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Solutions
1. mul m Zero = Zero
mul m (Suc n) = add m (mul m n)
exp m Zero = Suc Zero
exp m (Suc n) = mul m (exp m n)
sup m Zero = Suc Zero (other choices ok)
sup m (Suc n) = exp m (sup m n)
fOmn=m+n
f (k+1) m 0 =k
f (k+1) m (u+1) =f km (£ (k+1) m n)

This is essentially how the Ackermann function was defined by himself. It has applications
in algorithm theory and the theory of computation.

2. (a) Show that add Zero (Suc m) =

add (Suc Zero) m.

add Zero (Suc m) = Suc m

add (Suc Zero) m =

Assume add k (Suc m) =
Show that add (Suc k) (Suc m) =

(b)

Suc (add Zero m) = Suc m

add (Suc k) m for a fixed but arbitrary k and for all m.
add (Suc (Suc k)) m for all m.

add (Suc k) (Suc m) = Suc (add k (Suc m)) = Suc(add (Suc k) m) = add (Suc
(Suc k)) m.
3. Sats. Let p € Tree a — B be a property. If

(a) p(Leaf x) for all x in a and
(b) p(t1) and p(t2) implies p(Node t1 t2) for all t1, t2in Tree a

then p(t) is true for all t in Tree a. B

4. One auxiliary function is required.
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5. Prove that Afaly — ao]]o = Ala](c]y — Alao]o]) for all a € Aexp.

(a) Show that A[n[y — aol]o = A[n](c[y — Afao]o]) for all n € Num.
Alnly — apl]oe = A[n]o = N[n].
Alr](ely — Alaola]) = Nn].



(b) The case when a is variable different from z is similar to the previous case. In the
other case prove that Afyly — aol]o = Afy](cly — Afao]o]).
Alyly — aollo = Alao]o-
Alyl(oly = Alao]o]) = (oly — Alao]o])y = Alao]o].

(c) Next consider the case when a = aj+ag. Assume that Afa1[y — agl]o = AJa1](o]y —
Alao]o]) and Afazly — aol]o = Alaz](cly — Alao]o]).

Al(ar + a2)ly — aol]o = Alai[y — ao] + azly — ao]o =
Ala1[y — aol]o + Alazly — agl]o =

Alair](oly — Alao]o]) + Alaz](oy — Alao]o]) =

Alay + as](oly — Alao]o])

(d) The remaining two cases are analogous.

truely — al] = true

false|y +— a| = false

[ | =
[ | =
(a1 = a2)ly = a] = (a1ly = a] = a2y — d])
(a1 < ag)ly = a] = (a1ly = a] < azly — al)
(=b)[y — a] = —bly — d]
(b1 A b2)[y = a] = (bily — a] Abaly — al)

Proof by induction over b.

Base 1: b = true.

B[truely — a]]o = B[true]o = tt.
B[true](c[y — Alao]o]) = tt
Base 2: b = false. Similar.

Base 3: b= (a1 = ag).

Bl(a1 = a2)[y — a]]o = B[(a1ly — a] = az[y — a])]o

= (Afa1[y = d]]o = Alas[y — d]]o)

= (A[a1](o[y — Ala]o]) = Alas](o]y — Ala]o]))
Blai = as](oly — Ala]o])

Base 4: b = (a1 < ag). Similar.
Induction 1: b = (=by). Assume that Blbo[y — al]o = B[bo](c]y — Ala]o]).
Prove that B[—(bo)[y — a]]o = B[—(bo)](c[y — AJa]o]). Quite mechanical ...

Induction 2: b = (by A by). Two assumptions, but otherwise similar.

(0)—0 (1) —1
(n) —z (n) —z

(n 0) — 2z (n 1) —=2z2+1

. First we prove that for all n € Num: if M[n] = z then there is a derivation tree for
(n) — z. The proof is by induction over the structure of n.
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10.

11.

12.

13.

e Assume that AN[0] = z. Then z must be 0. But since (0) — 0 is an axiom there is a
trivial derivation tree for it. The case 1 is similar.

e Next consider the case n 0. The inductive assumption is that if N'[n] = 2’ then
there is a derivation tree for (n) — 2. We have to prove that if A'[n 0] = z then
there is a derivation tree for (n 0) — z. Now if N[n 0] = z then N[n] = 2’ where
2 = z/2. From the inductive assumption it follows that there is a derivation tree
for (n) — z/2. Using the natural semantic rule for n 0 we can build the required
derivation tree. The case n 1 is similar.

It remains to prove that for all derivation trees: if the root of the derivation treeis (n) — z
then N'[n] = z. The proof is by induction over the shape of derivation trees. ...

(S,0) — o

if B[b]o = tt
(if b then S,0) — o' if B[l

(if b then S,0) — o  if B[bJo =1ff

(do S while b,0) = (S; if b then do S while b else skip,o)

The following will give the same semantics but is not “small step semantics”.
(S,0) =0

(do S while b,0) = (do S while b,0’)
if B[b]o' = tt
(S,0)=0'

(do S while b,0) = o
if B[b]o’ = f

With the first replacements we cannot prove e.g. (if 0 = 1 then skip else skip,o) — 0.
In the second suggestion with b = true, Sy=skip, and Sj=while true do skip we can-
not use the rule since there is no derivation tree for (Sy, o) — o’

We shall prove that
(S1,0) =F o' implies (S1; Sa,0) =F (Sy,0”)

for all Sy,S5,0,0" and k. We use induction over k.
Base. For k = 0 the assertion is vacously true since (S;,0) = ¢/ cannot be true.

k =1 is left as an exercise. You will need the rule [compZ].

Inductive step. Let kg > 1 be any fixed number.

Assume that ((S1,0) =F0 ¢') implies ((Sy; Sz, 0) =F0 (Sy, ")) for all Sy, Ss,0,0".

We shall show that ((S1, ) =Fo*+! ') implies ((S1; Sz, o) =+ (S, ') for all Sy, 52,0, 0"
Now let (S1,0) = (S7,0") =*0 ¢/ be the first step in this derivation sequence.

By [compyg] it follows that (S1;Sa,0) = (S7; S2,0”).

Using the induction assumption with ¢ = ¢” we have

(S1; S, 0"y =0 (Sy,0"). We conclude by transitivity that (S1;S2,a) =Fo+1 (Sy o').

Take S; = skip and Sy = while =(x = 0) do x := x — 1, 0 a state where 0 = [z — 2] and

o' =[xz 1].



