Problems

These problems will be discussed on seminar in week 3 .

1 (Exercise 4.7) AM refers to variables by their names rather than by their addresses. The abstract machine $\mathbf{A} \mathbf{M}_{1}$ differs from $\mathbf{A M}$ in that

- the configurations have the form $\langle c, e, m\rangle$ where c and e are as in $\mathbf{A M}$ and m, the memory, is a (finite) list of values, that is $m \in \mathrm{Z}^{*}$, and
- the instructions FETCH- x and STORE- x are replaced by GET- n and PUT- n where n is a natural number (an address).

Specify the operational semantics of the machine. You may write $m[n]$ to select the n 'th value in the list m (when n is positive and less or equal to the length of m). What happens if we reference an address that is outside the memory?

2 Find all chains in $<2^{\{0,1\}}, \subseteq>$ and the least upper bound of each chain.
3 Let A be a set, $A_{0} \subseteq A$ and $F \in 2^{A} \rightarrow 2^{A}$ where $F(S) \triangleq S \cup A_{0}$. Show that F is continuous when we use \subseteq as the ordering relation. If you wish you may assume that $A=\mathrm{N}$ and $A_{0}=\{0,2\}$. There are two things to prove:
a. F is monotone.
b. If C is a chain in 2^{A} then $F(\bigcup C)=\bigcup F(C)$.

4 Let D be an infinite set of sets such that $<D, \subseteq>$ is a ccpo. The powerset operator \mathcal{P} takes a set $A \in D$ as an argument and returns its powerset, 2^{A}. Thus $\mathcal{P} \in D \rightarrow 2^{D}$. Show that \mathcal{P} is monotone but not continuous when we use \subseteq as the ordering relation in both sets. You may assume that $D=2^{\mathbb{N}}$.

5 Consider a statement with denotational semantics

$$
\mathcal{S}_{d s} \llbracket \operatorname{try} \mathrm{~S} \text { establish } \mathrm{b} \rrbracket \sigma= \begin{cases}\mathcal{S}_{d s} \llbracket S \rrbracket \sigma, & \text { if } \mathcal{B} \llbracket \mathrm{b} \rrbracket\left(\mathcal{S}_{d s} \llbracket S \rrbracket \sigma\right)=\mathrm{tt} \tag{1}\\ \sigma, & \text { if } \mathcal{B} \llbracket \mathrm{b} \rrbracket\left(\mathcal{S}_{d s} \llbracket S \rrbracket \sigma\right)=\mathrm{ff}\end{cases}
$$

Explain informally what the statement does.
6 Add a "swap" statement, $x_{0}:=: x_{1}$, to While. The execution of the statement should exchange the values of the variables. Define the direct style denotational semantics for this statement.

7 In most programming languages the evaluation of an expression may change the state. As an example $n++$ in Java is an expression that returns the initial value of n and then increments the value of n. Define a denotational semantics for Aexp extended with $x++$. The semantic function must now return a pair with the value and the new state.

8 (5.50) Show that $\mathcal{S}_{d s} \llbracket$ while true do skip】 is the totally undefined function by computing FIX F, where F is taken from table 5.1 or $F g \triangleq \lambda \sigma \cdot\left(\mathcal{B} \llbracket \mathrm{~b} \rrbracket \sigma ?\left(g \circ \mathcal{S}_{d s} \llbracket S \rrbracket\right) \sigma: \sigma\right)$. It suffices to compute the first two values of $F^{n} \perp$.

