
Lund University
Computer Science
Lennart Andersson

Seminar 1
EDA145

2011-03-25

Problems

These problems will be discussed on the seminar in week 2. Programs in Haskell are not required
to compile.

1 Define multiplication and exponentiation for the datatype N given that

data N = Zero | Suc N

add m Zero = m
add m (Suc n) = Suc (add m n)

(This problem has been slightly changed 2011-03-23. Either solution is acceptable, but
the optional part becomes more interesting this way.)

Optional problem. Generalize this construction by defining functions beyond exponen-
tiation. Define a recursive function

f :: Integer -> Integer -> Integer -> Integer

such that

f 0 m n = add m n
f 1 m n = mul m n
f 2 m n = exp m n
...

2 Prove

Lemma. Let m be any element in N. Then add n (Suc m) = add (Suc n) m for all n in
N.

3 State an induction principle for

data Tree a = Leaf a | Node (Tree a) (Tree a)

4 Define the N for the abstract grammar (Exercise 1.4)

n ::= 0 | 1 | 0 n | 1 n

5 Prove that A[[a[y 7→ a0]]]σ = A[[a]](σ[y 7→ A[[a0]]σ]). (Exercise 1.14.)

6 Define substitution for boolean expressions b[y 7→ a0] and prove that B[[b[y 7→ a0]]]σ =
B[[b]](σ[y 7→ A[[a0]]σ]). (Exercise 1.15.)

7 Define a natural semantics for binary numerals, Num, defined by the grammar n ::=
0 | 1 | n 0 | n 1. The formulae of the theory should be on the form 〈n〉 → z, where
n ∈ Num and z ∈ N is a natural number.

8 With the semantics of the previous problem and N from the text book use structural
induction and induction over the shape of derivation trees to prove that 〈n〉 → z if and
only if N [[n]] = z.

1

9 Extend the language While with an if-statement without an else part and define natural
semantics inference rules for it. The rules must not rely on the existence of the standard
if-statement.

10 Extend the language While with a Java-like do S while b statement and define structural
operational semantics inference rules for the statement. The rules must not rely on the
existence of the standard while-statement.

11 Will the semantics of While change if we replace [iftt
ns] and [ifff

ns] by

〈S0, s〉 → s′

〈if true then S0 else S1, s〉 → s′
〈S1, s〉 → s′

〈if false then S0 else S1, s〉 → s′

How about

〈S0, s〉 → s′0 〈S1, s〉 → s′1
〈if b then S0 else S1, s〉 → s′

where s′ = s′0 if B[[b]]s = tt and s′ = s′1 otherwise.

12 (Exercise 2.21) Prove that

〈S1, s〉 ⇒k s′ implies 〈S1;S2, s〉 ⇒k 〈S2, s
′〉

13 (Exercise 2.20) Find statements S1 and S2 and states s and s′ such that

〈S1;S2, s〉 ⇒∗ 〈S2, s
′〉

holds while 〈S1, s〉 ⇒∗ s′ does not.

2

