Problems

These problems will be discussed on the seminar in week 2. Programs in Haskell are not required to compile.

1 Define multiplication and exponentiation for the datatype N given that

```
data N = Zero | Suc N
add m Zero = m
add m (Suc n) = Suc (add m n)
```

(This problem has been slightly changed 2011-03-23. Either solution is acceptable, but the optional part becomes more interesting this way.)

Optional problem. Generalize this construction by defining functions beyond exponentiation. Define a recursive function

```
f :: Integer -> Integer -> Integer -> Integer
```

such that

```
f 0 m n = add m n
f 1mn = mul m n
f 2mn = exp mn
```

2 Prove
Lemma. Let m be any element in N. Then add n (Suc m) $=$ add (Suc n) m for all n in N.

3 State an induction principle for

```
data Tree a = Leaf a | Node (Tree a) (Tree a)
```

4 Define the \mathcal{N} for the abstract grammar (Exercise 1.4)

```
n ::= 0 | 1 | 0 n | 1 n
```

5 Prove that $\mathcal{A} \llbracket a\left[y \mapsto a_{0} \rrbracket \rrbracket \sigma=\mathcal{A} \llbracket a \rrbracket\left(\sigma\left[y \mapsto \mathcal{A} \llbracket a_{0} \rrbracket \sigma\right]\right)\right.$. (Exercise 1.14.)
6 Define substitution for boolean expressions $b\left[y \mapsto a_{0}\right]$ and prove that $\mathcal{B} \llbracket b\left[y \mapsto a_{0}\right] \rrbracket \sigma=$ $\mathcal{B} \llbracket b \rrbracket\left(\sigma\left[y \mapsto \mathcal{A} \llbracket a_{0} \rrbracket \sigma\right]\right)$. (Exercise 1.15.)

7 Define a natural semantics for binary numerals, Num, defined by the grammar $n::=$ $0|1| n 0 \mid n 1$. The formulae of the theory should be on the form $\langle n\rangle \rightarrow z$, where $n \in \operatorname{Num}$ and $z \in \mathbb{N}$ is a natural number.

8 With the semantics of the previous problem and \mathcal{N} from the text book use structural induction and induction over the shape of derivation trees to prove that $\langle n\rangle \rightarrow z$ if and only if $\mathcal{N} \llbracket n \rrbracket=z$.

9 Extend the language While with an if-statement without an else part and define natural semantics inference rules for it. The rules must not rely on the existence of the standard if-statement.

10 Extend the language While with a Java-like do S while b statement and define structural operational semantics inference rules for the statement. The rules must not rely on the existence of the standard while-statement.

11 Will the semantics of While change if we replace [if $\left.\mathrm{its}_{\mathrm{tt}}\right]$ and $\left[\mathrm{if}_{\mathrm{ns}}^{\mathrm{ff}}\right]$ by

$$
\frac{\left\langle S_{0}, s\right\rangle \rightarrow s^{\prime}}{\left\langle\text { if true then } S_{0} \text { else } S_{1}, s\right\rangle \rightarrow s^{\prime}} \quad \frac{\left\langle S_{1}, s\right\rangle \rightarrow s^{\prime}}{\left\langle\text { if false then } S_{0} \text { else } S_{1}, s\right\rangle \rightarrow s^{\prime}}
$$

How about

$$
\frac{\left\langle S_{0}, s\right\rangle \rightarrow s_{0}^{\prime} \quad\left\langle S_{1}, s\right\rangle \rightarrow s_{1}^{\prime}}{\left\langle\text { if b then } S_{0} \text { else } S_{1}, s\right\rangle \rightarrow s^{\prime}}
$$

where $s^{\prime}=s_{0}^{\prime}$ if $\mathcal{B} \llbracket \mathrm{b} \rrbracket s=\mathrm{tt}$ and $s^{\prime}=s_{1}^{\prime}$ otherwise.
12 (Exercise 2.21) Prove that

$$
\left\langle S_{1}, s\right\rangle \Rightarrow^{k} s^{\prime} \text { implies }\left\langle S_{1} ; S_{2}, s\right\rangle \Rightarrow^{k}\left\langle S_{2}, s^{\prime}\right\rangle
$$

13 (Exercise 2.20) Find statements S_{1} and S_{2} and states s and s^{\prime} such that

$$
\left\langle S_{1} ; S_{2}, s\right\rangle \Rightarrow^{*}\left\langle S_{2}, s^{\prime}\right\rangle
$$

holds while $\left\langle S_{1}, s\right\rangle \Rightarrow^{*} s^{\prime}$ does not.

