Solutions

1 The easy solution is to introduce a COND instruction that assumes that the values of all three expressions are on the stack. Then

$$\mathcal{C}\llbracket e_1 : e_2 \rrbracket = \mathcal{C}\llbracket e_2 \rrbracket : \mathcal{C}\llbracket e_1 \rrbracket : \mathcal{C}\llbracket e \rrbracket : COND$$

If just want to evaluate one of the expressions we have store the code for both of them on the stack using a instruction $COND(c_1, c_2)$ and choose to evaluate the correct one using CHOOSE

$$\mathcal{C}[\![e?e_1:e_2]\!] = COND(\mathcal{C}[\![e_1]\!], \mathcal{C}[\![e_2]\!]) : \mathcal{C}[\![e]\!] : CHOOSE$$

 $\mathbf{2}$

$$< n : n_1 : n_2 : s, env, COND : c, d > \triangleright < r : s, env, c, d >$$

where $r = n_1$ if n = 0 and $r = n_1$ otherwise.

With the other solution we have add a pair of instructions to possible values on the stack

 $Value = \mathbb{Z} \cup (Var \times Code \times Env) \cup (Code \times Code)$

$$< s, env, COND(c_1, c_2) : c, d > \triangleright < (c_1, c_2) : s, env, c, d > < n : (c_1, c_2) : s, env, CHOOSE : c, d > \triangleright < s, env, c_0 : c, d >$$

where c_0 is c_1 if n = 0 and c_2 otherwise.

- **3** \mathcal{S}_{ds} [read x] $(\sigma, i) = (\sigma[x \mapsto head i], tail i)$
- 4 Let $g_0 = \perp$ and $g_{i+1} = F g_i$.

$$g_1 = \lambda \ \sigma.(\mathcal{B}\llbracket \mathbf{b} \rrbracket \sigma? \mathcal{S}_{ds}\llbracket S \rrbracket (g_0 \ \sigma) : \sigma) = \begin{cases} \lambda \sigma. \sigma & \text{if } \mathcal{B}\llbracket \mathbf{b} \rrbracket \sigma = \mathbf{ff} \\ \text{undefined} & \text{otherwise} \end{cases}$$

and $g_i = g_1$ for all i > 1. Thus $\bigsqcup \{g_i \in \mathbb{N}\} = g_1$

5 \mathcal{A} [[let $x = a_0$ in a_1]] $\sigma = \mathcal{A}$ [[a_1]](σ [$x \mapsto \mathcal{A}$ [[a_0]])

6 a. \emptyset , $\{\emptyset\}, \{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}, \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\}$

- **b.** We denote element number *i* by c_i . We observe that $c_i \subseteq c_j$ when $i \leq j$. Since $F(c_i) = c_{i+1}$ it follows that $F(c_i) \subseteq F(c_j)$ when $c_i \subseteq c_j$.
- **c.** It is not a ccpo since $\bigcup N = N$ does not belong to N. However $D = n \cup \{N\}$, is a ccpo.
- **d.** F is not a function in $D \to D$ since F(N) = D which does not belong to D, so the answer is no.
- **e.** N is a representation for \mathbb{N} , F is the successor function.