Solutions

1. $\langle\operatorname{GET}-n: c, e, m>\triangleright<c, m[n]: e, m>$ if $0<n \leq$ length m
$<$ PUT- $n: c, z: e, m>\triangleright<c, e, m[n \mapsto z]>$ if $0<n \leq$ length m
If we reference an address outside the memory the execution terminates in a nonterminal configuration.
2.

chain	least upper bound	chain	least upper bound
\emptyset	\emptyset	$\{\{1\},\{0,1\}\}$	$\{0,1\}$
$\{\emptyset\}$	\emptyset	$\{\emptyset,\{0\}\}$	$\{0\}$
$\{\{0\}\}$	$\{0\}$	$\{\emptyset,\{1\}\}$	$\{1\}$
$\{\{1\}\}$	$\{1\}$	$\{\emptyset,\{0,1\}\}$	$\{0,1\}$
$\{\{0,1\}\}$	$\{0,1\}$	$\{\emptyset,\{0\},\{0,1\}\}$	$\{0,1\}$
$\{\{0\},\{0,1\}\}$	$\{0,1\}$	$\{\emptyset,\{1\},\{0,1\}\}$	$\{0,1\}$

3. Monotonicity. Assume that $S_{0} \subseteq S_{1}$. Prove that $F\left(S_{0}\right) \subseteq F\left(S_{1}\right)$. Assume that $x \in F\left(S_{0}\right)=S_{0} \cup A_{0}$ then $x \in S_{0}$ or $x \in A_{0}$. It follows that $x \in S_{1}$ or $x \in A_{0}$. This means that $x \in S_{1} \cup A_{0}$, i.e. $x \in F\left(S_{1}\right)$. Continuity. Let C be a chain in 2^{A}. In $\left(2^{A}, \subseteq\right)$ the least upper bound \bigsqcup is the same thing as \bigcup.
We have to show that $\bigcup F(C)=F(\bigcup C)$. Remember that $F(C)=\{F(c) \mid c \in C\}$. We divide this proof in to parts, $\bigcup F(C) \subseteq F(\bigcup C)$ and $F(\bigcup C) \subseteq \bigcup F(C)$.
First assume $x \in \bigcup F(C)=\bigcup\{F(c) \mid c \in C\}$. Then there is a $c \in C$ such that $x \in F(c)$. Since $c \subseteq \bigcup C$ and F is monotone it follows that $F(c) \subseteq F(\bigcup C)$. Thus $x \in F(\bigcup C)$. (This is just the proof of Lemma 4.30. We did not use the definition of F !)
Next assume that $x \in F(\bigcup C)$. Then $x \in(\bigcup C) \cup A_{0}$, i.e. $x \in(\bigcup C)$ or $x \in A_{0}$. It follows that $x \in c$ for some $c \in C$ or $x \in A_{0}$. Thus $x \in c \cup A_{0}=F(c)$ for some $c \in C$. We conclude that $x \in \bigcup F(C)$.
4. Assume that $A_{1} \subseteq A_{2}$. We have to show that $\mathcal{P}\left(A_{1}\right) \subseteq \mathcal{P}\left(A_{2}\right)$. Let $x \in \mathcal{P}\left(A_{1}\right)$. Then $x \subseteq A_{1}$. It follows that $x \subseteq A_{2}$ and $x \in \mathcal{P}\left(A_{2}\right)$ and \mathcal{P} is monotone.
\mathcal{P} is not continuous. To see this consider the chain $C \triangleq\left\{N_{n} \mid n \in \mathrm{~N}\right\}$, where $N_{n} \triangleq\{0, \ldots, n-1\}$. Then $\bigcup C=\mathrm{N}$ (which does not belong to C). The set $\mathcal{P}(\bigcup C)=2^{\mathrm{N}}$ contains all finite and infinite sets of natural numbers. On the other hand all elements of $\bigcup \mathcal{P}(C)=\bigcup\left\{\mathcal{P}\left(N_{n}\right) \mid n \in \mathrm{~N}\right\}$ are finite sets. So e.g. $\mathrm{N} \in \mathcal{P}(\bigcup C)$ while $\mathrm{N} \notin \bigcup \mathcal{P}(C)$.
5. S will be executed in the state σ giving a new state σ^{\prime}. If b is true in this new state this will be the effect of the execution. If b is false in the new state the statement has no effect.
6. $\mathcal{S}_{d s} \llbracket x_{0}:=: x_{1} \rrbracket \sigma=\sigma\left[x_{0} \mapsto\left(\sigma x_{1}\right)\right]\left[x_{1} \mapsto\left(\sigma x_{0}\right)\right]$
7.

$$
\begin{aligned}
& \mathcal{A} \in \mathbf{A e x p} \rightarrow \text { State } \rightarrow \mathrm{Z} \times \text { State } \\
& \mathcal{A} \llbracket x \rrbracket \sigma \triangleq(\sigma x, \sigma) \\
& \mathcal{A} \llbracket x++\rrbracket \sigma \triangleq(\sigma x, \sigma[x \mapsto 1+\sigma x \rrbracket) \\
& \mathcal{A} \llbracket a_{1}+a_{2} \rrbracket \sigma \triangleq\left(z_{1}+z_{2}, \sigma_{2}\right) \\
& \text { where } \\
& \left(z_{1}, \sigma_{1}\right)=\mathcal{A} \llbracket a_{1} \rrbracket \sigma \\
& \left(z_{2}, \sigma_{2}\right)=\mathcal{A} \llbracket a_{2} \rrbracket \sigma_{1}
\end{aligned}
$$

The remaining expressions are similar.
8.

$$
\begin{aligned}
& F g=\lambda \sigma \cdot(\mathcal{B} \llbracket \text { true } \rrbracket \sigma ?(g \circ(\lambda \sigma \cdot \sigma)) \sigma: \sigma)=\lambda \sigma \cdot g \sigma=g \\
& F^{0} \emptyset=\emptyset \\
& F \emptyset=\emptyset \\
& F^{2} \emptyset=\emptyset
\end{aligned}
$$

It follows that $\bigcup\left\{F^{n} \emptyset \mid n \in \mathrm{~N}\right\}=\emptyset$.

