Solutions

1. < Get- $n : c, e, m > \triangleright < c, m[n] : e, m > \text{if } 0 < n \le \text{length } m$

 $<\texttt{PUT-}n: c, z: e, m > \triangleright < c, e, m[n \mapsto z] > \text{if } 0 < n \leq \text{length } m$

If we reference an address outside the memory the execution terminates in a nonterminal configuration.

0	
٠,	
-	٠

chain	least upper bound	chain	least upper bound
Ø	Ø	$\{\{1\}, \{0, 1\}\}$	$\{0,1\}$
$\{\emptyset\}$	Ø	$\{\emptyset, \{0\}\}$	{0}
$\{\{0\}\}$	$\{0\}$	$\{\emptyset, \{1\}\}$	{1}
{{1}}	{1}	$\{\emptyset, \{0, 1\}\}$	$\{0, 1\}$
$\{\{0,1\}\}$	$\{0,1\}$	$\{\emptyset, \{0\}, \{0, 1\}\}$	$\{0,1\}$
$\{\{0\}, \{0,1\}\}$	$\{0, 1\}$	$\{\emptyset, \{1\}, \{0, 1\}\}$	$\{0, 1\}$

3. Monotonicity. Assume that $S_0 \subseteq S_1$. Prove that $F(S_0) \subseteq F(S_1)$. Assume that $x \in F(S_0) = S_0 \cup A_0$ then $x \in S_0$ or $x \in A_0$. It follows that $x \in S_1$ or $x \in A_0$. This means that $x \in S_1 \cup A_0$, i.e. $x \in F(S_1)$. Continuity. Let C be a chain in 2^A . In $(2^A, \subseteq)$ the least upper bound \bigsqcup is the same thing as \bigcup .

We have to show that $\bigcup F(C) = F(\bigcup C)$. Remember that $F(C) = \{F(c) \mid c \in C\}$. We divide this proof in to parts, $\bigcup F(C) \subseteq F(\bigcup C)$ and $F(\bigcup C) \subseteq \bigcup F(C)$.

First assume $x \in \bigcup F(C) = \bigcup \{F(c) \mid c \in C\}$. Then there is a $c \in C$ such that $x \in F(c)$. Since $c \subseteq \bigcup C$ and F is monotone it follows that $F(c) \subseteq F(\bigcup C)$. Thus $x \in F(\bigcup C)$. (This is just the proof of Lemma 4.30. We did not use the definition of F!)

Next assume that $x \in F(\bigcup C)$. Then $x \in (\bigcup C) \cup A_0$, i.e. $x \in (\bigcup C)$ or $x \in A_0$. It follows that $x \in c$ for some $c \in C$ or $x \in A_0$. Thus $x \in c \cup A_0 = F(c)$ for some $c \in C$. We conclude that $x \in \bigcup F(C)$.

4. Assume that $A_1 \subseteq A_2$. We have to show that $\mathcal{P}(A_1) \subseteq \mathcal{P}(A_2)$. Let $x \in \mathcal{P}(A_1)$. Then $x \subseteq A_1$. It follows that $x \subseteq A_2$ and $x \in \mathcal{P}(A_2)$ and \mathcal{P} is monotone.

 \mathcal{P} is not continuous. To see this consider the chain $C \triangleq \{N_n \mid n \in \mathbb{N}\}$, where $N_n \triangleq \{0, \ldots, n-1\}$. Then $\bigcup C = \mathbb{N}$ (which does not belong to C). The set $\mathcal{P}(\bigcup C) = 2^{\mathbb{N}}$ contains all finite and infinite sets of natural numbers. On the other hand all elements of $\bigcup \mathcal{P}(C) = \bigcup \{\mathcal{P}(N_n) \mid n \in \mathbb{N}\}$ are finite sets. So e.g. $\mathbb{N} \in \mathcal{P}(\bigcup C)$ while $\mathbb{N} \notin \bigcup \mathcal{P}(C)$.

- 5. S will be executed in the state σ giving a new state σ' . If b is true in this new state this will be the effect of the execution. If b is false in the new state the statement has no effect.
- 6. $\mathcal{S}_{ds}\llbracket x_0 :=: x_1 \rrbracket \sigma = \sigma[x_0 \mapsto (\sigma x_1)][x_1 \mapsto (\sigma x_0)]$

7.

$$\mathcal{A} \in \mathbf{Aexp} \to \mathbf{State} \to \mathbf{Z} \times \mathbf{State}$$
$$\mathcal{A}\llbracket x \rrbracket \sigma \triangleq (\sigma x, \sigma)$$
$$\mathcal{A}\llbracket x + + \rrbracket \sigma \triangleq (\sigma x, \sigma [x \mapsto 1 + \sigma x])$$
$$\mathcal{A}\llbracket a_1 + a_2 \rrbracket \sigma \triangleq (z_1 + z_2, \sigma_2)$$
where
$$(z_1, \sigma_1) = \mathcal{A}\llbracket a_1 \rrbracket \sigma$$
$$(z_2, \sigma_2) = \mathcal{A}\llbracket a_2 \rrbracket \sigma_1$$

The remaining expressions are similar.

8.

$$\begin{split} Fg &= \lambda \sigma. (\mathcal{B}\llbracket \texttt{true} \rrbracket \sigma ? (g \circ (\lambda \sigma. \sigma)) \sigma : \sigma) = \lambda \sigma. g \sigma = g \\ F^0 \, \emptyset &= \emptyset \\ F \, \emptyset &= \emptyset \\ F^2 \, \emptyset &= \emptyset \end{split}$$

It follows that $\bigcup \{F^n \emptyset \mid n \in \mathbb{N}\} = \emptyset$.