Problems

These problems will be discussed on seminar in week 3.

- 1 (Exercise 4.7) \mathbf{AM} refers to variables by their names rather than by their addresses. The abstract machine \mathbf{AM}_1 differs from \mathbf{AM} in that
 - the configurations have the form $\langle c, e, m \rangle$ where c and e are as in **AM** and m, the memory, is a (finite) list of values, that is $m \in \mathbb{Z}^*$, and
 - the instructions FETCH-x and STORE-x are replaced by GET-n and PUT-n where n is a natural number (an address).

Specify the operational semantics of the machine. You may write m[n] to select the *n*'th value in the list *m* (when *n* is positive and less or equal to the length of *m*). What happens if we reference an address that is outside the memory?

- **2** Find all chains in $\langle 2^{\{0,1\}}, \subseteq \rangle$ and the least upper bound of each chain.
- **3** Let A be a set, $A_0 \subseteq A$ and $F \in 2^A \to 2^A$ where $F(S) \stackrel{\Delta}{=} S \cup A_0$. Show that F is continuous when we use \subseteq as the ordering relation. If you wish you may assume that $A = \mathbb{N}$ and $A_0 = \{0, 2\}$. There are two things to prove:
 - **a.** F is monotone.
 - **b.** If C is a chain in 2^A then $F(\bigcup C) = \bigcup F(C)$.
- **4** Let D be an infinite set of sets such that $\langle D, \subseteq \rangle$ is a ccpo. The powerset operator \mathcal{P} takes a set $A \in D$ as an argument and returns its powerset, 2^A . Thus $\mathcal{P} \in D \to 2^D$. Show that \mathcal{P} is monotone but not continuous when we use \subseteq as the ordering relation in both sets. You may assume that $D = 2^{\mathbb{N}}$.
- 5 Consider a statement with denotational semantics

$$\mathcal{S}_{ds}\llbracket \texttt{try S establish b} \rrbracket \sigma = \begin{cases} \mathcal{S}_{ds}\llbracket S \rrbracket \sigma, & \texttt{if } \mathcal{B}\llbracket \texttt{b} \rrbracket (\mathcal{S}_{ds}\llbracket S \rrbracket \sigma) = \texttt{tt} \\ \sigma, & \texttt{if } \mathcal{B}\llbracket \texttt{b} \rrbracket (\mathcal{S}_{ds}\llbracket S \rrbracket \sigma) = \texttt{ff} \end{cases}$$
(1)

Explain informally what the statement does.

- **6** Add a "swap" statement, $x_0 :=: x_1$, to While. The execution of the statement should exchange the values of the variables. Define the direct style denotational semantics for this statement.
- 7 In most programming languages the evaluation of an expression may change the state. As an example n++ in Java is an expression that returns the initial value of n and then increments the value of n. Define a denotational semantics for Aexp extended with x++. The semantic function must now return a pair with the value and the new state.
- 8 (5.50) Show that $\mathcal{S}_{ds}[\![while true do skip]\!]$ is the totally undefined function by computing FIX F, where F is taken from table 5.1 or $Fg \triangleq \lambda \sigma.(\mathcal{B}[\![b]\!] \sigma ? (g \circ \mathcal{S}_{ds}[\![S]\!]) \sigma : \sigma)$. It suffices to compute the first two values of $F^n \perp$.