
Lexical Functional Grammar: Analysis and
Implementation

Magdalene Grantson

Department of Computer Science

Lund University, Box 118, 221 00 Lund, Sweden

May 16, 2002

Abstract
Lexical Functional Grammar LFG is a theory of grammar e.i. in general a

theory of syntax, morphology, and semantics. It postulates two levels of syntactic
representation of a sentence, a constituent structure (c-structure) and functional
structure (f-structure). LFG formalism provides a simple set of devices for describing
the common properties of all human Languages and the particular properties of
Individual Languages. In this paper, I will describe the basic concepts underlining
Lexical Functional Grammar and will implement:

• a parser for the c-structure.

• a parser for the c-structure with functional annotations

All implementations will be done in Prolog (with the use of DCF rules and list)

1 Introduction

The formalism of Lexical Functional Grammar was first introduced in 1982 by Kaplan
and Bresnan after many years of research in this area. It has since been applied widely
to analyse linguistics phenomena. This theory of grammar assigns two levels of syntactic
representation to a sentence, the constituent structure (c-structure) and functional struc-
ture (f-structure). The c-structure have the form of context-free phrase structure trees.
It serves as the basis for phonological interpretation while the f-structure are sets of pairs
of attributes and values. Attributes may be features, such as tense and gender, or func-
tions, such as subject and object. The f-structure actually encodes linguistic information
about the various functional reactions between parts of a sentence. Many phenomena are
thought to be more naturally analysed in terms of grammatical functions as represented
in the lexicon or in f-structure, rather than on the level of phrase structure. For example,
the alternation in the syntactic position in which the logical object (theme argument)
appears in corresponding active passive sentences has been viewed by many linguists as
fundamentally syntactic in nature and treated as transformations is handled by LFG as
Lexicon. Grammatical functions are not derived from phrase structure configurations,
but are represented at the parallel level of functional structure. C-structure varies across
languages, however f-structure representation, which contains all necessary information
for semantic interpretation of an utterance, is said to be universal.

1

2 Structural Representation in LFG

There are different kinds of information dependencies constituting parts of a sentence, thus
giving rise to different formal structures. LFG is basically made up of lexical structure,
functional structure and constituent structure. There are also notational conventions of
LFG that a person is likely to encounter in a grammar written in LFG. The rules of
LFG contain expressions known as FUNCTIONAL SCHEMATA which are symbols that
appear at the right of the −− > arrow. The Figure 1 below shows a format for writing
rules in LFG. Examples of such a format with further explanations of the arrows will be
given in the next subsections.

sub)=
S --> NP VP

=

Left hand side:
The mother node

List of functional schemata

The arrows are variables where and are known as metavariables.

 (

Right hand side: The daughter nodes

Figure 1:

2.1 Lexical structure

Lexical structures comprise information about the meaning of the lexical item, its ar-
gument structure and grammatical functions such as subject, object, etc. associated to
their appropriate argument. The verb talk for instance, has a predicate argument struc-
ture which is made up of an agentive argument associated with the subject and a theme
argument associated with the object function.

(Sub) (Obj) ----> Lexical assignment of grammatical function

talk agent theme ----> predicate argument structure

Figure 2:

Lexical items have functional schemata in LFG. Grammatical functions are associated
with lexical items and syntactic positions by mean of annotated phrase structure rule.

2

They mediate between lexical and constituent structure representations. Grammatical
functions are considered as an interface between lexicon and syntax. Below are examples
of schematised formats of LFG LEXICAL ITEMS. The name Magdalene, for example,
comes with the grammatical information such as gender.

Magdalene N (PRED) = ’{ meaning of ’Magdalene’}’

(NUM) = SING
(GEND) = FEM

Representation
 of item syntactic category

 List of functional schemata

Figure 3:

A lexical rule takes a lexical item as input and returns a new lexical item. It is defines
over a whole class of lexical items.

2.2 Constituent structure (c-structure)

The c-structure encodes hierarchical grouping and linear order. That is; it indicates the hi-
erarchical structure of phrasal constituents in the string in a way familiar to most linguists.
Functional annotations is functional schemata transfered into tree and is interpreted as
deriving information about the functional structure.

In creating c-structures, all we need is context-free phrase-structure rules, phrase struc-
ture trees and the insertion of functional schemata. Language specific annotation of
phrase-structure rules helps to identify the grammatical functions that occur in specific
syntactic positions. Below is a set of phrase structure rules:

S --> NP VP

NP --> (Determiner) N (PP)

PP --> preposition NP

VP --> V (NP) (NP) PP

If we consider the sentence Magda likes Ann; we first of all consider the syntactic
rules of this sentence, then we construct a tree with annotations prescribing the rules.
Figure 4 shows a relation between rules and annotations in the tree.

The arrow ↑ Refers to the f-structure (see next subsection) of the mother node. It is
instantiated (Instantiation transforms the schemata into functional equation) by the node
immediately dominating the constituent under which the arrow is placed. The arrow ↓
refers to the f-structure of the current node. Thus from the rule S −− >NP VP, the
equation states that NP is the subject (Sub) of S that dominates it. The ↑ = ↓ equation

3

S --> NP VP
(Sub)=

S

(Sub)=
NP VP

= =

Figure 4: Relation between rules and annotations in the tree

S

(Sub)=

VPNP

N

Magda

=

=

=
V

(Obj)=

NP

likes =
N

Ann

Figure 5:

4

S

(Sub)=

VPNP

N

=

=

=
V

(Obj)=

NP

=
N

(PRED)=
(GEND)= FEM
(NUM)= SING

’MAGDA’

Magda (PRED)=
’LIKES<(Sub)(Obj)>’
(Sub NUM)=SING
(Sub GEND)= FEM

(PRED)=
(GEND)= FEM

’ANN’

Ann

(NUM)= SING

likes

Figure 6:

beneath VP indicates that the features of that node are shared with higher nodes, making
all functional information carried by this node also direct information about the mother’s
f-structure. (↑ SUB)= ↓) means all functional information carried by this node goes into
the subject part of the mother’s function. Thus from the sentence Magda likes Ann
the next stage of the tree will be like indicated in Figure 5.

The c-structure is complete after introducing the annotations specified by the lexical
entries for Magda likes Ann. This is achieved by consulting the lexical entry for each
lexical item in the tree for their functional schemata. Figure 6 is the annotated c-structure
for the sentence Magda likes Ann

2.3 Functional Structure (f-structure)

Functional structures are unification-based grammars and encode information about the
various functional reactions between parts of sentences. They are themselves functions
from attributes to value, where the value for an attribute can be:

• Atomic symbols eg. [NUM SING]

5

• Semantic form eg. [PRED ’TRUST¡(↑ S (↑ OBJ)¿]

• f-structure, eg. 
 Sub


 PRED ′MAGDA′

NUM SING
GEND FEM







Graphical f-structures are represented in this paper as material enclosed in large square
brackets as in Section 3. There is a basic assumption in LFG, which states that there
is some f-structure associated with each node in the constituent structure tree. Hence
lexical information is combined with structural information available from the c-structure
tree to get the f-structure.

3 Well-formedness conditions on F-structure

The f-structure is valid according to well-formedness condition. Well-formedness condition
filter out over generation in c-structures

3.1 Functional Uniqueness

Functional uniqueness is also refered to as consistency. It ensures that each f-structure is
a function whereby each attribute has a unique value.

Example of consistent structure in the f-structure

[
NUM SING
NUM PL

] [
NUM

]

Example of an inconsistent structure in the f-structure

[
GEND FEM
GEND MAL

]

3.2 Completeness

Completeness ensures that sub-categorization requirements are met. An f-structure is not
well formed if it lacks values for grammatical functions that are sub-categorized by the
predicate. The example below lacks a value for the subject (Sub) and is therefore termed
as incomplete.

eats

3.3 Coherence

Coherence ensures that every argument is the argument of some predicate.

6

4 Implementation

The implementation is done in Prolog, with the use of DCG rules and Prolog terms. It
is based on ideas from the lecture notes from Pierre Nugues’ Linguistics course and [5].
The implementation of a parser for c-structure is given at Appendix A. A list of sentences
provided in Section 5 are used so as to produce an appropriate c-structure. A sentence
like I have a bag can be queried as :

?-parser(Cstructure,[i,have,a,bag])

to get the appropriate c-structure:

L = s(np([pron(i)]), vp([v(have), np([det(a), n(bag)])])) .

In Appendix B, an implemented demonstration of an LFG grammar (c-structure with
functional annotation) is given. The check for completeness and coherence in the f-
structure is not considered in the implementation. A sentence like Magdalene washed
the orange can be queried as :

?- parser(Cstucture,Fstructure,[magdalene,washed,the,orange]).

to get the c-structure and f-structure as:

Cstucture = s(np(pn(magdalene)), vp(v(washed), np(det(the), n(orange))))

Fstructure = fs(pred:wash, spec:_G600, person:third, numb:sg, tense:past,

subj:fs(pred:magdalene, spec:_G645, person:third, numb:sg, tense:_G654,

subj:_G657, obj:_G660, obj2:_G663, ajunct:_G666, pcase:_G669),

obj:fs(pred:orange, spec:the, person:third, numb:sg, tense:_G787, subj:_G790,

obj:_G793, obj2:_G796, ajunct:_G799, pcase:_G802), obj2:_G618, ajunct:_G621,

pcase:_G624)

Yes

5 Sentences

5.1 Sample sentences for program in appendix A

I have a bag.

I give the bag to Peter.

Peter sells George the bag.

I walk into an Irish pub.

7

I order a drink.

I like soft drinks.

I dance everyday.

I had a dance yesterday.

Jane like dates.

Jane dated George.

5.2 Sample sentences for program in appendix B

Magdalene washed a dress.

James washed an orange.

Magdalene washed the plates.

6 Conclusion

Lexical Functional Grammar (LFG) was first documented in 1982 by Joan Bresnan.[1] It
has three levels of representation,each having different formal characterization. These are
Lexical structure, Constituent structure and Functional structure. The single level of syn-
tactic representation c-structure, exits simultaneously with an f-structure representation
that integrates the information from c-structure and from lexicon.

References

[1] Bresnan J (ed) 1982. The mental representation of grammatical relations. MIT
Pree,Cambridge, Massachusetts.

[2] Kaplan, Ronald M and Bresnan J. 1982. Lexical-Functional grammar: a formal sys-
tem for grammatical representation.emph Bresnan 1982.

[3] Hopcroft, John E. J.D. Ullman. 1979. Introduction to automata theory, languages
and computation. Reading mass. Addison Wesley

[4] Kaplan R. , Ronald M, Maxwell J.T. 1993. LFG Grammar Writer’s Workbench.
Xeror Palo Alto Research Center.

[5] Clocksin W, Mellish C., Programming in Prolog.1994, Springer

[6] Pierre Nugues, 2001 lecture notes, An outline of theories, Implementations, and
applications with special consideration of English, French, and German.

8

Appendix A

/*--

PARSER

This is a predicate that passes a list of words to produces an

appropriate c-structure

--*/

parser(L1,L):-

s(L1,L,[]).

/*--

GRAMMAR

--*/

% Sentence

s(s(NP,VP)) --> np(NP), vp(VP).

% Prepositional Phrase

pp(pp(P,NP)) --> p(P), np(NP).

% noun phrase

np(np(NP)) --> np0(NP).

np0([Pron|NP5]) --> pronoun(Pron), np5(NP5).

np0([PropN|NP5]) --> proper_noun(PropN), np5(NP5).

np0([Det|NP1]) --> det(Det), np1(NP1).

np0([Adj|NP3]) --> adj(Adj), np3(NP3).

np0([PossP|NP1]) --> possessive_pronoun(PossP), np1(NP1).

np1([N|NP5]) --> noun(N), np5(NP5).

np1([Adj|NP2]) --> adj(Adj), np2(NP2).

np2([N|NP5]) --> noun(N), np5(NP5).

np3([PN|NP5]) --> proper_noun(PN), np5(NP5).

np5([],L,L).

9

%verb phrase

vp(vp(VP)) --> vp0(VP).

vp0([V|VP1]) --> verb(V), vp1(VP1).

vp1([NP|VP3]) --> np(NP), vp3(VP3).

vp1([PP|VP4]) --> pp(PP), vp4(VP4).

vp1([NP|VP2]) --> np(NP), vp2(VP2).

vp2([NP|VP3]) --> np(NP), vp3(VP3).

vp3([],L,L).

vp3([Adv|VP5]) --> adv(Adv), vp5(VP5).

vp3([PP|VP4]) --> pp(PP), vp4(VP4).

vp4([],L,L).

vp4([Adv|VP5]) --> adv(Adv), vp5(VP5).

vp5([],L,L).

adj(adj(Adj)) -->

[Adj],

{adj(Adj)}.

adv(adv(Adv)) -->

[Adv],

{adv(Adv)}.

det(det(Det)) -->

[Det],

{det(Det)}.

noun(n(N)) -->

[N],

{n(N)}.

p(prep(Prep)) -->

[Prep],

{prep(Prep)}.

possessive_pronoun(poss_pron(her)) --> [her].

10

pronoun(pron(Pron)) -->

[Pron],

{pron(Pron)}.

proper_noun(propn(PropN)) -->

[PropN],

{prop_n(PropN)}.

verb(v(V)) -->

[V],

{v(V)}.

% Lexicon

% Adjectives

adj(irish).

adj(soft).

% Adverbs

adv(everyday).

adv(yesterday).

% Determiners

det(a).

det(the).

det(an).

% Nouns

n(bag).

n(pub).

n(dance).

n(drink).

n(walk).

n(car).

n(competition).

% Prepositions

prep(for).

prep(in).

prep(to).

prep(into).

% Pronouns

pron(she).

pron(i).

11

prop_n(dates).

prop_n(drinks).

prop_n(peter).

prop_n(george).

prop_n(jane).

% Verbs

v(order).

v(dated).

v(have).

v(had).

v(give).

v(sells).

v(like).

v(likes).

v(dance).

v(walk).

Appendix B

/*--

PARSER

This is a predicate that passes a list of words to produces an

appropriate c-structure and f-structure

--*/

parser(Cstruc,Fstruc,Ins):-

s(Cstruc,Fstruc,Ins,[]).

% S --> NP, VP.

%

s(s(NP,VP),fs(pred : Pred,

spec : Spec, person : Person, numb : Numb, tense : Tense,

subj : Subj, obj : Obj, obj2 : Obj2,

ajunct : Ajunct, pcase : PCase)) -->

np(NP,Subj),

12

vp(VP,fs(pred : Pred,

spec : Spec, person : Person, numb : Numb, tense : Tense,

subj : Subj, obj : Obj, obj2 : Obj2,

ajunct : Ajunct, pcase : PCase)).

% Noun Phrase

% NP --> Determiner, N.

np(np(Det,N),FS) -->

det(Det,FS),

n(N,FS).

% NP --> Proper noun

np(np(PN),FS) -->

pn(PN,FS).

% Verb Phrase

% VP --> V.

vp(vp(V),fs(pred : Pred,

spec : Spec, person : Person, numb : Numb, tense : Tense,

subj : Subj, obj : Obj, obj2 : Obj2,

ajunct : Ajunct, pcase : PCase)) -->

v(V,fs(pred : Pred,

spec : Spec, person : Person, numb : Numb, tense : Tense,

subj : Subj, obj : Obj, obj2 : Obj2,

ajunct : Ajunct, pcase : PCase)).

% VP --> V, NP.

vp(vp(V,NP),fs(pred : Pred,

spec : Spec, person : Person, numb : Numb, tense : Tense,

subj : Subj, obj : Obj, obj2 : Obj2,

ajunct : Ajunct, pcase : PCase)) -->

v(V,fs(pred : Pred,

spec : Spec, person : Person, numb : Numb, tense : Tense,

subj : Subj, obj : Obj, obj2 : Obj2,

ajunct : Ajunct, pcase : PCase)),

np(NP,Obj).

% V --> V, NP, NP.

vp(vp(V,NP1,NP2),fs(pred : Pred,

spec : Spec, person : Person, numb : Numb, tense : Tense,

13

subj : Subj, obj : Obj, obj2 : Obj2,

ajunct : Ajunct, pcase : PCase)) -->

v(V,fs(pred : Pred,

spec : Spec, person : Person, numb : Numb, tense : Tense,

subj : Subj, obj : Obj, obj2 : Obj2,

ajunct : Ajunct, pcase : PCase)),

np(NP1,Obj),

np(NP2,Obj2).

% Lexicons

det(det(the), fs(pred : Pred,

spec: the, person : Person, numb : Numb, tense : Tense,

subj : Subj, obj : Obj, obj2 : Obj2,

ajunct : Ajunct, pcase : PCase)) --> [the].

det(det(a), fs(pred : Pred,

spec: a, person : Person, numb : sg, tense : Tense,

subj : Subj, obj : Obj, obj2 : Obj2,

ajunct : Ajunct, pcase : PCase)) --> [a].

det(det(an), fs(pred : Pred,

spec: a, person : Person, numb : sg, tense : Tense,

subj : Subj, obj : Obj, obj2 : Obj2,

ajunct : Ajunct, pcase : PCase)) --> [an].

pn(pn(magdalene), fs(pred : magdalene,

spec: Spec, person : third, numb : sg, tense : Tense,

subj : Subj, obj : Obj, obj2 : Obj2,

ajunct : Ajunct, pcase : PCase)) --> [magdalene].

pn(pn(james), fs(pred : james,

spec: Spec, person : third, numb : sg, tense : Tense,

subj : Subj, obj : Obj, obj2 : Obj2,

ajunct : Ajunct, pcase : PCase)) --> [james].

n(n(dress), fs(pred : dress,

spec: Spec, person : third, numb : sg, tense : Tense,

subj : Subj, obj : Obj, obj2 : Obj2,

ajunct : Ajunct, pcase : PCase)) --> [dress].

n(n(orange), fs(pred : orange,

spec: Spec, person : third, numb : sg, tense : Tense,

subj : Subj, obj : Obj, obj2 : Obj2,

ajunct : Ajunct, pcase : PCase)) --> [orange].

14

n(n(plates), fs(pred : plate,

spec: Spec, person : third, numb : pl, tense : Tense,

subj : Subj, obj : Obj, obj2 : Obj2,

ajunct : Ajunct, pcase : PCase)) --> [plates].

v(v(washed), fs(pred : wash,

spec : Spec, person : Person, numb : Numb, tense : past,

subj: fs(pred : SPred,

spec : SSpec, person : Person, numb : Numb,

tense : STense,

subj : SSubj,

obj : SOBJ, obj2 : SObj2,

ajunct : SAjunct, pcase : SPCase),

obj : Obj,

obj2 : Obj2,

ajunct : Ajunct, pcase : PCase)) --> [washed].

15

