Solutions

1 The easy solution is to introduce a COND instruction that assumes that the values of all three expressions are on the stack. Then

$$
\mathcal{C} \llbracket e ? e_{1}: e_{2} \rrbracket=\mathcal{C} \llbracket e_{2} \rrbracket: \mathcal{C} \llbracket e_{1} \rrbracket: \mathcal{C} \llbracket e \rrbracket: C O N D
$$

If just want to evaluate one of the expressions we have store the code for both of them on the stack using a instruction $C O N D\left(c_{1}, c_{2}\right)$ and choose to evaluate the correct one using CHOOSE

$$
\mathcal{C} \llbracket e ? e_{1}: e_{2} \rrbracket=\operatorname{COND}\left(\mathcal{C} \llbracket e_{1} \rrbracket, \mathcal{C} \llbracket e_{2} \rrbracket\right): \mathcal{C} \llbracket e \rrbracket: C H O O S E
$$

2

$$
<n: n_{1}: n_{2}: s, e n v, C O N D: c, d>\triangleright<r: s, e n v, c, d>
$$

where $r=n_{1}$ if $n=0$ and $r=n_{1}$ otherwise.
With the other solution we have add a pair of instructions to possible values on the stack

$$
\begin{aligned}
& \text { Value }=\mathbb{Z} \cup(\text { Var } \times \text { Code } \times \text { Env }) \cup(\text { Code } \times \text { Code }) \\
& <s, e n v, C O N D\left(c_{1}, c_{2}\right): c, d>\triangleright<\left(c_{1}, c_{2}\right): s, e n v, c, d> \\
& <n:\left(c_{1}, c_{2}\right): s, e n v, C H O O S E: c, d>\triangleright<s, e n v, c_{0}: c, d>
\end{aligned}
$$

where c_{0} is c_{1} if $n=0$ and c_{2} otherwise.
$3 \mathcal{S}_{d s} \llbracket \mathrm{read} \mathrm{x} \rrbracket(\sigma, i)=(\sigma[x \mapsto$ head $i]$, tail $i)$
4 Let $g_{0}=\perp$ and $g_{i+1}=F g_{i}$.

$$
g_{1}=\lambda \sigma \cdot\left(\mathcal{B} \llbracket \mathrm{b} \rrbracket \sigma ? \mathcal{S}_{d s} \llbracket S \rrbracket\left(g_{0} \sigma\right): \sigma\right)= \begin{cases}\lambda \sigma . \sigma & \text { if } \mathcal{B} \llbracket \mathrm{b} \rrbracket \sigma=\mathrm{ff} \\ \text { undefined } & \text { otherwise }\end{cases}
$$

and $g_{i}=g_{1}$ for all $i>1$. Thus $\bigsqcup\left\{g_{i} \mid \in \mathbb{N}\right\}=g_{1}$
$5 \mathcal{A} \llbracket$ let $x=a_{0}$ in $a_{1} \rrbracket \sigma=\mathcal{A} \llbracket a_{1} \rrbracket\left(\sigma\left[x \mapsto \mathcal{A} \llbracket a_{0} \rrbracket\right)\right.$
6 a. $\emptyset,\{\emptyset\},\{\emptyset,\{\emptyset\}\},\{\emptyset,\{\emptyset\},\{\emptyset,\{\emptyset\}\}\},\{\emptyset,\{\emptyset\},\{\emptyset,\{\emptyset\}\},\{\emptyset,\{\emptyset\},\{\emptyset,\{\emptyset\}\}\}\}$
b. We denote element number i by c_{i}. We observe that $c_{i} \subseteq c_{j}$ when $i \leq j$. Since $F\left(c_{i}\right)=c_{i+1}$ it follows that $F\left(c_{i}\right) \subseteq F\left(c_{j}\right)$ when $c_{i} \subseteq c_{j}$.
c. It is not a ccpo since $\bigcup N=N$ does not belong to N. However $D=n \cup\{N\}$, is a ссро.
d. F is not a function in $D \rightarrow D$ since $F(N)=D$ which does not belong to D, so the answer is no.
e. N is a representation for \mathbb{N}, F is the successor function.

