Report on Game Info Finder

By: Zhang Liqing

15/05/2003

Introduction:

The purpose of this application is to retrieve main information from articles on football or basketball matches. The information includes names of 2 participating teams, score, and the winner. This application is made by VC++, using MFC classes, programmed and tested on windows 2000 and windows XP professional. Regular expression is used for pattern match. Since MFC doesn’t provide regular expression classes, I used a C++ class called Regex, which is downloaded from http://www.boost.org/. Before running GameInfoFinder.exe file, make sure that the file stopwords.dat is in the same directory as the exe file.

Interface:

[image: image1.png]Document [FEVEWE & CF developmert works\GamePanlrkc | Browse
[et sl]

Feted Sment. e Lakers aled om 16 down o beat e Svrs 8995 m B <]
Toams: Laker v Spus

Score: 3395
[Winner Lakers

The acceptable file format for this application is *.txt only. Please convert other formats to text file before processing.

Input the file name and path in the edit box or click browse to select the file. Then click the button “Get the result!” to start. The information about the match is shown below. Related Statement is the sentence from which the info is drawn. In some cases, there are maybe more than 1 sentences match the searching pattern, then all the suitable sentences will be listed in the edit box.

Algorithms:

Regular expression for Related Statement (there are 2 ”\\” because the first one is used for C++ compiler to understand the one that followed is the character itself) :

[^\\.,;\\r\\n]+\\d+\\s*[-]\\s*\\d+[^\\.,;\\r\\n]+
The middle part(in cyan) stands for the score. It means one or more digital characters (\\d+) followed by none or more spaces(\\s*) and a “-“([-]) and again none or more spaces(second \\s*) and then another part of digits. The part in yellow and pink are the same. They restrict the begin and the end of the sentence: full stop (.), comma(,) or a new line character(\r\n).

[image: image2.jpg]Find refated statements

Statement

et all words startvith capia Getscore

Outut
—

Efminate sop words Combine vith o team names
Delete place names. 10 nd the winner

e o
=
Sutput

Caculate dtances

Outpu
] —_—

Figure 1. flow chart

After the related statement is found, the application will find all words that start with capitals using the following regular expression:

[A-Z](\\S+|(\\S+\\s[A-Z]\\S+)|(\\S+\\s[A-Z]\\S+\\s[A-Z]\\S+))

The expression matches one or two or three concatenate words that start with capitals. There are seldom a sports team named more than 3 words, even taking account of city name together. This is the reason why I search for maximum 3 concatenate words only. There do exist some team names that start with numbers, such as Munich 1860 and Philadelphia 76ers, I’m afraid I can’t do anything for them right now.

Many words start with capitals, human names, place names, week days, organization names, etc. However, we need only the names of sports team. To eliminate the interfering words, different methods were used:

	Sequences
	Type of words
	Method used to eliminate

	1.
	Special words

Week days

Human names

Organization names
	Adding the words to a stop words list. The list is stored in a file called “stopwords.dat”, loaded into memory each time the program runs. All found words compare with the list first, the words in the list will be eliminated.

The stop words file list can be edited and expanded.

	2.
	Place names
	Check the word just before it, if it’s “at” or “in”, then delete the word.

If the remained words are still more than 2, calculate the distances between the words and the score by counting the space numbers, the 2 words of minimum distance are chosen.

Finding score:

\\d+\\s*[-]\\s*\\d+
It’s the same expression as the middle part of that used to find the related statements.

After the two team names and the score are successfully retrieved, combine them to get the winner. Normally the sequence of two team names and the sequence of score within a sentence are consistent. Usually we say A beat B with the score 3-0, we would never say that A beat B with score 0-3. So we can compare the score and find the winner according to the sequences.

Conclusion

This application isn’t quite robust because I only spent 3 or 4 days to develop it. And maybe some of the algorithms I used are not efficient either.

All test texts were from daily sports news of BBC and CNN website.

