Examination in Programming language theory

This exam has 6 problems, each worth 5 points. For passing the exam at most 15 points will be required.
The following texts may be used during the exam:
Nielson, Nielson, Semantics with Applications.
Andersson, Programming language theory, Lecture notes.

1. Let $\mathrm{B} \triangleq \lambda f \cdot \lambda g \cdot \lambda x \cdot f(g x)$. Show that $\mathrm{B} f(\mathrm{~B} g h)=\mathrm{B}(\mathrm{B} f g) h$. Show the result after each single reduction.
2. Extend While with a Java like do S while b statement, where S is executed at least once. Define natural semantic rules for this statement. The rules must not rely on the standard while statement.
3. Extend $\mathbf{A} \exp$ with the construct let D_{V} in a, where D_{V} is a list of initializations,

$$
D_{V}::=\epsilon \mid x=a: D_{V}
$$

The informal meaning is that the value of the expression after in is evaluated in a state where all the initializations have been made. Each initialization is made in a state where all previous initializations have been made. Define $\mathcal{A} \llbracket$ let D_{V} in $a \rrbracket \in$ State $\rightarrow \mathrm{Z}$.

You may need to define a function $\mathcal{D}_{V} \in \mathbf{D}_{\mathbf{v}} \rightarrow$ State \rightarrow State, where $\mathbf{D}_{\mathbf{V}}$ is the set of all initialization lists.
4. Show by structural induction that $\mathcal{S}_{\mathrm{wp}} \llbracket S \rrbracket(P \wedge Q)=\mathcal{S}_{\mathrm{wp}} \llbracket S \rrbracket P \wedge \mathcal{S}_{\mathrm{wp}} \llbracket S \rrbracket Q$ for all $S \in \mathbf{S t m}$.
5. Extend While with a nondeterministic choice statement S_{1} or S_{2}. Define the semantics for this statement by
(a) partial correctness rules.
(b) weakest precondition semantics
6. It is an axiom of set theory that there is a set D such that $\emptyset \in D$ and if $d \in D$ then $d \cup\{d\} \in D$. It is called the Axiom of infinity and informally it states that there is at least one infinite set. It can be proved that there is a least (using \subseteq) set with this property. Call this set N. Let $F(d) \triangleq d \cup\{d\}$ be a function on N .
(a) Find five elements in N.
(b) Is F monotone on (N, \subseteq) ? Explain why.
(c) Is N a ccpo? If not, add elements to make it one.
(d) Is F continuous on the ccpo in (c) and if so which is the least fixed point? Explain why.
(e) There is a good reason for naming the set N and there is a better name for F. Which?

