some cases it is also possible to resolve co-references in the analyzed text.

1Not only the collision as such, but also other vehicles, trees, rocks, road signs etc.

1

5

1.1 NTSB Accident Reports

The National Transportation Safety Board (NTSB) [NTS] is an independent
federal agency in the United States investigating every civil aviation accident in
the US, and also significant accidents in other modes of transportation, such as
highways and railroads. The aim is to understand why the accidents occurred
and issue safety recommendations to prevent similar future accidents.

The NTSB publishes accident reports, and for many of them, shorter sum-
maries, describing investigated accidents. The accident reports summaries, were
used to test the implemented collision detector.

1.2 LinkGrammar

In the beginning of the 90’s, Sleator and Temperly [ST] defined a new formal
grammatical system they called a link grammar, related to the larger class of
dependency grammars. The idea behind link grammar was to let the words of
a sentence create a connected graph with no crossing arcs. The arcs connecting
words are called links. These links describe the syntactic and semantic rela-
tionship between the connected words, i.e. connect a determiner to a noun or a
noun phrase to a verb.

1.3 WordNet

WordNet [Fel] is an online lexical reference system whose design is inspired
by current psycholinguistic theories of human lexical memory. English nouns,
verbs, adjectives and adverbs are organized into synonym sets, each represent-
ing one underlying lexical concept. Different relations link the synonym sets.
WordNet was developed by the Cognitive Science Laboratory at Princeton Uni-
versity.

WordNet is in this project used for extracting all possible collision verbs, see
section A, that could occur in the accident reports.

WordNet is currently being adapted to other languages, notably Swedish at
the Linguistics Department at Lund University.

2 Subject and Object Detection in Collision Con-
text

The subject and object detection is divided into three stages. First, a shallow
analysis locates sentences that may describe collisions. That analysis uses regu-
lar expressions to find the texts containing collision verbs. These sentences are
passed on to Link Grammar which performs a much more in depth analysis.
The subject and object are finally detected in the link representation of a sen-
tence by using a set of patterns describing how to locate those entities starting
out with a collision verb.

2.1 Detecting Sentence Candidates

Using Link Grammar to analyze sentences is a quite costly operation. Although
the accident reports are fairly short it is not very practical to analyze all sen-

2

6

tences when detecting collisions. Therefore an initial pass to collect a set of
candidate sentences suitable for deeper analysis is performed.

The accident reports are first tokenized to form a set of sentences. Each
sentence is then matched against a regular expression accepting sentences in-
cluding collision verbs. Each accepted sentence is passed on to Link Grammar,
a much deeper analysis engine.

The regular expression used is built to accept a sentence including any colli-
sion verb from a list of verbs. A complete list of collision verbs, extracted from
WordNet, is available in Appendix A.

2.2 Linkage Patterns

The result from the Link Grammar analysis is a graph where a word has a
number of arcs connected to it. Each arc has a direction, left or right, as well as
a semantic meaning. The transition from one word to any connected word can
be expressed as a series of link and word pairs, where the link has a direction
and a type, and the word has a name and a type. We call such an ordered list
of pairs a Linkage Pattern.

Our analysis engine processes a Linkage Pattern where each pair is expressed
by a regular expression. This way a large set of link-word pairs may be expressed
through a compact notation. The engine matches the regular expressions and
returns the set of words that is reached by following the entire pattern. The
regular expressions is used by the system to locate subject, object, and also to
resolve a class of co-references.

2.3 Extracting Subject and Object

Starting out from the collision verb a set of Linkage Patters are matched against
the Link Grammar representation of the candidate sentences. These Linkage
Patters describe how to reach the subject and object when starting on the
collision verb. In its simplest form, a pattern may find the subject by following
a Subject link to the left from the collision word.

2.4 Handling Co-references

The Linkage Pattern technique can also be used to resolve co-references. In this
case, a pattern describes how to reach the subject starting with a pronoun. Be-
cause Link Grammar only processes a single sentence, the subject and pronoun
must be in the same sentence for this technique to be successful.

3 Result Analysis

The collision detector was run on 30 NTSB accident report summaries contain-
ing a total of 43 collisions. The result is shown in table 1, and the individual re-
sults for each collision report with a short comment can be found in appendix B.

Analyzing the erroneous and incomplete collision detections confirms the sus-
picion that the regular expression pattern matching works correctly, but that

3

7

Correct detections 26
Erroneous detections 5
Incomplete detections 12
Total no. of collisions 43
Hit Ratio 60.5%

Table 1: Results from NTSB accident reports.

the linkages returned from Link Grammar for these sentences are either incom-
plete or incorrect. The accident report summaries are written in bureaucratic
American English with sometimes very long sentences with many subordinate
clauses which make it very hard for Link Grammar to find complete linkages.

4 Related Work

Mokhtar and Chanod [AMC] uses another approach for extracting subject-
object relationships. They use an incremental finite-state parser to annotate
the input string with syntactic markings, and them pass the annotated string
through sequence of finite-state transducers. Their results are much better than
our experience with Link Grammar with a precision ≈ 90% for both subjects
and objects.

Ferro et al. [FVY99] uses a trainable error-driven approach to find gram-
matical relationships. The achieved precision running on a test set is ≈ 77%.

Brants et al. [BSK97] have a slightly different goal with their research. They
have developed an interactive semi-automatic tool for constructing treebanks.
Their results are very good, > 90%, but then one has to have in mind that
the only automatic annotation is to assign grammatical function and/or phrase
category.

5 Conclusions and Future Work

We have shown that using Link Grammar together with regular expression
pattern matching is a plausible technique for extracting collisions from, also
grammatically complicated, texts. Achieving a hit ratio of 60.5% on the NTSB
report summaries is a good result considering both the simplicity of the collision
detector and the grammatical complexity of the tested sentences.

Since most of the collision detection problems originate in incomplete and/or
incorrect linkages returned from Link Grammar, this is the obvious first choice
for possible improvements. Adding domain-specific knowledge to Link Grammar
so that it would concentrate on linking collision verbs with their subject and
object instead of trying to create a complete linkage over the complete sentence
would significantly enhance the hit ratio of the collision detector.

Other improvements to the collision detector to further enhance the hit ra-
tion somewhat include extending the regular expression patterns to match even
more complicated linkages than is possible in the current implementation.

4

8

References

[AMC] Salah Aït-Mokhtar and Jean-Pierre Chanod. Subject and object
dependency extraction using finite-state transducers. Rank Xerox
Research Centre, Meylan, France.

[BSK97] Thorsten Brants, Wojciech Skut, and Brigitte Krenn. Tagging gram-
matical functions. In Proceedings of EMNLP-2, July 1997.

[DELN01] Sylvain Dupuy, Arjan Egges, Vincent Legendre, and Pierre Nugues.
Generating a 3d simulation of a car accident from a written de-
scription in natural language: The CarSim system. In Proceedings
of The Workshop on Temporal and Spatial Information Processing,
pages 1–8. ACL, July 2001.

[Fel] Christiane Fellbaum. English verbs as a semantic net.
http://www.cogsci.princeton.edu/ wn/.

[FVY99] Lisa Ferro, Marc Vilain, and Alexander Yeh. Learning transforma-
tion rules to find grammatical relations. In Computational Natural
Language Learning, pages 43–52. ACL, June 1999.

[NTS] The national traffic safety board. http://www.ntsb.gov.

[ST] Daniel D. Sleator and Davy Temperly. Parsing english with a link
grammar. http://www.link.cs.cmu.edu/link/.

A Collision Verbs

This list of collision verbs in collected from WordNet. The WordNet Browser
was used to find synonyms to the verb strike in its collide sense. That procedure
was recursively repeated to find all appropriate collision verbs.

collide, clash To crash together with violent impact. The cars collided. Two
meteors clashed.

crash, ram To undergo damage or destruction on impact. The plane crashed
into the ocean. The car crashed into the lamp post.

hit, strike, impinge on, run into, collide with To hit against or come into
sudden contact with something. The car hit a tree. He struck the table
with his elbow.

rear-end To collide with the rear end of something. The car rear-ended me.

broadside To collide with the broad side of something. Her car broad-sided
mine.

bump, knock To knock against something with force or violence. My car
bumped into the tree.

run into, bump into, jar against, butt against, knock against To collide
violently with an obstacle. I ran into the telephone pole.

5

9

B Tested Sentences
HAR0001 As the bus approached milepost (MP) 184.9, it traveled off the right

side of the roadway into an “emergency parking area,” where it struck the
back of a parked tractor-semitrailer, which was pushed forward and struck
the left side of another parked tractor-semitrailer.

Result:

1. it struck the back of a parked tractor-semitrailer

2. a parked tractor-semitrailer struck the left side of another parked
tractor-semitrailer

Comment Both collisions correctly found. Co-reference of collision 1 not
resolved.

HAR0002 As the bus approached the intersection, it failed to stop as required
and was struck by the dump truck.

Result:

1. the bus was struck by the dump truck

Comment Collision correctly found.

HAR0101 The bus continued on the side slope, struck the terminal end of a
guardrail, traveled through a chain-link fence, vaulted over a paved golf
cart path, collided with the far side of a dirt embankment, and then
bounced and slid forward upright to its final resting position.

Result:

1. Collision not found

2. a paved golf cart path collided with the far side of a dirt embankment

Comment Subject and object not founf at all in collision 1, and incorrect
subject in collision 2. Both due to incorrect LinkGrammar linkages.

HAR0102 About 90 seconds later, northbound Metrolink commuter train 901,
operated by the Southern California Regional Rail Authority, collided
with the vehicle.

Result:

1. 901 collided with the vehicle

Comment Collision found, but subject not fully resolved due to incom-
plete linkage.

HAR0103 Abstract: On March 28, 2000, about 6:40 a.m. (sunrise was at 6:33
a.m.), a CSX Transportation, Inc., freight train traveling 51 mph struck
the passenger side of a Murray County, Georgia, School District school
bus at a railroad/highway grade crossing near Conasauga, Tennessee.

Result:

1. train traveling struck the passenger side of a County

6

10

Comment: Collision correctly found, though object is not completely
resolved. Works with proper name substitution.

HAR9001 Comment: No collisions in this report.

HAR9002 About 7:34 a.m ., central daylight time, on Thursday, September
21, 1989, a westbound school bus with 81 students operated by the Mission
Consolidated Independent School District, Mission, Texas, and a north-
bound delivery truck operated by the Valley Coca-Cola Bottling Company,
McAllen, Texas, collided at Bryan Road and Farm to Market Road Num-
ber 676 (FM 676) in Alton, Texas.

Result:

1. Company collided Number

Comment: Incorrect subject and object due to erroneous linkage.

HAR9003 Comment: No collisions in this report.

HAR9101 About 5:40 p.m. on July 26,1990, a truck operated by Double B
Auto Sales, Inc., transporting eight automobiles entered a highway work
zone near Sutton, West Virginia, on northbound Interstate Highway 79
and struck the rear of a utility trailer being towed by a Dodge Aspen.

The Aspen then struck the rear of a Plymouth Colt, and the Double B
truck and the two automobiles traveled into the closed right lane and col-
lided with three West Virginia Department of Transportation (WVDOT)
maintenance vehicles.

Result:

1. 79 struck the rear of a utility trailer

2. the Aspen struck the rear of a Colt

3. the B truck collided with three

Comment: Incorrect subject in collision 1. Collision 2 is correct. In colli-
sion 3 there are two subjects of which only the first is found.The incorrect
object in collision 3 is correct when using proper name substitution.

HAR9201 Comment: No collisions in this report.

HAR9202 About 9: 10 a.m. on December 11, 1990, a tractor-semitrailer in
the southbound lanes of 1-75 near Calhoun, Tennessee, struck the rear of
another tractor-semitrailer that had slowed because of fog.

After the initial collision, an automobile struck the rear of the second
truck and was in turn struck in the rear by another tractor-semitrailer.

Meanwhile, in the northbound lanes of 1-75, an automobile struck the
rear of another automobile that had slowed because of fog.

Result:

1. Collision not found.

2. an automobile struck the rear of the truck

7

11

3. Collision not found.
4. an automobile struck the rear of another automobile

Comment: Collision 1 is found when using proper name substitution.
Collision 3 is represented by a complicated linkage which is not properly
dealt with. Collision 2 and 4 are correctly found though the object of
collision 2 is not completely resolved.

HAR9301 During the descent, the bus increased speed, left the road, plunged
down an embankment, and collided with several large boulders.

Result:

1. the bus collided with several large boulders

Comment: Correctly found collision.

HAR9302 The bus struck a car, overturned on its right side, slid and spun
on its side, uprighted, and struck another car before coming to rest.

Result:

1. the bus struck a car
2. the bus struck another car

Comment: Both collisions correctly found.

HAR9401 About 3:13 p.m., Wednesday, March 17, 1993, an Amerada Hess
(Hess) tractor-semitrailer hauling gasoline was struck by National Rail-
road Passenger Corporation (Amtrak) train 91.

The truck, which was loaded with 8,500 gallons of gasoline, was punctured
when it was struck.

Result:

1. an Amerada tractor-semitrailer struck by Corporation
2. Collision not found.

Comment: Incorrect linkage in Collision 1. Collision 2 is no collision and
is therefore not found though a collision verb occurs.

HAR9402 On May 19, 1993, at 1:35 a.m., while traveling south on Interstate
65 near Evergreen, Alabama, a tractor with bulk-cement-tank semitrailer
left the paved road, traveled along the embankment, overran a guardrail,
and collided with a supporting bridge column of the County Road 22
overpass.

An automobile and a tractor-semitrailer, also southbound, then collided
with the collapsed bridge spans.

Contributing to the severity of the accident was the collapse of the bridge,
after the semitrailer collided with and demolished the north column,
that was a combined result of the nonredundant bridge design, the close
proximity of the column bent to the road, and the lack of protection for
the column bent from high-speed heavy-vehicle collision.

Result:

8

12

1. a tractor collided with a supporting bridge column of the County 22
overpass

2. an automobile collided with the collapsed bridge spans
3. Collision not found.
4. Collision not found.

Comment: Incorrect linkages in collisions 3 and 4.

HAR9403 About 3:30 p.m. CDT on May 28, 1993, the towboat CHRIS, push-
ing the empty hopper barge DM 3021, collided with a support pier of
the eastern span of the Judge William Seeber Bridge in New Orleans,
Louisiana.
Result:

1. CHRIS collided with a support pier of the Bridge

Comment: Collision found correctly.

HAR9501 Seconds later, National Railroad Passenger Corporation (Amtrak)
train number 88, the Silver Meteor, carrying 89 passengers, struck the
side of the cargo deck and the turbine.

Result:

1. Meteor struck the side of the cargo deck

Comment: Collision found, but the subject can not be resolved due to
erroneous linkages.

HAR9502 The truck drifted across the left lane onto the left shoulder and
struck the guardrail ; the tank hit a column of the Grant Avenue overpass.
Result:

1. the truck struck the guardrail
2. the tank hit a column of the Avenue overpass

Comment: Both collisions found and resolved.

HAR9503 As the lead vehicle reportedly slowed from 65 miles per hour (mph)
to between 35 and 40 mph, it was struck in the rear.
Subsequent collisions occurred as vehicles drove into the wreckage area
at speeds varying from 15 to 60 mph.
Result:

1. the lead vehicle was struck the rear
2. Collision not found.

Comment: Collision 1 found and almost completely resolved. Collision
2 could not be found due to complicated (erroneous?) linkages.

HAR9601 About 35 minutes later, the truck was struck by southbound Am-
trak train No. 81 en route from New York City to Tampa, Florida.

Result:

9

13

1. the truck was struck by southbound Amtrak

Comment: Collision found, object could not be fully resolved.

HAR9602
Comment: No collisions in this report.

HAR9701S Abstract: On November 26, 1996, a utility truck collided with
and fatally injured a 10-year-old student near Cosmopolis, Washington.

Result:

1. Collision not found.

Comment: Incorrect linkage.

HAR9702S Abstract: On April 25, 1996, a truck with a concrete mixer body,
unable to stop, proceeded through an intersection and collided with and
overrode a passenger car near Plymouth Meeting, Pennsylvania.

Result:

1. Collision not found.

Comment: Incorrect linkage.

HAR9801S Abstract: On June 11, 1997, a transit bus collided with seven
pedestrians at a “park and ride” transit facility in Normandy, Missouri.

Result:

1. a transit bus collided with seven pedestrians

Comment: Correct.

HAR9801 A flatbed truck loaded with lumber, operated by McFaul Transport,
Inc., that was traveling southbound on U.S. Route 41 collided with the
doubles truck, lost control, and crossed over the median into the north-
bound lanes.

A northbound passenger van with nine adult occupants struck and un-
derrode the right front side of the flatbed truck at the landing gear.

A refrigerator truck loaded with produce, operated by Glandt/Dahlke,
Inc., that was also traveling northbound, struck the right rear side of the
flatbed truck.

Result:

1. 41 collided with the doubles truck

2. Collision not found.

3. a refrigerator truck struck the right rear side of the flatbed truck

Comment: Collision 2 not found because of erroneous linkage.

10

14

HAR9802S Abstract: On October 9, 1997, about 12:10 a.m., a truck tractor
pulling a cargo tank semitrailer was going under an overpass of the New
York State Thruway when it was struck by a sedan.

The car hit the right side of the cargo tank in the area of the tank’s
external loading/unloading lines, releasing the gasoline they contained.

Result:

1. it was struck by a sedan

2. the car hit the right side of the cargo tank

Comment: Coreference in collision 1 not found, otherwise correct.

HZM9101 The vehicle overturned onto its side and struck the embankment
of a drainage ditch located in a dirt field beside the road.

Result:

1. the vehicle struck the embankment of a drainage ditch

Comment: Correct.

HZM9901
Comment No collisions in this report.

RAR0201 Executive Summary: About 9:47 p.m. on March 15, 1999, National
Railroad Passenger Corporation (Amtrak) train 59, with 207 passengers
and 21 Amtrak or other railroad employees on board and operating on
Illinois Central Railroad (IC) main line tracks, struck and destroyed the
loaded trailer of a tractor-semitrailer combination that was traversing the
McKnight Road grade crossing in Bourbonnais, Illinois.

The derailed Amtrak cars struck 2 of 10 freight cars that were standing
on an adjacent siding.

Result:

1. Collision not found

2. the derailed Amtrak cars struck 2 of 10 freight cars

Comment: Collision 1 not found because of erroneous linkage.

RHR9001 About 9:38 a.m., Pacific standard time, on December 19, 1989,
National Railroad Passenger Corporation (Amtrak) passenger train 708,
consisting of one locomotive unit and five passenger cars, struck a TAB
Warehouse & Distribution Company tractor semitrailer in a dense fog at
a highway grade crossing near Stockton, California.

Result:

1. Collision not found.

Comment: Incorrect linkage.

11

15

Document Classification for Computer Science Related Articles

May 15, 2002

Ana Fuentes Martínez
Flavius Gruian

Introduction to Natural Language Processing and Computational Linguistics
ctrum
pen-

his
s sim-
ulti-
set of
that

in the

stand-
nt of
e ones
s in
ted in

text by
e Web
hms
t cat-
h few
y dif-
me

rent
m a set
ilarity
ea,

ocu-
h as
Document classification based on content is a general task that appears in a wide spe
of tasks from text retrieval to automatic browsing tools or database maintenance. It is ex
sive when performed manually−even though this is still the most accurate method. In t
project we have implemented a simple probabilistic document classifier based on corpu
ilarity from a predefined topic hierarchy. It is based on the Naïve Bayes method with m
nomial sampling well suited for related text classes. The method was evaluated with a
articles from three different journals in Computer Science. The experiments showed
Naïve Bayes classifier was able to correctly determine the class of 93% of the abstracts
test set, for well balanced training data.

1. Introduction

The question of whether an automatic classifier performs better than humans is a long
ing controversy. Certainly it depends on how skilled the person is, but also on the amou
documents to be classified. Generic classifiers often have poorer performance than th
using domain-specific methods [1] but humans taggers will also find greater difficultie
categorizing wide-ranging text sets. Time and cost effectiveness issues have contribu
making automatic tools an attractive alternative and promoted research in the field.

Several machine learning techniques have been developed to automatically discern
content. Indexing non-homogeneous documents, as the ones found on the World Wid
is discussed in a recent survey by Y.Yang et. al. [2] It focuses on well-known algorit
(Naïve Bayes, Nearest Neighbor and First Order Inductive Learner) applied to hypertex
egorization. The sparseness problem caused by large number of categories wit
documents on each is examined in [3]. Estimates of the terms distributions are made b
ferentiation of words in the hierarchy according to their level of generality/specificity. So
practical work has been done within Web page clustering. We mention two diffe
approaches to organize a set of documents. In [4] categories are being constructed fro
of unclassified texts. The documents are clustered together according to semantic sim
criteria. This is certainly the most frequent practice in text classification. A different id
syntactic clustering, is discussed in [5]. Their intention is to determine whether two d
ments are “roughly the same” or “roughly contained” except from modifications suc
formatting or minor corrections.
16

terized
f cor-

iterary
ces in
. The

ong

ments
infor-
gory
gory

each
single

clas-
aïve
a is to
ories
ting

other

g the
More homogeneous texts are often indexed in predefined categories. They are charac
by containing multiple overlapping terms across the classes. One example of this type o
pus is presented in [7]. Machine learning techniques are used to detect whether or not l
works can be classified according to the genders of their authors just by noting differen
the type of prose. The subject of the classifier proposed in [8] are bioinformatics articles
general idea behind this work is that the features useful for distinguishing articles vary am
the different levels in the hierarchy.

Classifiers can be used for either category ranking or automated category assign
(binary classification). Both require the same kind of computation and deduce the same
mation [9]. The type of output depends on the application. For user interaction a cate
ranking system would be more useful while for fully automated classification tasks cate
assignment is desirable.

2. Categorization Model

a) Naïve Bayes probabilistic classifier

We assume that a predefined set of text categories is given. A large set of abstracts from
of the categories conform the corpus. Each document is presumed to belong to a
category.

Based on this corpus we define a probability model for abstracts. New documents are
sified following Bayes’ rule by computing posterior probabilities over the categories. N
Bayes probabilistic classifiers are commonly used in text categorization. The basic ide
use the joint probabilities of words and categories to estimate the probabilities of categ
given a document [10]. It is easy to estimate the probability of each term by simply coun
the frequency with which the target value occurs in the training data:

The naive part of such an approach is the assumption of word independence [10]. In
words, the probability of observing the conjunctionw1,w2,...,wn, is just the product of the
probabilities for the individual attributes.

Notice that in a Naïve Bayes learner, the number of distinctP(wi|Ci) that must be calculated
is significantly smaller than all possibleP(w1,w2,...,wn,|Ci). Despite the independence
assumption is clearly incorrect−it is more probable to find the wordnetworkif the preceding
word isneural− the algorithm performs well in many text classification problems.

The documentD is assigned to the class that returned greatest probability of observin
words that were actually found in the document, according to the formula

Occurrences of wi in Class

No. of Words in the Class(C)
P(wi|Class)= (1)

P w1 w2 …wn Cj, ,() P wi Cj()
i

∏= (2)

Class max
Cj C∈ P Cj() P wi Cj()

wi D∈
∏⋅

arg= (3)
17

rob-
lues.

the dis-
n a
umber
tes.
form
uen-
ation
rds are

pared.
are

g the
n be
thing
erms
corpus
s the

ment
gory.
test
e orig-

t the
o pre-

us are
d as a
e oth-
b) Canonical form of the document

The first main issue involved in applying the Naïve Bayes classifier to text classification p
lems is to decide how to represent an arbitrary text document in terms of attribute va
Beside word independence, we made an additional reasonable assumption regarding
tribution of terms in a document; the probability of encountering a specific word i
document is independent of its position. The primary advantage is that it increases the n
of examples available for each term and therefore improves the reliability of the estima

A Prolog written filter parses the document and produces what we call the canonical
of a text. This canonical form is actually a vector representation of the terms and their freq
cies. In order to reduce the amount of data, the canonical form contains only the inform
that is relevant for the probabilistic measures. Punctuation marks, numbers and stopwo
removed and uppercase letters are converted to lowercase so that terms can be com
Notice that this approach implies strictly semantic similarity, no syntactic issues
considered.

c) Bayesian Estimation with Uniform Prior

To complete the design of our leaning model we must choose a method for estimatin
probability terms required by the Naïve Bayes classifier. The word frequencies ca
obtained by a Bayesian Estimation with Uniform Priors, also known as Laplace’s smoo
law [6]. It addresses the problem of assigning a probability distinct from zero to those t
in the document that do not appear in the corpus. It can be interpreted as enlarging the
with the current text. For the formula (1) we have that the size of the new vocabulary i
number of words in the class (or size of the class),C plus the size of the document,N. The
word counter forwi is increased by one because nowwi is present also in the document.

d) The system

The system we designed has two major parts: A prolog program for parsing the new docu
and a Perl script for computing the probabilities and selecting the most suitable cate
Evaluation of the performance was done automatically by iterating over a directory of
files and checking whether the class assignment suggested by the algorithm matched th
inal journal, which was apparent from the file name.

During the leaning stage, the algorithm examines all training documents to extrac
vocabulary for each class and count the frequency of all terms. These corpora are als
sented in the canonical form.

Later, given a new document to be classified, the probability estimates from each corp
used to calculate the closest category according to the formula (3). The result is obtaine
ranked list of the candidate categories where the first one is consider to be correct and th
ers are disregarded.

P wi Cj()
wi 1+

C N+
-----------------= (4)
18

puter
igital
lected
gnifi-
words.
orrect
ssifier.
al con-

First,
nt of
web
l arti-
A
erms
le cat-
3. Results and Discussion

a) Experimental set-up

The corpora used to run the experiments consisted of a large set of abstracts from com
science journals. They were divided into thee clusters according to their main topic: D
Signal Processing, Biomedical Research and Computer Speech & Language, all col
from Academic Press Journals. The final training data contained over 7000 different si
cant terms i.e, without stopwords or numbers. The corpora enclosed more than 21.000
The classifier was tested with 60 new abstracts from the same journals. This way the c
class was known in advance and it could be compared to the one suggested by the cla
The division between the training set and the test set was randomly chosen and sever
figurations were tested in order to ensure reliable results.

Two characteristics differentiate our data set compared to other papers in the field.
we are working with rather coarse data. The different classes will include larger amou
overlapping terms which will blur the fitting measures. This is not the case for general
classifiers with rather heterogeneous document topics. Second, it is typical for technica
cles to contain many very specific terms−and this is specially outstanding in the abstract.
hand-tuned classifier could make use of this information to increase the weight of this t
in the probabilities and achieve better classification rates. Each article is assigned a sing
egory in the hierarchy.

b) Evaluation Measures

We used a four cell contingency table for each category and a set of test documents:

The total number of test documents is

where
• a is the number of documents correctly assigned to this category.
• b is the number of documents incorrectly assigned to this category.
• c is the number of documents incorrectly rejected from this category.
• d is the number of documents correctly rejected from this category.

We obtained the following results:

Table I: contingency table for a class

documents that belong to C documents that DO NOT
belong to C

documents assigned to C a b

documents NOT assigned to C c d

Table II: contingency table for Digital Signal Processing

documents that belong to
Digital Signal Processing

documents that DO NOT belong to
Digital Signal Processing

documents assigned to
Digital Signal Processing

17 0

documents NOT assigned to
Digital Signal Processing

3 40

N a b c d+ + +=
19

tables.

l meth-
res are
d then
equal
Conventional performance measures are defined and computed from this contingency
This measures are recall,r, precision,p, fallout, f, accuracy,Acc, and error,Err:

• r = a / (a + c), if a + c > 0,otherwise undefined;
• p = a / (a + b),if a + b > 0,otherwise undefined;
• f = b / (b + d),if b + d > 0,otherwise undefined;
• Acc = (a + d) / N;
• Err= (b + c) / N.

Macro and Micro-averaging
For evaluating performance of the system across categories, there are two conventiona
ods, namely macro-averaging and micro-averaging. Macro-averaged performance sco
calculated by first computing the scores for the contingency tables for each category an
averaging those to obtain global means. This is a per-category average, which gives
weight to every category regardless of its frequency.

Table III: contingency table for Biomedical Research

documents that belong to
Biomedical Research

documents that DO NOT belong to
Biomedical Research

documents assigned to
Biomedical Research

19 0

documents NOT assigned to
Biomedical Research

1 40

Table IV:contingency table for Computer Speech & Language

documents that belong to
Computer Speech & Language

documents that DO NOT belong to
Computer Speech & Language

documents assigned to
Computer Speech & Language

20 4

documents NOT assigned to
Computer Speech & Language

0 36

Table V: Performance measures

recall precision fallout accuracy error
Digital Signal Processing 85% 100% 0% 95% 5%

 Biomedical Research 95% 100% 0% 98% 2%

Computer Speech & Language 100% 83% 10% 93% 7%

Table VI:Macro-Averaged Performance Measures

recall precision fallout accuracy error
Macro-Averaging 93,3% 94,3% 3,3% 95% 4,6%
20

more
s were
ith the
res.

corpus

ge so
refore,

cor-
d 93%
Vari-
ced
Micro-averaged performance scores give equal weight to every document. this can be
representative in our case, since the number of documents is small and all the classe
tested with the same number of abstracts. First we create a global contingency table, w
average of the values in the category tables, and use this to infer the performance sco

c) Unbalanced Corpora.

Some poor results− bellow 30% successfully classified documents− were obtained in the first
versions of the program. Two circumstances were pointed out as possible reasons: The
was both small and unbalanced.

The abstracts in one of the journals tended to be significantly shorter than the avera
both the corpus and the test documents from this class contained less information. The
very few abstracts were finally assigned to this cluster.

Enlarging the corpora proved to be a better solution than artificially balancing the class
pus. After having collected a corpus of near 20000 words, the classification rate reache
correctly assigned documents, still with a rather unbalanced distribution (Coefficient of
ance = 20%). Neither larger corpora nor better distribution resulted in redu
misclassification (see figure 1).

Table VII:global contingency table for a class

documents that belong to C documents that DO NOT
belong to C

documents assigned to C 17+19+20 = 56 0+0+4 = 4

documents NOT assigned to C 3+1+0 = 4 40+40+36 = 116

Table VIII:Micro-Averaged Performance Measures

recall precision fallout accuracy error
Micro-Averaging 93% 93% 3% 96% 4%

Figure 1. Classification rates with respect to the size of the corpus. Coefficient of Variance = 0,2

6000

4

6

8

1

2

12009000 15003000 1800 2100
Corpus

Classifica-
21

cant
sts that
cation

ared

n.

dge

t

Above this threshold, enlarging the corpora had little effect on the number of new signifi
terms for each class and consequently on the performance (see figure 2). This sugge
the presence/absence of a common term is clearly more revealing for a good classifi
than the number of occurrences. Because of this property, words such asmodelor systemthat
appear often in all classes will have restricted effect in the classification decision comp
to those terms which are unique for a class.

References

[1] W. Cohen.Learning to classify English text with ILP methods. In luc De Raedt, editor.
Advances in Inductive Logic Programming, p. 124-143 IOS Press 1995.

[2] Y Yang, S. Slattery and R. Ghani.A study of approaches to hypertext categorizatio
Journal of Intelligent Information Systems, Volume 18, Number 2, March 2002.

[3] Kristina Toutanova, Francine Chen, Kris Popat & Thomas Hofmann.Text Classification
in a Hierarchical Mixture Model for Small Training Sets, Xerox PARC and Brown
University, Proceedings 10th International Conference on Information and Knowle
Management, 2001.

[4] Paul Ruhlen, Husrev Tolga Ilhan, and Vladimir LivshitsUnsupervised Web Page
ClusteringCS224N/Ling237 Final Projects Spring 2000, Stanford Univ.

[5] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig.Syntactic clustering of the
Web. In Proc. 6th WWW Conf., Apr. 1997.

[6] Sep Kamvar & Carla Pinon,Probabilistic Smoothing Models for Automatic Tex
Classification CS224N/Ling237 Final Projects Spring 2001, Stanford University.

[7] Zoe Abrams, Mark Chavira, and Dik Kin Wong,Gender Classification of Literary Works
CS224N/Ling237 Final Projects 2000, Stanford University.

[8] Jeff Chang,Using the MeSH Hierarchy to Index Bioinformatics ArticlesCS224N/
Ling237 Final Projects 2000, Stanford University.

[9] Yiming Yang An evaluation of statistical approaches to text categorization.Journal of
Information Retrieval, Vol 1, No. 1/2, pp 67--88, 1999.

[10]Tom M. Mitchell. Machine Learning. McGraw Hill, 1997.
[11]http://www.ncbi.nlm.nih.gov/entrez/query/static/help/pmhelp.html#stopwords

4000

4.0

6.0

8.0

10.0

2.0

8.000 12.00 16.00 20.00

distinct terms

significant
words

5-10 new
terms

Figure 2. Relation between the size of the corpus and the number of different terms on it.
22

23

Anagram generation using sentence probabilities

Sven Gesteg̊ard Robertz
Department of Computer Science, Lund University

email: sven@cs.lth.se

June 3, 2002

Abstract

An anagram is a word or phrase made by transposing the letters
of another word or phrase, and is a popular kind of puzzle. Finding
anagrams for a word or a phrase is a difficult task due to the huge
number of possible permutations of the letters, and using computers
for anagram generation has been increasingly popular. This paper
presents an attempt on constructing an automatic anagram generator
based on sentence probabilities. Using a relatively small corpus of
one million words, a simple implementation using bigram probabilities
proved to yield quite satisfactory results but is too inclusive due to the
limited context recorded in bigrams. A trigram based version produces
much less incorrect results but would need a larger corpus since it is
much more exclusive.

1 Introduction

An anagram[1] is a word or phrase made by transposing the letters of an-
other word or phrase and are popular as puzzles. It is also common to
make humorous and/or abusive anagrams of names of people and places.
Anagrams have also been believed to have mystical or prophetic meaning,
especially when applied to religious texts.

Finding anagrams on long words or sentences is very difficult because
of the huge number of possible permutations of the letters. Therefore, it is
desirable to use computers to search for anagrams. Currently, there exists a
large number of anagram generation programs[7]. Many are available on the
world wide web both for download and as online services[5, 2]. The common
approach is to use a dictionary to limit the amount of possible anagrams
to those consisting of actual words. This method yields a huge number of

1

24

anagrams, and the automatically generated result must be filtered manually
in order to find the ones that actually mean something.

The main problem with automatic anagram finders is to select the ana-
grams that actually have a meaning (in a certain language) from the huge
number of possible permutations of the letters. If we limit ourselves to
single-word anagrams the problem is easily solved by dictionary lookup, but
if we also want to find multi-word anagrams, the problem not only to find
proper words but also to select the series of words that actually have a
meaning.

The idea in this work is to reduce the number of false hits by using a
statistical method to select the only the most probable sentences.

2 Statistical methods

A corpus[9, 4, 10, 8] is a large collection of texts or speech. Corpora are
used for statistical analysis of natural language. Two application areas are
lexicography[3] and language recognition. In lexicography, corpora are used
to find the most common uses of a word in order to select proper examples
and citations. In speech and optical character recognition, statistics are used
to select the most probable among a set of similarly sounding or looking
words given the previous words.

While grammar based methods require detailed knowledge and careful
hand-coding, statistical methods are much more flexible and are easy to
adapt to different styles of writing (e.g., a scientific corpus and a newspaper
corpus in the same language would be quite different) or to different lan-
guages, especially with the huge amounts of electronically available text, on
the world wide web and electronic libraries.

2.1 Sentence probabilities

For a sentence S = w1w2w3 . . . wn the sentence probability is

P (w1w2 . . . wn) = P (w1) × P (w2|w1) × P (w3|w1w2) × P (wn|w1 . . . wn−1)

It is, however, not practically possible to use this definition of sentence
probability for actual calculations, since it would require an infinitely large
corpus in order to accept all correct sentences in a language. Instead, the
sentence probability has to be approximated in some way.

2

25

2.2 n-gram probabilities

The sentence probability can be approximated by using n-grams, i.e., the
conditional probability of a word given the n − 1 previous words. In this
work, we use bigrams and trigrams. The bigram probability of a sentence is

Pbigram(S) ≈ P (w1) × P (w2|w1) × . . . × P (wn|wn−1)

where the probability of a bigram wkwk+1 is calculated as

P (wkwk+1) = P (wk|wk+1) =
freq(wkwk+1)

freq(wk)

The trigram probability is

Ptrigram(S) ≈ P (w1) × P (w2|w1) × P (w3|w1w2) . . . × P (wn|wn−2wn−1)

Using unigram probabilities is equal to dictionary lookup, i.e., all per-
mutations of the words are displayed. The threshold probability effectively
sets the size of the dictionary.

2.3 Drawbacks of relying on statistics

The drawbacks of relying entirely on statistics is that it does not take any
(formal) semantical knowledge about the language into account. For in-
stance, a certain compound noun may not be very probable in a given
corpus, but is a valid anagram anyhow. And a series of words, that are
very probable in the corpus, may not be a full sentence and should not be
presented as an anagram since they, in isolation, have no meaning.

Thus, relying solely on statistics, without any formal semantic analysis,
will yield a too limited system. Such a system will be too inclusive in some
respects and too exclusive in others.

3 Implementation

The basic algorithm for generating anagrams is as follows

• The algorithm keeps three strings:

prev is the start of the anagram that has been accepted as probable,

head is the start of the word(s) currently being built, and

rem is the remaining, not yet used, letters.

3

26

• for each letter in rem, add it to head.

– If it produces a valid word (and prev + head is a probable series
of words), append head to prev and find recursively find the set
of words that can be built from the remaining letters of rem.

– Continue recursively until all letters have been used.

A common way to reduce the number of branches in the recursion tree
is to use signatures (the set of characters in a string, rather than the string
itself) in the recursive search and then look up all words that match (i.e.,
can be built from) a certain signature on the way up. I also try to cut of
branches that are dead ends early by stopping the search if the prev string
doesn’t contain a probable series of words.

As an example, consider the phrase “think different”. In some stage of
execution, the algorithm will be in the following state: a word (“fifteenth”)
has been found, and the search continues, recursively on the remaining let-
ters.

(prev,head,rem) = ("fifteenth","", "dikrn")

Then we select one letter from rem and continue the search recursively.
(Since there is only one vowel in rem, there is effectively only one path and
it isn’t interesting to try and build more than one word from the letters of
rem.)

("fifteenth","d", "ikrn")
-->
("fifteenth","di", "krn")
-->
...
-->
("fifteenth","dikrn", "")

Now, we look in our dictionary to find any words that can be built from the
letters “dikrn”. We find the word “drink” and add that to prev.

(prev,head,rem) = ("fifteenth drink","", "")

All the letters have been used, so the recursion stops and we return the
result.

Figure 1 shows the algorithm i a little more detail using Java-like pseudo
code. The search is done recursively in the method searchRecursive(prev,
head, rem).

4

27

Collection searchRecursive(String prev, String head, String rem){

/* returns collection of strings */

Collection result;

if(rem.length() == 1) {

String candidate = head+rem;

if(sp.sigExists(candidate)) {

result = sp.getWordsForSig(candidate);

} else {

result = null;

}

} else {

if(hasProbableSentences(prev)) {

result = doActualSearchExpand(prev, head, rem, depth);

result = getProbableSentences(prev,result);

} else {

result = null;

}

}

return result;

}

Collection doActualSearchExpand(String prev, String head, String rem){

Collection result;

for(each character c in rem) {

String newRem = rem - c;

String newHead = head + c;

if(hasVowels(newHead)) {

heads = sp.getWordsForSig(newHead);

}

if(heads > 0 && hasVowels(newRem)) {

String newPrev = concat(prev, newHead);

theRest = searchRecursive(newPrev, "", newRem);

result.addAll(allCombinations(heads, theRest));

}

tmp = searchRecursive(prev, head+c, s.toString(), depth+1);

result.addAll(tmp);

}

}

return result;

}

Collection allCombinations(Collection first, collection second){

return all combinations (x,y) where x in first and y in second

}

boolean sigExists(String signature) {

return true if any word in the corpus matches the signature, else false

}

Collection getProbableSentences(String head, collection tails){

Collection result;

for(each String t in tails) {

candidate = head + " " + t;

if(getSentenceProbability(candidate) > THRESHOLD) {

result.add(candidate);

}

}

return result;

}

Figure 1: The anagram generation algorithm.

5

28

4 Experimental results

This section presents the results of sample executions of the program using
a Swedish and an English corpus, respectively. The results illustrate the
difference between using bigram and trigram probabilities; using trigram
probabilities is much more exclusive .

The Swedish corpus was the complete works of Selma Lagerlf (962497
words), and the word to be anagrammed was “universitet”. In this case,
using bigrams gave 88 anagrams whereas using trigrams only produced one.

The English corpus was randomly selected from the Project Gutenberg
electronic library[6] and consisted of Rudyard Kipling, The Works; Julian
Hawthorne, The Lock and Key Library/Real Life; Bennett, How to Live on
24 Hours a Day ; and O Henry, Waifs and Strays, etc. The size was 723910
words (including the Project Gutenberg copyright notice). The phrase to
be anagrammed was “anagram generator”.

For each anagram, the sentence probability is given (the limit was 10−10).

4.1 Results from using bigram probabilities

Anagrams for "universitet":

en ser ut i vit [p=1.9458480510721317E-10] ser ut i vinet [p=1.015513774753907E-6]

envis i ett ur [p=5.142381068564074E-7] ser ut inte vi [p=2.9621187688537784E-8]

envis i tu tre [p=4.440915397008955E-7] ser ut vi inte [p=3.0729917387234457E-6]

envist i er ut [p=1.7160445913500644E-7] ser vi i ett nu [p=1.8823062145991216E-10]

er nu vi sett i [p=1.937940900390817E-10] ser vi inte ut [p=3.7808359616827964E-7]

er vi nu sett i [p=7.308805681473939E-10] ser vi nu i ett [p=1.1218191968677428E-8]

i ett ur sven i [p=1.5516368737656366E-10] ser vi ut inte [p=2.7759636302831487E-9]

ii ett ur sven [p=3.0035429642629304E-8] sett i er nu vi [p=2.452672726387112E-10]

in reste ut vi [p=5.891550112985203E-9] sitter i nu ve [p=1.7904648728424079E-9]

in vi reste ut [p=1.58599764968365E-8] sven i tu tre i [p=5.816617555780169E-10]

inte ser ut vi [p=9.478780060332091E-8] tu tre i en vis [p=7.664376858367229E-10]

inte ut vi ser [p=5.902352680503676E-9] tu tre i sven i [p=5.816617555780167E-10]

ner se ut i vit [p=3.96659435500385E-10] tvi ni se er ut [p=1.4087963583645376E-9]

ni reste ut vi [p=2.4219565474030946E-8] tvi ni se ut er [p=1.1592270654237034E-8]

ni ut vi reste [p=8.126785388846779E-10] ur sven i ett i [p=2.327455310648455E-10]

ni vi reste ut [p=1.0866459358890525E-8] ut i sven i tre [p=1.1661532621133962E-10]

nu i er vi sett [p=1.3060234777380274E-10] ut inte ser vi [p=3.4678463635361306E-9]

nu reste i vit [p=2.0237228371499173E-9] ut inte vi ser [p=9.222426063286992E-10]

nu ser vi i ett [p=1.3830647632616007E-9] ut se er tvi ni [p=1.267722806993553E-10]

nu ve er i sitt [p=9.040149103118745E-10] ut se i vinter [p=3.998242714219306E-10]

nu vet i riset [p=5.242222049351395E-10] ut vi in reste [p=5.930663383767719E-10]

nu vi ser i ett [p=1.8627134858742094E-10] ut vi inte ers [p=3.735082555631232E-9]

rent ut vi se i [p=1.2379361686304611E-9] ut vi inte res [p=3.735082555631232E-9]

res inte ut vi [p=6.826703269932555E-7] ut vi inte ser [p=5.976132089009971E-8]

res nu vi ett i [p=2.004998394252703E-10] ut vi ni reste [p=1.2190178083270168E-9]

res nu vi i ett [p=1.8907373450143707E-8] ut vi reste in [p=3.911327078251717E-9]

reste nu i vit [p=3.6932941777986E-8] ut vi ser inte [p=7.03244119671731E-8]

reste ut i vin [p=5.234842067974278E-8] ve er i sitt nu [p=3.5051123568001315E-9]

reste ut vi in [p=1.173398123475515E-8] ve er nu i sitt [p=2.8871976198085495E-8]

6

29

reste ut vi ni [p=5.866990617377575E-9] vers i ett nu i [p=5.585713767774757E-9]

riset en ut vi [p=3.956204617078708E-8] vers i inte ut [p=5.218269547053441E-9]

rut inte se vi [p=1.0177793832489041E-6] vers i nu i ett [p=1.1401286909778828E-9]

rut inte vi se [p=2.1318476247657276E-7] vet nu i riset [p=1.3154700955091158E-8]

se i tur ni vet [p=1.2782933719464848E-10] vi in reste ut [p=3.964994124209125E-9]

se ut er tvi ni [p=7.099247719163898E-9] vi ni reste ut [p=8.149844519167894E-9]

se ut i vinter [p=9.020035563278755E-7] vi nu ser ett i [p=1.0755405029256881E-10]

sen vi i ett ur [p=3.742883064527547E-10] vi nu ser i ett [p=3.688172702030936E-9]

sen vi i tu tre [p=3.232321138562728E-10] vi se ut i rent [p=4.874189357955171E-10]

sen vi ut i ert [p=2.737452226214421E-10] vi ser inte ut [p=1.182483675258817E-7]

sen vi ut i tre [p=7.527993622089657E-10] vi ser nu i ett [p=2.7195616893763467E-9]

ser inte ut vi [p=8.785210787624866E-8] vi ser ut inte [p=7.58763392277394E-8]

ser nu vi i ett [p=5.122462086154077E-10] vi sitter nu e [p=3.744814625403478E-9]

ser ut en i vit [p=2.4840613417942104E-10] vi tre i tusen [p=2.135511044353802E-9]

ser ut i en vit [p=3.8286992714908027E-7] vi ut inte ser [p=7.377940850629595E-10]

Anagrams for "anagram generator":

german or a great an [p=1.9334758773318616E-7]

german or are a gnat [p=1.978049467675584E-9]

german or are a tang [p=6.593498225585281E-10]

german or art an age [p=6.422454091511403E-9]

manner o a great rag [p=3.353617069110306E-10]

great a man or anger [p=1.8626279303618577E-9]

marre no great an ag [p=2.019265167212665E-9]

4.2 Result from using trigram probabilities

Anagrams for "universitet":

ser ut i en vit [p=1.186829867641766E-6]

Anagrams for "anagram generator":

*** no anagrams found ***

5 Conclusions

The success of any statistical method hinges on having a large enough num-
ber of samples. In the experiments done with the implementation presented
in this paper, the size of the corpus was limited to about one million words
due to memory issues.

Using bigram probabilities produces a reasonably good selection of ana-
grams. However, since it only requires each pair of words to be probable, it
is often too dull an instrument and too inclusive.

Trigram probabilities take more context into account and, hence, should
produce better results. However, this also increases the requirements on the
corpus. Unfortunately, a corpus size of one million words proved to be too
small for getting useful results using trigram probabilities since it is much
more exclusive than using bigram probabilities.

7

30

A big advantage of statistical methods over formal based ones are that
statistical methods are much easier to adapt to new languages or to changes
in a language. In this work, both an English and a Swedish corpus were
used and both of them worked to an equal degree of satisfaction without
any modification to the program itself.

Statistical methods have proven to be very successful in natural language
recognition, but it seems that relying solely on statistics and not taking for-
mal semantic knowledge into consideration may be too limited a method
for generating sentences. In our experiments, performance was further ham-
pered by using a rather small corpus. This proved to be too inclusive in
some respects and too exclusive in others.

Using the semantics captured in sentence probabilities for anagram gen-
eration is an improvement over merely using dictionary lookup, and drasti-
cally reduce the number of generated anagrams. However, it still produces
a large number of results that has to be manually filtered. It also rejects
valid but improbable anagrams like, for instance, compound nouns.

References

[1] The anagrammy awards web page. http://www.anagrammy.com/.

[2] Arrak anagram server. http://ag.arrak.fi/index en.html.

[3] Cobuild home page. http://www.cobuild.collins.co.uk/.

[4] Corpus linguistics web page. http://www.ruf.rice.edu/ bar-
low/corpus.html.

[5] Internet anagram server. http://www.wordsmith.org/anagram/.

[6] Project gutenberg web site. http://promo.net/pg/.

[7] Word games source code archive. anagram source code.
http://www.gtoal.com/wordgames/anagrams.html.

[8] Survey of the state of the art in human language technology.
http://cslu.cse.ogi.edu/HLTsurvey/HLTsurvey.html, 1996.

[9] Christopher D. Manning and Hinrich Schütze. Foundations of Statisti-
cal Natural Language Processing. MIT Press, 2000.

[10] Pierre Nugues. An Introduction to Language Processing with Prolog. to
be published.

8

31

Lexical Functional Grammar: Analysis and
Implementation

Magdalene Grantson

Department of Computer Science

Lund University, Box 118, 221 00 Lund, Sweden

May 16, 2002

Abstract
Lexical Functional Grammar LFG is a theory of grammar e.i. in general a

theory of syntax, morphology, and semantics. It postulates two levels of syntactic
representation of a sentence, a constituent structure (c-structure) and functional
structure (f-structure). LFG formalism provides a simple set of devices for describing
the common properties of all human Languages and the particular properties of
Individual Languages. In this paper, I will describe the basic concepts underlining
Lexical Functional Grammar and will implement:

• a parser for the c-structure.

• a parser for the c-structure with functional annotations

All implementations will be done in Prolog (with the use of DCF rules and list)

1 Introduction

The formalism of Lexical Functional Grammar was first introduced in 1982 by Kaplan
and Bresnan after many years of research in this area. It has since been applied widely
to analyse linguistics phenomena. This theory of grammar assigns two levels of syntactic
representation to a sentence, the constituent structure (c-structure) and functional struc-
ture (f-structure). The c-structure have the form of context-free phrase structure trees.
It serves as the basis for phonological interpretation while the f-structure are sets of pairs
of attributes and values. Attributes may be features, such as tense and gender, or func-
tions, such as subject and object. The f-structure actually encodes linguistic information
about the various functional reactions between parts of a sentence. Many phenomena are
thought to be more naturally analysed in terms of grammatical functions as represented
in the lexicon or in f-structure, rather than on the level of phrase structure. For example,
the alternation in the syntactic position in which the logical object (theme argument)
appears in corresponding active passive sentences has been viewed by many linguists as
fundamentally syntactic in nature and treated as transformations is handled by LFG as
Lexicon. Grammatical functions are not derived from phrase structure configurations,
but are represented at the parallel level of functional structure. C-structure varies across
languages, however f-structure representation, which contains all necessary information
for semantic interpretation of an utterance, is said to be universal.

1

32

2 Structural Representation in LFG

There are different kinds of information dependencies constituting parts of a sentence, thus
giving rise to different formal structures. LFG is basically made up of lexical structure,
functional structure and constituent structure. There are also notational conventions of
LFG that a person is likely to encounter in a grammar written in LFG. The rules of
LFG contain expressions known as FUNCTIONAL SCHEMATA which are symbols that
appear at the right of the −− > arrow. The Figure 1 below shows a format for writing
rules in LFG. Examples of such a format with further explanations of the arrows will be
given in the next subsections.

sub)=
S --> NP VP

=

Left hand side:
The mother node

List of functional schemata

The arrows are variables where and are known as metavariables.

 (

Right hand side: The daughter nodes

Figure 1:

2.1 Lexical structure

Lexical structures comprise information about the meaning of the lexical item, its ar-
gument structure and grammatical functions such as subject, object, etc. associated to
their appropriate argument. The verb talk for instance, has a predicate argument struc-
ture which is made up of an agentive argument associated with the subject and a theme
argument associated with the object function.

(Sub) (Obj) ----> Lexical assignment of grammatical function

talk agent theme ----> predicate argument structure

Figure 2:

Lexical items have functional schemata in LFG. Grammatical functions are associated
with lexical items and syntactic positions by mean of annotated phrase structure rule.

2

33

They mediate between lexical and constituent structure representations. Grammatical
functions are considered as an interface between lexicon and syntax. Below are examples
of schematised formats of LFG LEXICAL ITEMS. The name Magdalene, for example,
comes with the grammatical information such as gender.

Magdalene N (PRED) = ’{ meaning of ’Magdalene’}’

(NUM) = SING
(GEND) = FEM

Representation
 of item syntactic category

 List of functional schemata

Figure 3:

A lexical rule takes a lexical item as input and returns a new lexical item. It is defines
over a whole class of lexical items.

2.2 Constituent structure (c-structure)

The c-structure encodes hierarchical grouping and linear order. That is; it indicates the hi-
erarchical structure of phrasal constituents in the string in a way familiar to most linguists.
Functional annotations is functional schemata transfered into tree and is interpreted as
deriving information about the functional structure.

In creating c-structures, all we need is context-free phrase-structure rules, phrase struc-
ture trees and the insertion of functional schemata. Language specific annotation of
phrase-structure rules helps to identify the grammatical functions that occur in specific
syntactic positions. Below is a set of phrase structure rules:

S --> NP VP

NP --> (Determiner) N (PP)

PP --> preposition NP

VP --> V (NP) (NP) PP

If we consider the sentence Magda likes Ann; we first of all consider the syntactic
rules of this sentence, then we construct a tree with annotations prescribing the rules.
Figure 4 shows a relation between rules and annotations in the tree.

The arrow ↑ Refers to the f-structure (see next subsection) of the mother node. It is
instantiated (Instantiation transforms the schemata into functional equation) by the node
immediately dominating the constituent under which the arrow is placed. The arrow ↓
refers to the f-structure of the current node. Thus from the rule S −− >NP VP, the
equation states that NP is the subject (Sub) of S that dominates it. The ↑ = ↓ equation

3

34

S --> NP VP
(Sub)=

S

(Sub)=
NP VP

= =

Figure 4: Relation between rules and annotations in the tree

S

(Sub)=

VPNP

N

Magda

=

=

=
V

(Obj)=

NP

likes =
N

Ann

Figure 5:

4

35

S

(Sub)=

VPNP

N

=

=

=
V

(Obj)=

NP

=
N

(PRED)=
(GEND)= FEM
(NUM)= SING

’MAGDA’

Magda (PRED)=
’LIKES<(Sub)(Obj)>’
(Sub NUM)=SING
(Sub GEND)= FEM

(PRED)=
(GEND)= FEM

’ANN’

Ann

(NUM)= SING

likes

Figure 6:

beneath VP indicates that the features of that node are shared with higher nodes, making
all functional information carried by this node also direct information about the mother’s
f-structure. (↑ SUB)= ↓) means all functional information carried by this node goes into
the subject part of the mother’s function. Thus from the sentence Magda likes Ann
the next stage of the tree will be like indicated in Figure 5.

The c-structure is complete after introducing the annotations specified by the lexical
entries for Magda likes Ann. This is achieved by consulting the lexical entry for each
lexical item in the tree for their functional schemata. Figure 6 is the annotated c-structure
for the sentence Magda likes Ann

2.3 Functional Structure (f-structure)

Functional structures are unification-based grammars and encode information about the
various functional reactions between parts of sentences. They are themselves functions
from attributes to value, where the value for an attribute can be:

• Atomic symbols eg. [NUM SING]

5

36

• Semantic form eg. [PRED ’TRUST¡(↑ S (↑ OBJ)¿]

• f-structure, eg.
 Sub

 PRED ′MAGDA′

NUM SING
GEND FEM

Graphical f-structures are represented in this paper as material enclosed in large square
brackets as in Section 3. There is a basic assumption in LFG, which states that there
is some f-structure associated with each node in the constituent structure tree. Hence
lexical information is combined with structural information available from the c-structure
tree to get the f-structure.

3 Well-formedness conditions on F-structure

The f-structure is valid according to well-formedness condition. Well-formedness condition
filter out over generation in c-structures

3.1 Functional Uniqueness

Functional uniqueness is also refered to as consistency. It ensures that each f-structure is
a function whereby each attribute has a unique value.

Example of consistent structure in the f-structure

[
NUM SING
NUM PL

] [
NUM

]

Example of an inconsistent structure in the f-structure

[
GEND FEM
GEND MAL

]

3.2 Completeness

Completeness ensures that sub-categorization requirements are met. An f-structure is not
well formed if it lacks values for grammatical functions that are sub-categorized by the
predicate. The example below lacks a value for the subject (Sub) and is therefore termed
as incomplete.

eats

3.3 Coherence

Coherence ensures that every argument is the argument of some predicate.

6

37

4 Implementation

The implementation is done in Prolog, with the use of DCG rules and Prolog terms. It
is based on ideas from the lecture notes from Pierre Nugues’ Linguistics course and [5].
The implementation of a parser for c-structure is given at Appendix A. A list of sentences
provided in Section 5 are used so as to produce an appropriate c-structure. A sentence
like I have a bag can be queried as :

?-parser(Cstructure,[i,have,a,bag])

to get the appropriate c-structure:

L = s(np([pron(i)]), vp([v(have), np([det(a), n(bag)])])) .

In Appendix B, an implemented demonstration of an LFG grammar (c-structure with
functional annotation) is given. The check for completeness and coherence in the f-
structure is not considered in the implementation. A sentence like Magdalene washed
the orange can be queried as :

?- parser(Cstucture,Fstructure,[magdalene,washed,the,orange]).

to get the c-structure and f-structure as:

Cstucture = s(np(pn(magdalene)), vp(v(washed), np(det(the), n(orange))))

Fstructure = fs(pred:wash, spec:_G600, person:third, numb:sg, tense:past,

subj:fs(pred:magdalene, spec:_G645, person:third, numb:sg, tense:_G654,

subj:_G657, obj:_G660, obj2:_G663, ajunct:_G666, pcase:_G669),

obj:fs(pred:orange, spec:the, person:third, numb:sg, tense:_G787, subj:_G790,

obj:_G793, obj2:_G796, ajunct:_G799, pcase:_G802), obj2:_G618, ajunct:_G621,

pcase:_G624)

Yes

5 Sentences

5.1 Sample sentences for program in appendix A

I have a bag.

I give the bag to Peter.

Peter sells George the bag.

I walk into an Irish pub.

7

38

I order a drink.

I like soft drinks.

I dance everyday.

I had a dance yesterday.

Jane like dates.

Jane dated George.

5.2 Sample sentences for program in appendix B

Magdalene washed a dress.

James washed an orange.

Magdalene washed the plates.

6 Conclusion

Lexical Functional Grammar (LFG) was first documented in 1982 by Joan Bresnan.[1] It
has three levels of representation,each having different formal characterization. These are
Lexical structure, Constituent structure and Functional structure. The single level of syn-
tactic representation c-structure, exits simultaneously with an f-structure representation
that integrates the information from c-structure and from lexicon.

References

[1] Bresnan J (ed) 1982. The mental representation of grammatical relations. MIT
Pree,Cambridge, Massachusetts.

[2] Kaplan, Ronald M and Bresnan J. 1982. Lexical-Functional grammar: a formal sys-
tem for grammatical representation.emph Bresnan 1982.

[3] Hopcroft, John E. J.D. Ullman. 1979. Introduction to automata theory, languages
and computation. Reading mass. Addison Wesley

[4] Kaplan R. , Ronald M, Maxwell J.T. 1993. LFG Grammar Writer’s Workbench.
Xeror Palo Alto Research Center.

[5] Clocksin W, Mellish C., Programming in Prolog.1994, Springer

[6] Pierre Nugues, 2001 lecture notes, An outline of theories, Implementations, and
applications with special consideration of English, French, and German.

8

39

Appendix A

/*--

PARSER

This is a predicate that passes a list of words to produces an

appropriate c-structure

--*/

parser(L1,L):-

s(L1,L,[]).

/*--

GRAMMAR

--*/

% Sentence

s(s(NP,VP)) --> np(NP), vp(VP).

% Prepositional Phrase

pp(pp(P,NP)) --> p(P), np(NP).

% noun phrase

np(np(NP)) --> np0(NP).

np0([Pron|NP5]) --> pronoun(Pron), np5(NP5).

np0([PropN|NP5]) --> proper_noun(PropN), np5(NP5).

np0([Det|NP1]) --> det(Det), np1(NP1).

np0([Adj|NP3]) --> adj(Adj), np3(NP3).

np0([PossP|NP1]) --> possessive_pronoun(PossP), np1(NP1).

np1([N|NP5]) --> noun(N), np5(NP5).

np1([Adj|NP2]) --> adj(Adj), np2(NP2).

np2([N|NP5]) --> noun(N), np5(NP5).

np3([PN|NP5]) --> proper_noun(PN), np5(NP5).

np5([],L,L).

9

40

%verb phrase

vp(vp(VP)) --> vp0(VP).

vp0([V|VP1]) --> verb(V), vp1(VP1).

vp1([NP|VP3]) --> np(NP), vp3(VP3).

vp1([PP|VP4]) --> pp(PP), vp4(VP4).

vp1([NP|VP2]) --> np(NP), vp2(VP2).

vp2([NP|VP3]) --> np(NP), vp3(VP3).

vp3([],L,L).

vp3([Adv|VP5]) --> adv(Adv), vp5(VP5).

vp3([PP|VP4]) --> pp(PP), vp4(VP4).

vp4([],L,L).

vp4([Adv|VP5]) --> adv(Adv), vp5(VP5).

vp5([],L,L).

adj(adj(Adj)) -->

[Adj],

{adj(Adj)}.

adv(adv(Adv)) -->

[Adv],

{adv(Adv)}.

det(det(Det)) -->

[Det],

{det(Det)}.

noun(n(N)) -->

[N],

{n(N)}.

p(prep(Prep)) -->

[Prep],

{prep(Prep)}.

possessive_pronoun(poss_pron(her)) --> [her].

10

41

pronoun(pron(Pron)) -->

[Pron],

{pron(Pron)}.

proper_noun(propn(PropN)) -->

[PropN],

{prop_n(PropN)}.

verb(v(V)) -->

[V],

{v(V)}.

% Lexicon

% Adjectives

adj(irish).

adj(soft).

% Adverbs

adv(everyday).

adv(yesterday).

% Determiners

det(a).

det(the).

det(an).

% Nouns

n(bag).

n(pub).

n(dance).

n(drink).

n(walk).

n(car).

n(competition).

% Prepositions

prep(for).

prep(in).

prep(to).

prep(into).

% Pronouns

pron(she).

pron(i).

11

42

prop_n(dates).

prop_n(drinks).

prop_n(peter).

prop_n(george).

prop_n(jane).

% Verbs

v(order).

v(dated).

v(have).

v(had).

v(give).

v(sells).

v(like).

v(likes).

v(dance).

v(walk).

Appendix B

/*--

PARSER

This is a predicate that passes a list of words to produces an

appropriate c-structure and f-structure

--*/

parser(Cstruc,Fstruc,Ins):-

s(Cstruc,Fstruc,Ins,[]).

% S --> NP, VP.

%

s(s(NP,VP),fs(pred : Pred,

spec : Spec, person : Person, numb : Numb, tense : Tense,

subj : Subj, obj : Obj, obj2 : Obj2,

ajunct : Ajunct, pcase : PCase)) -->

np(NP,Subj),

12

43

vp(VP,fs(pred : Pred,

spec : Spec, person : Person, numb : Numb, tense : Tense,

subj : Subj, obj : Obj, obj2 : Obj2,

ajunct : Ajunct, pcase : PCase)).

% Noun Phrase

% NP --> Determiner, N.

np(np(Det,N),FS) -->

det(Det,FS),

n(N,FS).

% NP --> Proper noun

np(np(PN),FS) -->

pn(PN,FS).

% Verb Phrase

% VP --> V.

vp(vp(V),fs(pred : Pred,

spec : Spec, person : Person, numb : Numb, tense : Tense,

subj : Subj, obj : Obj, obj2 : Obj2,

ajunct : Ajunct, pcase : PCase)) -->

v(V,fs(pred : Pred,

spec : Spec, person : Person, numb : Numb, tense : Tense,

subj : Subj, obj : Obj, obj2 : Obj2,

ajunct : Ajunct, pcase : PCase)).

% VP --> V, NP.

vp(vp(V,NP),fs(pred : Pred,

spec : Spec, person : Person, numb : Numb, tense : Tense,

subj : Subj, obj : Obj, obj2 : Obj2,

ajunct : Ajunct, pcase : PCase)) -->

v(V,fs(pred : Pred,

spec : Spec, person : Person, numb : Numb, tense : Tense,

subj : Subj, obj : Obj, obj2 : Obj2,

ajunct : Ajunct, pcase : PCase)),

np(NP,Obj).

% V --> V, NP, NP.

vp(vp(V,NP1,NP2),fs(pred : Pred,

spec : Spec, person : Person, numb : Numb, tense : Tense,

13

44

subj : Subj, obj : Obj, obj2 : Obj2,

ajunct : Ajunct, pcase : PCase)) -->

v(V,fs(pred : Pred,

spec : Spec, person : Person, numb : Numb, tense : Tense,

subj : Subj, obj : Obj, obj2 : Obj2,

ajunct : Ajunct, pcase : PCase)),

np(NP1,Obj),

np(NP2,Obj2).

% Lexicons

det(det(the), fs(pred : Pred,

spec: the, person : Person, numb : Numb, tense : Tense,

subj : Subj, obj : Obj, obj2 : Obj2,

ajunct : Ajunct, pcase : PCase)) --> [the].

det(det(a), fs(pred : Pred,

spec: a, person : Person, numb : sg, tense : Tense,

subj : Subj, obj : Obj, obj2 : Obj2,

ajunct : Ajunct, pcase : PCase)) --> [a].

det(det(an), fs(pred : Pred,

spec: a, person : Person, numb : sg, tense : Tense,

subj : Subj, obj : Obj, obj2 : Obj2,

ajunct : Ajunct, pcase : PCase)) --> [an].

pn(pn(magdalene), fs(pred : magdalene,

spec: Spec, person : third, numb : sg, tense : Tense,

subj : Subj, obj : Obj, obj2 : Obj2,

ajunct : Ajunct, pcase : PCase)) --> [magdalene].

pn(pn(james), fs(pred : james,

spec: Spec, person : third, numb : sg, tense : Tense,

subj : Subj, obj : Obj, obj2 : Obj2,

ajunct : Ajunct, pcase : PCase)) --> [james].

n(n(dress), fs(pred : dress,

spec: Spec, person : third, numb : sg, tense : Tense,

subj : Subj, obj : Obj, obj2 : Obj2,

ajunct : Ajunct, pcase : PCase)) --> [dress].

n(n(orange), fs(pred : orange,

spec: Spec, person : third, numb : sg, tense : Tense,

subj : Subj, obj : Obj, obj2 : Obj2,

ajunct : Ajunct, pcase : PCase)) --> [orange].

14

45

n(n(plates), fs(pred : plate,

spec: Spec, person : third, numb : pl, tense : Tense,

subj : Subj, obj : Obj, obj2 : Obj2,

ajunct : Ajunct, pcase : PCase)) --> [plates].

v(v(washed), fs(pred : wash,

spec : Spec, person : Person, numb : Numb, tense : past,

subj: fs(pred : SPred,

spec : SSpec, person : Person, numb : Numb,

tense : STense,

subj : SSubj,

obj : SOBJ, obj2 : SObj2,

ajunct : SAjunct, pcase : SPCase),

obj : Obj,

obj2 : Obj2,

ajunct : Ajunct, pcase : PCase)) --> [washed].

15

46

An Introduction to Language Processing and Computational Linguistics Page 1(9)
Project Report

Johan Natt och Dag, Dept. of Communication Systems, Lund University, johan.nattochdag@telecom.lth.se

Kerstin Lindmark, Dept. of Linguistics, Lund University, kerstin.lindmark@ling.lu.se

Selecting an Appropriate Language Base for
Automated Requirements Analysis

In companies that constantly develop new software
releases for large markets, new requirements written in
natural language continuously arrive that may affect the
current development situation. Before making any
decision about the requirements, they must be somewhat
analysed and understood and related to the current set of
implemented and waiting requirements. The task is time-
consuming due to the high inflow of requirements and any
support that may help the requirements analysts and
reduce labour would provide faster and improved
decision-support. This paper investigates the terms used
in software requirements written in natural language. The
investigated requirements come from a real industrial
setting and have been used for 5 years when developing
subsequent releases of a software application. Through
term extraction, sets of requirements from different years,
are compared to each other, to the BNC Sampler, and to
the documentation of the application. The results show
that (1) the language used in requirements may be
considered to be unique compared to general spoken and
written language, (2) the requirements and the
documentation share basically the same domain-specific
words, whereas the most used phrases differ, and (3) the
language in the requirements is fairly consistent over the
years. The results indicate that previous requirements is
the better source, compared both to general language and
documentation of the software, when building tools based
on natural language processing techniques to analyse
requirements.

1. Introduction

In software development, requirements are an important
means for meeting the needs of the customer. The
requirements may be identified and specified either before
the specific software is designed, forming a point of
departure for the software engineer, or after the software
has been tested or used for some time, thus forming a
basis for correcting and improving the software and to
meet the needs and complaints of the customer.

In traditional software development, also known as
bespoke software development, requirements are usually
negotiated and agreed upon with a known end user or
customer, before development is pursued or finished
(Sawyer, 2000). Thus, the devloping company and the

customer together identify and specify the requirements.
Further, the customer may provide feedback during
development to influence which particular requirements
should be implemented.

In market-driven software development, there is very
limited negotiation with end users and customers (Potts,
1995; Carlshamre, 2002). Rather, requirements are
invented and specified in-house. Thus, the developing
company relies on employees providing appropriate
requirements. The employees are acting as stakeholders
for different parts of the organisation. The stakeholders
include, for example, marketing department, support, and
development, that provide requirements of different kinds,
such as bug reports, suggestions for new functionality,
suggestions for improving already existing functionality,
etc.

In order not to miss any good ideas, anyone within the
organisation may submit a requirement and requirements
are collected continuously during development. The
requirements are most often written in natural language
and stored in some kind of repository or database.
Reading and classifying, i.e. analysing, the requirements
are time-consuming, tiresome tasks and the amount of
requirements thus easily becomes overflowing and
requirements analysis and manangement may therefore
entail bottlenecks in the development process.

Different attempts at performing the requirements
analysis more or less automatically have been undertaken
(Natt och Dag, Regnell, Carlshamre, Andersson, &
Karlsson, 2002, pp. 21–22). These automated techniques
could support the requirements analyst by suggesting
duplicates and groupings based on the requirements’
linguistic content. To perform a deeper linguistic analysis
of software requirements, an adequate lexicon is crucial.
The lexicon must be domain-specific and also contain
everyday vocabulary. Such a lexicons is usually
constructed manually since there is, to our knowledge, no
other way available today. This makes the techniques
rather expensive and less appealing to the software
development company. In particular, the market-driven
organisation does not interpret requirements the same way
as in customer-specific development. In the latter,
developers usually have very good domain expertise,
whereas the former more often rely on consultants and

47

An Introduction to Language Processing and Computational Linguistics Page 2(9)
Coursework #3. Dialogue

Johan Natt och Dag, Dept. of Communication Systems, Lund University, johan.nattochdag@telecom.lth.se

Kerstin Lindmark, Dept. of Linguistics, Lund University, kerstin.lindmark@ling.lu.se

brainstorming sessions (Lubars, Potts, & Richter, 1993).
Therefore, it is even more troublesome to manually
construct an appropriate domain-specific lexicon.

This paper explores the possibility of constructing a
domain-specific lexicon more or less automatically. It is
hypothesised that requirements or documentation already
available in the organisation may be used as a language
base when extracting terms for constructing an appropriate
lexicon. The properties of three possible sources for term
extraction are investigated. Firstly, the BNC Sampler,
which is a two percent sample of the full British National
Corpus representing both written and spoken language
(one million words per category). Secondly, the
documentation of a software application developed by a
market-driven software development company. Thirdly,
the requirements from the development of several releases
of the above-mentioned software application.

This paper is organised as follows: In Section 2, the
data sources used in the analysis are described. In
Section 0, the techniques used are explained, and how the
anlysis was carried out is elaborated in Section 4. In
Section 5, the raw results are presented and, finally, in
Section 6, the conclusions from the results are presented.

2. Data sources

Three data sources have been analysed and compared,
with respect to the vocabulary used:

• The BNC Sampler
The British National Corpus (Burnard, 2000) is a
100 million word corpus of modern British
English, both spoken and written. It was created in
1994 by a consortium of leading dictionary
publishers and research institutions. From the full
BNC, a two percent sample has been created and
called the BNC Sampler. The BNC Sampler
consists of one million words spoken, and one
million words written. More information is
available at http://info.ox.ac.uk/bnc.

• Software documentation
The documentation (Telelogic Tau 4.2
Documentation, 2001) is written in regular English
and should also comprise domain specific words.
The documentation used belongs to version 4.2 of
the software application and is thus rather mature.
In total, it comprises 1,069,478 words (called
tokens), of which 14,085 are unique (called types).

In Table 1 the number of words of different lengths
are shown.

Table 1. Number of words of different lengths in
the software documentation.

1-letter words 64,565

2-letter words 171,960

3-letter words 217,433

4-letter words 166,958

5-letter words 94,492

6-letter words 95,828

7-letter words 81,950

8-letter words 56,400

9-letter words 54,228

10-letter words 28,054

11-letter words 18,960

12-letter words 6,935

13-letter words 5,008

14(+)-letter words 2,825

Total 1,065,596

The totals differ when counting all words and
summing up the counts of different word lengths.
The software used (WordSmith) does not explain
this, nor has a plausible explanation been found.
Fortunately the difference is relatively small (4,118
words, which comprise a 0,36 % difference)
compared to the full set.

• Software Requirements
From the software vendor we received a database
comprising 1,932 requirements written in natural
language. The majority of the requirements are
written in English, irrespective of the authors’
mother tongue. Thus, the quality varies and in
some requirements there are also Swedish phrases.
Example requirements, with all the attributes the
company uses, can be found in Table 3a and
Table 3b.

Due to the continuous elicitation, the
requirements concern different stages of
development, such as elicitation, selection, and
construction. Thus, the requirements are analysed
to various degrees. The requirements have been
collected during five years of development, starting
in 1996. In Table 2 the number of requirements

48

An Introduction to Language Processing and Computational Linguistics Page 3(9)
Coursework #3. Dialogue

Johan Natt och Dag, Dept. of Communication Systems, Lund University, johan.nattochdag@telecom.lth.se

Kerstin Lindmark, Dept. of Linguistics, Lund University, kerstin.lindmark@ling.lu.se

Table 3a. Example requirement submitted 1996.

RqId RQ96-270

Date

Summary Storing multiple diagrams on one file

Why It must be possible to store many diagrams on

one file. SDT forces to have 1 diagram per file.

It's like forcing a C programmer to have not

more than one function per file... The problem

becomes nasty when you work in larger

projects, since adding a procedure changes the

system file (.sdt) and you end up in a mess

having to "Compare systems".

Description Allow the user to specify if a diagram should

be appended to a file, rather than forcing him

to store each diagram on a file of its own.

Dependency 4

Effort 4

Comment This requirement has also been raised within

the multiuser prestudy work,but no deeper

penetration has been made. To see all

implications of it we should have at least a one-

day gathering with people from the Organizer,

Editor and InfoServer area, maybe ITEX?

Här behövs en mindre utredning, en

"konferensdag" med förberedelser och

uppföljning. Deltagare behövs från editor- och

organizergrupperna, backend behövs ej så

länge vi har kvar PR-gränssnittet till dessa.

Reference

Customer All

Tool Don't Know

Level Slogan

Area Editors

Submitter x

Priority 3

Keywords storage, diagrams, files, multi-user

Status Classified

from each year is shown together with the number of
words they comprise.

3. Term extraction

The process of establishing a terminology for a given
domain involves not only a meticulous semantic analysis
of terms and definition writing, but also extraction of
terms from a relevant material (Suonuuti, 2001). Traditio-

Table 3b. Example requirement submitted 997. This is actually a
duplicate of the requirement in Table 3.

RqId RQ97-059

Date Wed Apr 2 11:40:20 1997

Summary A file should support storing multiple diagrams

Why ObjectGeode has it. It's a powerful feature. It

simplifies the dayly work with SDT. Easier

configuration management. Forcing one file for

each procedure is silly.

Description The SDT “Data model'' should support storing

multiple diagram on one file.

Dependency 4

Effort 1-2

Comment Prestudy needed

Reference http://info/develop/anti_og_package.htm

Customer All

Tool SDT SDL Editor

Level Slogan

Area Ergonomy

Submitter x

Priority 3: next release (3.3)

Keywords diagrams files multiple

Status Classified

Table 4. Number of requirements from the different
years and the number of words they comprise.

Year Requirements Words

1996 459 34,588

1997 714 60,944

1998 440 40,099

1999 239 20,029

2000 80 7,911

Total 1,932 163,571

nally, this is a time-consuming business, involving a lot of
manual work.

Whereas a terminologist normally spends a lot of time
reading the material and trying to figure out which words
are typical for the domain, we decided to adopt a more
mechanical appoach. In this paper, corpus lingustic
analysis methods are used to find the words and phrases
which could be considered as domain specific terms, and
also general language expressions that appear to be used
in a specific way, or simply to be over-represented.

49

An Introduction to Language Processing and Computational Linguistics Page 4(9)
Coursework #3. Dialogue

Johan Natt och Dag, Dept. of Communication Systems, Lund University, johan.nattochdag@telecom.lth.se

Kerstin Lindmark, Dept. of Linguistics, Lund University, kerstin.lindmark@ling.lu.se

Corpus lingustic analysis methods involve the
following:

• The texts to be analysed are collected into one or
several corpora.

• Appropriate software tools, such as Corpus Work
Bench, QWICK, SARA and WordSmith, are used
to produce different statistics of the corpora:
 Word frequency lists
 Keywords (comparing frequency lists)
 Concordances (contexts in which a given

word occurs)
 n-grams (strings of n words)
 Lengths and ratios of different units within

the corpora (such as sentences, paragraphs,
etc.)

In this paper, WordSmith was used to perform all the
analyses, as it provides fast and accurate tools for
processing large corpora. The statistics presented in this
paper include word frequency lists, keywords, and n-
grams. Keywords may require some explanation as these
have been used differently to measure similarity between
corpora. In WordSmith a keyword is defined as follows:

“a) it occurs in the text at least as many time as the
user has specified as a minimum frequency.

b) its frequency in the text when compared with its
frequency in a reference corpus is such that the
statistical probability as computed by an
appropriate procedure is smaller than or equal to a
p value specified by the user.”

(WordSmith Tools Help)

The “key-ness” of a word in the corpus is determined
by calculating the frequencies and the number of words in
both corpora. These are then cross-tabulated and two
statistical tests of significance are computed: a χ2 test
(Siegel & Castellan, 1988) and Ted Dunning’s Log
Likelihood test (Dunning, 1993). The latter gives a better
estimate of keyness, especially when comparing long texts
or whole genres against reference corpora. Other measures
of similarity, using word frequency lists, are discussed by
Kilgarriff (1997).

4. Analysis

From the requirements corpus a simple frequency list was
first produced. This list was compared with the frequency
list from the BNC Sampler corpus, using the Keywords
feature in the WordSmith Tools. The resulting list of 500
words, whose frequency in the requirements word list is
significantly higher than in the BNC Sampler word list,
was then scrutinised manually.

The same procedure was repeated with, in turn, the
documentation vs. the BNC Sampler list, the requirements
vs. the documentation, subsets of requirements (the
requirements from a certain year were extracted as a
subset) vs. the whole set of requirements, the subsets vs.
each other, each subset vs. a set consisting of the other
subsets, and, for each of these comparisons, a comparison
in the opposite direction, i.e. the documentation vs. the
requirements and so forth.

It is, of course, to be expected that quite a number of
the terms used in the requirements are multiwords. To
investigate this, bigrams, trigrams, and tetragrams were
extracted. This was done using Perl scripts. The amount of
multiwords yielded by simply extracting strings of two,
three or four words obviously exceeded manageable
numbers by far. To clean up, different scripts were
constructed to sort out unique occurrences, delete lines
starting by numbers, punctuation marks, parentheses and
the like. Finally, lines starting with prepositions and
conjunctions were deleted.

The number of multiwords retained is still very large,
and the next step would be part-of-speech-tagging the
corpus so that the set of term candidates can be limited to
strings containing at least one noun.

At this stage we decided to try out the n-gram finding
feature in the WordSmith Tools instead, called ”clusters”.
As a default, this function finds n-grams with a frequency
of at least two, and since this turned out to give neat,
manageable lists of apparently relevant words and phrases,
we decided to use these. The lists of bi-, tri- and
tetragrams were compared to each other with the keyword
feature in a way corresponding to what was done with the
single words.

One of the crucial questions for this investigation is
whether the terminology of the requirements is consistent
throughout the different sets, making it possible to
“predict the linguistic content” of the whole set of
requirements based on an analysis of a subset, and, even
more important, of new requirements based on an analysis
of the old ones. To investigate this, the requirement were
divded into subsets, according to year of origin. All

50

An Introduction to Language Processing and Computational Linguistics Page 5(9)
Coursework #3. Dialogue

Johan Natt och Dag, Dept. of Communication Systems, Lund University, johan.nattochdag@telecom.lth.se

Kerstin Lindmark, Dept. of Linguistics, Lund University, kerstin.lindmark@ling.lu.se

possible different combinations of subsets were analysed.
In brief, comparisons of one subset to the rest of the
requirements yield a small number of keywords; in the
case of bi-, tri-, and tetragrams even none, in quite a few
cases. The small number can be even further reduced, if
only words that could be term candidates are retained. As
for the comparison of one subset with a set consisting of
all the other sets, i.e. the set under investigation not
included itself, this yields a somewhat larger number of
keywords; approximately thirty per set.

A complete overview of all the comparisons that were
found relevant for the questions and conclusions in this
paper is found in Table 5. The relevance was decided
upon afterwards. The other comparisons made were used
to obtain an understanding of the nature of the corpora and
how they are related to each other. The complete resulting
data for the analysis can be found in an Excel workbook at
http://www.telecom.lth.se/Personal/johannod/education/cli
ng/AnalysisResults.xls.

Table 5. Overview of comparisons made between the different
corpora and subsets of the corpora.

Id Corpus under
investigation

Reference corpus

req→bnc All requirements BNC Sampler

req→doc All requirements Documentation

doc→bnc Documentation BNC Sampler

2req→2bnc Bigrams
All requirements

Bigrams
BNC Sampler

4req→4doc Tetragrams
All requirements

Tetragrams
Documentation

97→96 Requirements 1997 Requirements 1996

98→96-97 Requirements 1998 Requirements 1996-1997

99→96-98 Requirements 1999 Requirements 1996-1998

00→96-99 Requirements 2000 Requirements 1996-1999

96→Rest Requirements 1996 All requirements but 1996

97→Rest Requirements 1997 All requirements but 1997

98→Rest Requirements 1998 All requirements but 1998

99→Rest Requirements 1999 All requirements but 1999

00→Rest Requirements 2000 All requirements but 2000

Complete resulting data can be found at
http://www.telecom.lth.se/Personal/johannod/

education/cling/AnalysisResults.xls

5. Results and anlysis

Already the keywords list resulting from the comparison
of the full set of requirements and the BNC Sampler
shows some interesting features of the linguistic contents

of these texts (Table 6, left column). Among the most
significant words are not only domain-specific terms, but
overrepresented words with a high frequency in general
language, such as should, be, and is (i.e. these are not
considered terms at all. The words are boldfaced in the
table and those that are adjectives are also italicized). This
is not very surprising, considering that the requirements
are about features that are not working or features that the
requirement stakeholder wishes to have. The comparison
between the requirements and the documentation points
even clearer in the same direction, where I, should, would,
etc., are overrepresented words in the requirements
(Table 6, right column).

Table 6. Truncated keywords lists from single word
comparison between all the requirements, on the
one hand, and the BNC Sampler and the
documentation, respectively, on the other hand.

N req→bnc req→doc
1 SDL I
2 SDT SHOULD
3 SHOULD WOULD
4 SYMBOL SDT
5 FILE IT
6 MSC WE
7 EDITOR TO
8 ORGANIZER TODAY
9 USER OUR
10 DIAGRAM HAVE
11 FILES CUSTOMERS
12 SYMBOLS ITEX
13 CODE DOCUMENTATION
14 TEXT SUPPORT
15 ITEX LIKE
16 BE USER
17 MENU MINISYSTEM
18 DIAGRAMS NICE
19 SIMULATOR THINK
20 PAGE DON'T
21 DIALOG ABLE
22 TOOL MAKE
23 POSSIBLE VERY
24 TAU EASIER
25 IS BETTER

The overrepresentaion of expressions common in
general language is shown even more clearly in the
tetragram comparison (Table 7).

51

An Introduction to Language Processing and Computational Linguistics Page 6(9)
Coursework #3. Dialogue

Johan Natt och Dag, Dept. of Communication Systems, Lund University, johan.nattochdag@telecom.lth.se

Kerstin Lindmark, Dept. of Linguistics, Lund University, kerstin.lindmark@ling.lu.se

Table 7. Truncated keywords lists from tetragram
comparison between all the requirements and the
documentation.

N 4req→4bnc
1 SHOULD BE POSSIBLE TO
2 IT SHOULD BE POSSIBLE
3 TO BE ABLE TO
4 ALLOW THE USER TO
5 IT WOULD BE NICE
6 SHOULD BE ABLE TO
7 IN THE DRAWING AREA
8 THERE SHOULD BE A
9 IS NOT POSSIBLE TO
10 IN THE SDL EDITOR
11 IT IS NOT POSSIBLE
12 MAKE IT EASIER TO
13 WOULD BE NICE TO
14 DEFECT POSTPONED IN #
15 PM DEFECT POSTPONED IN
16 WANT TO BE ABLE
17 IN THE MSC EDITOR
18 THE USER WANTS TO
19 SHOULD BE EASY TO
20 THE USER HAS TO
21 TO MAKE IT EASIER
22 IT IS POSSIBLE TO
23 I WOULD LIKE TO
24 LIKE TO BE ABLE
25 END # #
26 BE POSSIBLE TO USE
27 BE NICE TO HAVE
28 WOULD LIKE TO HAVE
29 THE PROBLEM IS THAT
30 MAKE IT POSSIBLE TO

By comparing the tetragrams from the requirements to
to those in the documentation, it can be further established
that the differences are not due to the particular domain,
but rather to the type of text. The results from the
comparison is shown in Table 8.

Table 8. Truncated keywords lists from tetragram
comparison between all the requirements and the
documentation.

N 4req→4doc
1 SHOULD BE POSSIBLE TO
2 IT SHOULD BE POSSIBLE
3 TO BE ABLE TO
4 IT WOULD BE NICE
5 I WOULD LIKE TO
6 SHOULD BE ABLE TO
7 ALLOW THE USER TO
8 WOULD BE NICE TO
9 THERE SHOULD BE A
10 DEFECT POSTPONED IN #
11 WOULD LIKE TO HAVE
12 PM DEFECT POSTPONED IN
13 MAKE IT EASIER TO
14 WANT TO BE ABLE
15 TO MAKE IT EASIER

16 LIKE TO BE ABLE
17 THE PROBLEM IS THAT
18 BE NICE TO HAVE
19 END # #
20 IT WOULD BE VERY
21 WOULD LIKE TO BE
22 ID WAS # #
23 PREVIOUS ID WAS #
24 IT SHOULD BE EASY
25 WOULD BE NICE IF
26 I WANT TO BE
27 SHOULD BE EASY TO
28 USER SHOULD BE ABLE
29 THE USER WANTS TO
30 BE POSSIBLE TO USE

As for the actual domain-specific terms, these appear
rather from the mono- and bigram lists (and, although to a
lesser extent, also from the trigram lists, not shown here).
In Table 9, the results from comparing single words lists
of the requirements and the documentation, respectively,
with the BNC Sampler are shown. As shown in Table 10,
by comparing bigrams, domain-specific compound terms
may be captured, although there are many non-useful
combinations.

Table 9. Truncated keywords lists from single word
comparison between all the requirements and the
documentation, respectively, on the one hand, and
the BNC Sampler, on the other hand.

N req→bnc doc→bnc
1 SDL SDL
2 SDT TELELOGIC
3 SHOULD TAU
4 SYMBOL PAGE
5 FILE TYPE
6 MSC FILE
7 EDITOR USER'S
8 ORGANIZER TTCN
9 USER C
10 DIAGRAM MANUAL
11 FILES MARCH
12 SYMBOLS UM
13 CODE CHAPTER
14 TEXT SUITE
15 ITEX TEST
16 BE SIGNAL
17 MENU SYMBOL
18 DIAGRAMS IS
19 SIMULATOR DIAGRAM
20 PAGE MENU
21 DIALOG SYSTEM
22 TOOL PROCESS
23 POSSIBLE CODE
24 TAU NAME
25 IS COMMAND

52

An Introduction to Language Processing and Computational Linguistics Page 7(9)
Coursework #3. Dialogue

Johan Natt och Dag, Dept. of Communication Systems, Lund University, johan.nattochdag@telecom.lth.se

Kerstin Lindmark, Dept. of Linguistics, Lund University, kerstin.lindmark@ling.lu.se

Table 10. Truncated keywords lists from bigram comparison
between all the requirements and the BNC
Sampler.

N 2req→2bnc
1 SHOULD BE
2 THE USER
3 THE ORGANIZER
4 POSSIBLE TO
5 THE SDL
6 THE TEXT
7 IT SHOULD
8 BE POSSIBLE
9 THE MSC
10 THE SIMULATOR
11 IN THE
12 TO USE
13 BE ABLE
14 MACRO MINISYSTEM#
15 AN SDL
16 IS NOT
17 THE SYMBOL
18 SDL SYSTEM
19 THE EDITOR
20 ABLE TO
21 THE FILE
22 THE SDT
23 IN SDT
24 IN SDL
25 POSSIBILITY TO
26 USER TO
27 SDL EDITOR
28 CODE GENERATOR
29 THE TOOL
30 SDT #

Several questions were asked before starting out with
the analyses, of which two may now be partly answered:

1. Is there a specific language for requirements?
Yes. Firstly, the keywords list compared to the
BNC Sampler comprises many domain-specific
words (Table 6). Although this is not surprising,
the result thus validates the expected. Secondly, the
tetragram comparison (between requirements and
the BNC Sampler) shows that certain phrases are
used more often in requirements than in general
language (Table 7). Thirdly, these phrases are not
due to the domain, but, rather, to the nature of
requirements (Table 8).

2. Does the language differ or overlap between the
documentation and the requirements?
Overlap, with respect to domain-specific terms.
Differ, with respect to other lingustic features.
Comparing both the keywords lists of the

requirements and of the documentation to the BNC
Sampler shows that the same domain-specific terms
occur in both the requirements and the
documentation (Table 9). The tetragram
comparison between requirements and the
documentation has, as already discussed above,
shown that the phrases are due to the nature of
requirements. Thus, requirements differ in the use
of phrases (Table 8).

As for the question of the consistency of requirements
throughout the different sets, some relevant results are
shown in Table 11 and Table 12. Table 11 list the terms
that are significantly more and less common, respectively,
in the requirements from 1996 compared to those from
1997. Table 12 shows the corresponding results from
comparing the requirements from 1996 to those from all
the other years.

It can be seen that some terms are unique for the 1996
set (terms marked with an asterisk). However, most of
them may be disregarded as domain-specific terms. It may
be concluded from these lists that the words used in
requirements are quite consistent over the years.

A very interesting result is that the lists are relatively
short, indicating that the differences between the words
used in the requirements from 1996 and the words used
the subsequent years are limited.

Table 11. Complete list of keywords that are significantly more
common in one set or the other.

N
More common
1997 than 1996

More common 1996
than 1997

1 SYMBOL
2 CMICRO
3 PAGE
4 HMSC*
5 TEXT
6 SHOULD
7 FLOW
8 MSC
9 ENV
10 ITEX
11 SEND
12 SPEC
13 N

* No occurence 1996

53

An Introduction to Language Processing and Computational Linguistics Page 8(9)
Coursework #3. Dialogue

Johan Natt och Dag, Dept. of Communication Systems, Lund University, johan.nattochdag@telecom.lth.se

Kerstin Lindmark, Dept. of Linguistics, Lund University, kerstin.lindmark@ling.lu.se

Table 12. Complete list of keywords that are significantly more
common in one set or the others.

N

More common 1996
than other years

More common
other years
than 1996

1 MINISYSTEM*
2 MACRO
3 N
4 LNO*
5 AB
6 SPEC
7 CALLER*
8 SDL
9 SEND
10 SHALL
11 ANSWER
12 INMPOVEMENT*
13 ACTIVEX*
14 ROOT
15 SDT
16 TOOLBARS*
17 RECEIVE
18 AR*
19 THANK*
20 TIMER
21 AWARE
22 GATES
23 COMMAND
24 DEPENDENCY
25 OOA
26 SIMUI
27 TELELOGIC
28 H
29 FILES
30 TEXT
31 PAGE
32 TAU
33 SYMBOL

* No occurence other years

6. Conclusions

In this paper we have investigated the possibility of
constructing a domain-specific lexicon more or less
automatically. Based on the analysis in Section 5, it may
be concluded that this is possible if using the appropriate
language source. Three language sources were compared,
software requirements, software documentation, and the
BNC Sampler. It was found that:

1. The language used in requirements may be
considered to be unique compared to general spoken
and written language.

2. The requirements and the documentation share
basically the same domain-specific words, whereas
the most used phrases differ.

3. The language in the requirements is fairly consistent
over the years.

Thus, it may be concluded that:

1. The most appropriate language base for
automatically constructing a lexicon would primarily
be existing requirements.

2. An initial subset of requirements may be adequate to
cover the language used when specifying
requirements.

Further investigation on how the lexicon may be
constructed is now of great interest. It is suggested that
this may be aided by automated taggers, enabling a
classification of terms and further automated, yet relevant,
term extraction.

7. References

Carlshamre, P. (2002). A Usability Perspective on Requirements

Engineering – From Methodology to Product Development

(Dissertation No. 726). Linköping: Linköping University,

Linköping Studies in Science and Technology.

Burnard, L. (Ed.) (2000). The British National Corpus Users

Reference Guide. Oxford: Oxford University Computing

Services, British National Corpus.

Dunning, T. (1993). Accurate Methods for the Satistics of

Surprise and Coincidence. Computational Linguistics, 19,

61–74.

Kilgarriff, A. & Salkie, R. (1997). Using Word Frequency Lists

to Measure Corpus Homogeneity and Similarity between

Corpora. In Proceedings of the Fifth ACL Workshop on Very

Large Corpora. New Brunswick, NJ: Association for

Computational Lingustics.

Lubars, M., Potts, C., & Richter, C. (1993). A review of the state

of the practice in requirements modelling. In Proceedings of

IEEE International Symposium on Requirements

Engineering (pp. 2–14). Los Alamitos, CA: IEEE Computer

Society Press.

Natt och Dag, J., Regnell, B., Carlshamre, P., Andersson, M., &

Karlsson, J. (2002). A feasibility study of automated natural

54

An Introduction to Language Processing and Computational Linguistics Page 9(9)
Coursework #3. Dialogue

Johan Natt och Dag, Dept. of Communication Systems, Lund University, johan.nattochdag@telecom.lth.se

Kerstin Lindmark, Dept. of Linguistics, Lund University, kerstin.lindmark@ling.lu.se

language requirements analysis in market-driven

development. Requirements Engineering, 7, 20–33 .

Potts, C. (1995). Invented Requirements and Imagined

Customers: Requirements Engineering for Off-the-Shelf

Software. In Proceedings of the Second IEEE International

Symposium on Requirements Engineering (pp. 128–130).

Los Alamitos, CA: IEEE Computer Society Press.

Sawyer, P. (2000). Packaged Software: Challenges for RE. In

Proceedings of Sixth International Workshop on

Requirements Engineering: Foundation for Software Quality

(pp. 137–142). Essen, Germany: Essener Informatik Beiträge.

Siegel, S., & Castellan, N. J (1988). Nonparametric Statistics

for the Behavioral Sciences (2nd ed.). New York: McGraw-

Hill.

Suonuuti, H. (2001). Guide to Terminology (2nd ed.). Helsinki,

Finland: Tekniikan sanastokeskus.

Telelogic Tau 4.2 Documentation (2001). Malmö, Sweden:

Telelogic AB.

55

A Prototype Robot Speech Interface with Multimodal Feedback

Mathias Haage+, Susanne Schötz×, Pierre Nugues+

+Dept. of Computer Science, Lund Institute of Technology,

SE-221 00 Lund, Sweden;

E-mail: Mathias.Haage@cs.lth.se, Pierre.Nugues@cs.lth.se

×Dept. of Linguistics, Lund University,

SE-221 00 Lund, Sweden;

E-mail: Susanne.Schotz@ling.lu.se

Abstract
Speech recognition is available on ordinary personal

computers and is starting to appear in standard soft-
ware applications. A known problem with speech in-
terfaces is their integration into current graphical user
interfaces. This paper reports on a prototype developed
for studying integration of speech into graphical inter-
faces aimed towards programming of industrial robot
arms. The aim of the prototype is to develop a speech
system for designing robot trajectories that would fit
well with current CAD paradigms.

1 Introduction
Industrial robot programming interfaces provide a
challenging experimental context for researching in-
tegration issues on speech and graphical interfaces.
Most programming issues are inherently abstract and
therefore difficult to visualize and discuss, but robot
programming revolves around the task of making a
robot move in a desired manner. It is easy to visualize
and discuss task accomplishments in terms of robot
movements. At the same time robot programming is
quite complex, requiring large feature-rich user inter-
faces to design a program, implying a high learning
threshold and specialist competence. This is the kind
of interface that would probably benefit the most from
a multimodal approach.
This paper reports on a prototype speech user inter-

face developed for studying multimodal user interfaces
in the context of industrial robot programming [5].
The prototype is restricted to manipulator-oriented
robot programming. It tries to enhance a dialogue,
or a design tool, in a larger programming tool. This
approach has several advantages:

• The speech vocabulary can be quite limited be-

cause the interface is concerned with a specific
task.

• A complete system decoupled from existing pro-
gramming tools may be developed to allow precise
experiment control.

• It is feasible to integrate the system into an exist-
ing tool in order to test it in a live environment.

The aim of the prototype is to develop a speech system
for designing robot trajectories that would fit well with
current CAD paradigms. The prototype could later be
integrated into CAD software as a plug-in.
Further motivation lies in the fact that current

available speech interfaces seem to be capable of han-
dling small vocabularies efficiently, with performance
gradually decreasing as the size of the vocabulary in-
creases. This makes it interesting to examine the
impact of small domain-specific speech interfaces on
larger user interface designs, perhaps having several
different domains and collecting them in user inter-
face dialogues.
The purpose of the prototype is to provide an ex-

perimental platform for investigating the usefulness of
speech in robot programming tools. The high learning
threshold and complexity of available programming
tools makes it important to find means to increase
usability. Speech offers a promising approach.
The paper is organized as follows: speech, multi-

modal interfaces, and robot programming tools are
briefly recapitulated. Then, the prototype is described
giving the design rationale, the system architecture,
the different system parts, and a description of an ex-
ample dialogue design. The paper concludes with a
discussion of ongoing experiments and future enhance-
ments to the prototype.

0-7803-7545-9/02/$17.00 ©2002 IEEE 247

 Proceedings of the 2002 IEEE
Int. Workshop on Robot and Human Interactive Communication

Berlin, Germany, Sept. 25-27, 2002

Figure 1: SAPI 5.1 speech interface application front
end with a list of available command words.

2 Speech, multimodal interfaces and
robot programming tools

2.1 Speech recognition and synthesis
Speech software has two goals: trying to recognize
words and sentences from voice or trying to synthesize
voice from words and sentences. Most user interfaces
involving speech need to both recognize spoken ut-
terances and synthesize voice. Recognized words can
be used directly for command & control, data entry,
or document preparation. They can also serve as the
input to natural language processing and dialogue sys-
tems. Voice synthesis provides feedback to the user.
An example is the Swedish Automobile Registry ser-
vice providing a telephone speech interface with recog-
nition and synthesis allowing a user to query about a
car owner knowing the car registration plate number.
A problem with speech interfaces is erroneous inter-

pretations that must be dealt with [8]. One approach
to deal with it is to use other modalities for fallback
or early fault detection.

2.2 Multimodal user interfaces
A multimodal user interface makes use of several
modalities in the same user interface. For instance,
it is common to provide auditory feedback on oper-
ations in graphical user interfaces by playing small
sounds marking important stages, such as the finish
of a lenghty compilation in the Microsoft Visual C++
application. Rosenfeld gives an overview in [7].
Different modalities should complement each other

in order to enhance the usability of the inter-
face. Many graphical interfaces, including robot pro-

Figure 2: The SAPI 5.1 sample TTS application mod-
ified for use by the prototype system.

gramming interfaces, are of the direct-manipulation
type. Speech should therefore complement direct-
manipulation interfaces [2]. Grasso [4] lists comple-
mentary strengths and weaknesses related to direct-
manipulation and speech interfaces:

• Direct manipulation requires user interaction. It
relies on direct engagement and simple actions.

• The graphical language used in direct manipula-
tion interfaces demands consistent look and feel
and no reference ambiguity to be usable. This
makes it best suited for simple actions using vis-
ible and limited references.

• Speech interface is a passive form of communica-
tion. The medium allows for describing and ex-
ecuting complex actions using invisible and mul-
tiple references. It does not require use of eyes
and hands making it suitable for hand-eye free
operations.

Put in other words: speech might be used to avoid sit-
uations where you know exactly what you want to do
but do not have a clue as where to find it in the graph-
ical user interface. It may also help to avoid situations
when you are able to describe an operation but do not
know how it is expressed in the user interface.
2.3 Industrial robot programming inter-

faces
Essentially all robot programming boils down to the
question of how to place a known point on the robot at
a wanted position and orientation in space at a certain
point in time.

 248

For industrial robot arms, the known point is often
referred to as the tool center point (TCP), which is
the point where tools are attached to the robot. For
instance, a robot arm might hold an arc-welding tool
to join work pieces together through welding. Most
robot programming tasks deal with the specification
of paths for such trajectories [3].
Below is discussed how modeling of trajectories is

performed in three different tool categories for pro-
gramming industrial robots.

Teach pendant

A single robot operated by a person on the factory
floor is normally programmed using a handheld ter-
minal. The terminal is a quite versatile device. For
instance, the ABB handheld terminal offers full pro-
grammability of the robot. The terminal has a joystick
for manual control of the robot. Function buttons or
pull-down menus in the terminal window give access
to other features. Program editing is performed in
a syntax-based editor using the same interface as for
manual operation, i.e. all instructions and attributes
are selected in menus. Special application support can
be defined in a way uniform to the standard interface.
Trajectories are designed by either jogging the

robot to desired positions and record them or by pro-
gramming the robot in a programming language. For
ABB robots the programming language used is called
RAPID [1].

Off-line programming and simulation tools

In engineering environments, programming is typically
performed using an off-line programming tool. An ex-
ample is the Envision off-line programming and simu-
lation tool available from Delmia. These tools usually
contain: An integrated development environment. A
simulation environment for running robot programs.
A virtual world for visualizing running simulations and
being used as a direct manipulation interface for spec-
ifying trajectories.
Trajectories are designed by programming them in

a domain-specific language or by directly specifying
points along the trajectory. The simulation environ-
ment provides extensive error checking capabilities.

CAD and task level programming tools

Task level programming tools typically auto-generate
robot programs given CAD data and a specific task,
for instance to weld ship sections. The software works
by importing CAD data and automatically calculate

IDE Visualization Programming
Teach pendant Real env. Jogging & lang.
Off-line tool Virtual env. Lang. & sim.
Task-level tool Virtual env. CAD data

Table 1: Visualization and programming in different
categories of robot programming tools.

Figure 3: Virtual ABB IRB 2000 industrial robot
arm with 6 degrees of freedom (developed in coopera-
tion with Tomas Olsson, Dept. of Automatic Control,
Lund University, email: tomas.olsson@control.lth.se).

necessary weld trajectories, assign weld tasks to robots
and generate programs for these robots. These tools
are typically used for programming large-scale manu-
facturing systems.

3 Prototype
Two observations can be made concerning the user in-
terfaces in the above programming environments: The
typical task performed by all IDEs (Integrated Devel-
opment Environment) is to model task specific robot
trajectories, which is done with more or less automa-
tion, depending on tool category. The user interface
consists of a visualization and a programming part,
see Table 1.
The prototype presented here is a user interface

where speech has been chosen to be the primary in-
teraction modality but is used in the presence of sev-
eral feedback modalities. Available feedback modali-
ties are text, speech synthesis and 3D graphics.

 249

Figure 4: XEmacs is used as trajectory editor and
database.

The prototype system utilizes the speech recogni-
tion available in the Microsoft Speech API 5.1 software
development kit. The SAPI can work in two modes:
command mode recognizing limited vocabularies and
dictation mode recognizing a large set of words and us-
ing statistical word phrase corrections. The prototype
uses the command mode. It is thus able to recognize
isolated words or short phrases [6].

The system architecture uses several applications
(see Figures 1, 2, 3, 4): The Automated Speech Recog-
nition application, which uses SAPI 5.1 to recognize
a limited domain of spoken user commands. Visual
feedback is provided in the Voice Panel window with
available voice commands. The Action Logic applica-
tion, which controls the user interface system data-
flow and is the heart of the prototype. The Text-
To-Speech application synthesizing user voice feed-
back. The XEmacs application acting as a database of
RAPID commands and also allowing keyboard editing
of RAPID programs. The 3D Robot application pro-
viding a visualization of the robot equipment.

A decision was made to not use any existing CAD
programming system in the prototype. The reasons
were twofold: extending an existing system would
limit the interaction into what the system allowed,
making it difficult to easily adjust parameters like the
appearance of the 3D world and the behavior of the
editor. The second reason is that by not including a
commercial programming system it is possible to re-
lease this prototype into the open source community
as a complete system.

Figure 5: Prototype system dataflow.

3.1 System architecture
The prototype system architecture follows a tradi-
tional client-server approach. The action logic applica-
tion acts as a server with all other applications acting
as clients. Interprocess communication is performed
using Microsoft Win32 named pipes and sockets.
The system dataflow is centered around the speech

applications since it is the primary modality of the
system. Basically information flows from the speech
TTS to speech synthesis application through the ac-
tion logic application. The action logic application
then interacts with the other applications (XEmacs,
3D robot) in order to update the state and different
views supported in the interface (Figure 5).
3.2 Prototype applications
Action Logic

The action logic application is the heart of the system.
All information goes through this application. The
logic controlling the interface is hidden here.
The basic work flow of the application is:

1. Receive spoken commands from the speech recog-
nition application.

2. Interpret the commands and act accordingly:
Send Lisp editing commands to the XEmacs edi-
tor that is storing the trajectory as a sequence of
RAPID MoveL (Move Linear) commands. Read
trajectory stored in XEmacs and send it to the 3D

 250

application for execution and visualization. Send
feedback to be spoken to the speech synthesis ap-
plication.

Microsoft SAPI 5.1 speech recognition and syn-
thesis

The speech recognition and synthesis applications are
based on the Microsoft Speech API version 5.1. Each
application is built by utilizing an example application
delivered together with the SDK and modifying it for
our purposes. The example applications used for the
prototype are CoffeeS0 and TTSApp.
The modifications necessary were quite small. They

included: Adding communication capabilities to the
applications so that they could send and receive in-
formation from the action logic application. This was
done by adding a new communication thread to the
application. Modifying the application window mes-
sage handler to issue and receive speech messages from
the new communication code. Changing the user in-
terface to show our domain-specific vocabulary. And
finally tune the speech recognition application to our
vocabulary. This was done by rewriting the default
XML grammar read into the speech recognition appli-
cation upon initialization.

XEmacs RAPID trajectory editing and
database

XEmacs is utilized as a combined database, editing
and text visualization tool. The trajectory being
edited is stored in an XEmacs buffer in the form of
a sequence of RAPID MoveL commands:

MoveL ToPoint := [940,0,1465,0.707,0,0.707,0],
Speed := v50, Zone := z50, Tool := gripper1

MoveL ToPoint := [980,80,1495,0.707,0,0.707,0],
Speed := v50, Zone := z50, Tool := gripper1

The trajectory code is visualized in text form in the
XEmacs buffer window. It may be edited using normal
XEmacs commands. Thus the interface, even if devel-
oped with speech in focus, allows alternate interaction
forms.
The interaction between XEmacs and the action

logic application is done using LISP, see Table 2.
The action logic application phrases database in-
sertion/removal/modification commands of trajectory
parts as buffer editing commands. These are executed
as batch jobs on the XEmacs editor using the gnuserv
and gnuclient package.

Spoken command Emacs LISP
Add point (kill-new ”MoveL...”), (yank)
Remove point (kill-entire-line)
Move forward (forward-line 1)
Move backward (forward-line -1)

Table 2: Sample LISP editing command sent to the
Emacs RAPID database in response to spoken com-
mands.

Virtual environment

The prototype needed a replacement for the 3D vi-
sualization usually shipped with robot programming
applications to be realistic. A small 3D viewer previ-
ously developed was taken and enhanced with inter-
pretation and simulation capabilities for a small subset
of the RAPID language.
The tool is capable of acting as a player of trajecto-

ries stored in the XEmacs database. Player commands
(play, reverse, stop, pause) is controlled from the ac-
tion logic application.
3.3 Dialogue design
A preliminary experiment based onWizard-of-Oz data
obtained from the authors has been implemented.
The basic idea of this interface is to view trajectory

modeling as editing a movie. It is possible to play the
trajectory on the 3D visualizer, insert new trajectory
segments at the current point on the trajectory, re-
move trajectory segments, and moving along the tra-
jectory backward and forward using different speeds.
All editing is controlled using spoken commands,

see Table 3. The user gets feedback in the form of a
synthesized voice repeating the last issued command,
seeing the trajectory in text form in the XEmacs buffer
window and seeing the trajectory being executed in
the 3D window. The command is always repeated by
a synthesized voice in order to detect erroneous inter-
pretations immediately. At some points (for critical
operations like removal of trajectory segments), the
interface asks the user if he/she wants to complete the
operation.

4 Ongoing experiments and future
work

The prototype will be used to explore the design space
of speech interfaces with multimodal feedback. Below
follows a few issues that would be interesting to gather
data on:

• Varying the degree of voice feedback, as well as
the type of information conveyed.

 251

Figure 6: The prototype system user interface con-
sists of four windows; 1. The voice panel containing
lists of available voice commands. 2. The XEmacs
editor containing the RAPID program statements. 3.
The 3D visualization showing the current state of the
hardware. 4. The TTS application showing the spo-
ken text.

• Varying between different kinds of visual feed-
back.

• Varying the command vocabulary and interface
functionality. For instance by allowing some task
level abstractions in movement specifications, i.e.
move to object, grab object.

For the future, there is a list of wanted extensions:

• Allow multiple domains in the speech recognition
application, with the option of choosing which one
to be applied from the action logic application.
This feature could be used to test speech inter-
faces with state.

• Allow the entire experiment interface configura-
tion to be specified in XML. Remove all hacking
necessary to tune the interface. This would also
speed up development since it would be easy to
switch between different configurations.

5 Conclusion
We have developed a speech interface to edit robot
trajectories. An architecture based on reusable appli-
cation modules was proposed and implemented.
The work is aimed at studying feasability and use-

fulness of adding a speech component to existing soft-
ware for programming robots. Initial feedback from

Spoken commands Purpose
Forward, backward, left, right, Jog robot
up, down
Play, stop, step forward, step Play trajectory
backward, faster, slower
Mark, add point, move point, Edit trajectory
erase point
Yes, no User response
Undo Undo

Table 3: Vocabulary used in the prototype.

users of the interface are encouraging. The users, in-
cluding the authors, almost immediately wanted to
raise the abstraction level of the interface by refer-
ring to objects in the surrounding virtual environment.
This suggests that a future interface enhancement in
such direction could be fruitful.

References
[1] ABB Flexible Automation, S-72168 Väster̊as,

Sweden. RAPID Reference Manual. Art. No.
3HAC 7783-1.

[2] Cohen, Philip R. The Role of Natural Language in
a Multimodal Interface. UIST’92 Conference Pro-
ceedings. Monterey, California. p. 143-149. 1992.

[3] Craig, John J. Introduction to Robotics. Addison-
Wesley Publishing Company. Reading, Mas-
sachusetts. 1989.

[4] Grasso, Michael A, Ebert, David S, Finin, Timo-
thy W. The Integrality of Speech in Multimodal
Interfaces. ACM Transactions on Computer-
Human Intraction, Vol 5, No 4. p. 303-325. 1998.

[5] Prototype homepage, http://www.cs.lth.se/
~mathias/speech/.

[6] Microsoft Speech Technologies, http://www.
microsoft.com/speech/.

[7] Rosenfeld, Ronald, Olsen, Dan, Rudnicky, Alex.
Universal Speech Interfaces. Interactions Novem-
ber + December. p. 34-44. 2001.

[8] Suhm, B., Myers, B., Waibel, A. Multimodal Er-
ror Correction for Speech User Interfaces. ACM
Transactions on Computer-Human Interaction,
Vol. 8, No. 1. p. 60-98. 2001.

 252

Institutionen för Datavetenskap

http://www.cs.lth.se

Pr
od

uk
tio

n:
 J

on
as

 W
is

br
an

t
•

20
04

	ana_flavius.pdf
	ana_flavius.pdf
	Document Classification for Computer Science Related Articles
	May 15, 2002
	1. Introduction
	2. Categorization Model
	a) Naïve Bayes probabilistic classifier
	b) Canonical form of the document
	c) Bayesian Estimation with Uniform Prior
	d) The system

	3. Results and Discussion
	a) Experimental set-up
	b) Evaluation Measures
	c) Unbalanced Corpora.

	References

	roman2002.pdf
	Copyright
	Foreword
	Table of Contents
	Author Index
	Sponsors
	Committees
	Cover

