Examination in Programming language theory

Solutions

1

$$
\begin{aligned}
& (S(K(S I)) K) x y=S(K(S I)) K x y= \\
& (K(S I)) x(K x) y=K(S I) x(K x) y= \\
& (S I)(K x) y=S I(K x) y= \\
& I y((K x) y)=I y(K x y)= \\
& y x
\end{aligned}
$$

Every second step just removes all unnecessary parentheses.
2 Let SWITCH denote the switch statement. Then for $i=0, \ldots n$
$\frac{\langle\text { Si, } \sigma\rangle \rightarrow \sigma^{\prime}}{\langle\text { SWITCH, } \sigma\rangle \rightarrow \sigma^{\prime}} \quad$ provided that $\mathcal{A} \llbracket a \rrbracket \sigma=i$.
If the value of a is outside the range the statement will loop (according to the terminology of the book).

3 Prove that

$$
\begin{equation*}
\text { if }\left\langle S_{1}, \sigma\right\rangle \Rightarrow^{k} \sigma^{\prime} \text { then }\left\langle S_{1} ; S_{2}, \sigma\right\rangle \Rightarrow^{k}\left\langle S_{2}, \sigma^{\prime}\right\rangle \tag{*}
\end{equation*}
$$

The proof is by induction over k.
The implication $\left(^{*}\right)$ is true for $k=0$ since $\left\langle S_{1}, \sigma\right\rangle$ and σ^{\prime} cannot be the same configuration.
For the inductive step assume that $\left(^{*}\right)$ is true for $k=k_{0}$ and that $\left\langle S_{1}, \sigma\right\rangle \Rightarrow{ }^{k_{0}+1} \sigma^{\prime}$.
Then there is a configuration $\left\langle S_{1}^{\prime}, \sigma_{1}\right\rangle$ such that $\left\langle S_{1}, \sigma\right\rangle \Rightarrow\left\langle S_{1}^{\prime}, \sigma_{1}\right\rangle \Rightarrow^{k_{0}} \sigma^{\prime}$.
From [comp ${ }_{\mathrm{sos}}^{1}$] and $\left\langle S_{1}, \sigma\right\rangle \Rightarrow\left\langle S_{1}^{\prime}, \sigma_{1}\right\rangle$ it follows that $\left\langle S_{1} ; S_{2}, \sigma\right\rangle \Rightarrow\left\langle S_{1}^{\prime} ; S_{2}, \sigma_{1}\right\rangle$.
From the induction assumption and $\left\langle S_{1}^{\prime}, \sigma_{1}\right\rangle \Rightarrow{ }^{k_{0}} \sigma^{\prime}$ it follows that $\left\langle S_{1}^{\prime} ; S_{2}, \sigma_{1}\right\rangle \Rightarrow^{k_{0}}\left\langle S_{2}, \sigma^{\prime}\right\rangle$
Combining these to conclusions we get $\left\langle S_{1} ; S_{2}, \sigma\right\rangle \Rightarrow{ }^{k_{0}+1}\left\langle S_{2}, \sigma^{\prime}\right\rangle$.
4 FIX $f=\bigsqcup\left\{f^{i} \perp \mid i \in \mathbb{N}\right\}$.
We show that $f^{i} \perp \sqsubseteq d$ for all i by induction:
$f^{0} \perp=\perp \sqsubseteq d$.
Assume that $f^{k} \perp \sqsubseteq d$. Then $f^{k+1} \perp=f\left(f^{k} \perp\right) \sqsubseteq f d \sqsubseteq d$ since f is monontone.
We now have that d is an upper bound for $\left\{f^{i} \perp \mid i \in \mathbb{N}\right\}$ and it must be greater or equal to the least upper bound.

5

$$
\begin{gathered}
\mathcal{S}_{c s} \llbracket \mathrm{break} \rrbracket c^{\prime} c \sigma=c^{\prime} \sigma \\
\mathcal{S}_{c s} \llbracket \mathrm{begin} S \text { end } \rrbracket c^{\prime} c \sigma=\mathcal{S}_{c s} \llbracket S \rrbracket c c \sigma
\end{gathered}
$$

If there is no enclosing block then c^{\prime} will be the continuation for the complete program. The reasonable value for c^{\prime} in this case is the identity continuation. This will mean that program halts in the current state.

6 Let S be x:=x-1; y:=y+1, bex=0, $P=(x=2 \wedge y=0)$, and $Q=(y=1)$. Then $\{P\} S\{Q\}$ while $\{P\}$ S; while $\neg b$ do $S\{Q \wedge b\}$ cannot be proved.

