
F1
Overview

Lennart Andersson

Revision 2011-03-14

2011

Programming Language Theory 2011 F1-1

What is the value of x?

void p(int& x, int& y) {
x = 1;
y = 2;

}

int main() {
int z;
p(z, z);

}

Programming Language Theory 2011 F1-2

What is the value?

class Variable {
int value;
void assign(int value) {
this.value = value;

}
}

void p(Variable x, Variable y) {
x.assign(1);
y.assign(2);

}

Variable z;
p(z,z);

Programming Language Theory 2011 F1-3

Why take this course?

I Learn to read and write scientific articles with a theoretical
flavor.

Programming Language Theory 2011 F1-4



Who should not take this course?

I If you hate mathematics then you should keep away.

Programming Language Theory 2011 F1-5

Why formal semantics

I Exact definitions

I Programming as a science rather than an art

I Proving program properties

I New perspectives on programs

I Discriminates good program constructs from bad

I Supports construction of correct programs

Programming Language Theory 2011 F1-6

Different semantics

I Operational

I Denotational

I Axiomatic

I Predicate transformer

I Attribute grammars

I Algebraic semantics

Programming Language Theory 2011 F1-7

Structural operational semantics

< z = x ; x = y ; y = z , [x 7→ 5, y 7→ 7, z 7→ 0] > ⇒

< x = y ; y = z , [x 7→ 5, y 7→ 7, z 7→ 5] > ⇒

< y = z , [x 7→ 7, y 7→ 7, z 7→ 5] > ⇒

[x 7→ 7, y 7→ 5, z 7→ 5]

Programming Language Theory 2011 F1-8



Natural operational semantics

σ0 = [x 7→ 5, y 7→ 7, z 7→ 0]

σ1 = [x 7→ 5, y 7→ 7, z 7→ 5]

σ2 = [x 7→ 7, y 7→ 7, z 7→ 5]

σ3 = [x 7→ 7, y 7→ 5, z 7→ 5]

< z = x , σ0 >→ σ1 < x = y , σ1 >→ σ2

< z = x ; x = y , σ0 >→ σ2 < y = z , σ2 >→ σ3

< z = x ; x = y ; y = z , σ0 >→ σ3

Programming Language Theory 2011 F1-9

Denotational semantics

A state is a function (map) from names to values.

σ0 = [x 7→ 5, y 7→ 7, z 7→ 0]

State = Name → Z

Programming Language Theory 2011 F1-10

Denotational semantics

The denotational semantics of a statement is a function from
states to states.

Sds [[x = e]] ∈ State → State

Sds [[z = x ]](σ0) = σ1

σ0 = [x 7→ 5, y 7→ 7, z 7→ 0]

σ1 = [x 7→ 5, y 7→ 7, z 7→ 5]

Programming Language Theory 2011 F1-11

Denotational semantics

Sds [[z = x ; x = y ]](σ0) =

Sds [[x = y ]](Sds [[z = x ]](σ0)) =

(Sds [[x = y ]] ◦ Sds [[z = x ]])(σ0)

Sds [[z = x ; x = y ]] = Sds [[x = y ]] ◦ Sds [[z = x ]]

Programming Language Theory 2011 F1-12



Weakest precondition semantics

Weakest precondition semantics is a variant of axiomatic
semantics.

Swp[[z = x ; x = y ; y = z ]](postcondition) =
weakest precondition

Swp[[z = x ; x = y ; y = z ]](x = m ∧ y = n) =

(x = n ∧ y = m)

Swp[[z = x ; x = y ; y = z ]] ∈ Predicate → Predicate

Programming Language Theory 2011 F1-13

Lambda calculus

I Minimal functional language

I Simple syntax

I Simple semantics

I (λx .x x)(λx .x) = (λx .x)(λx .x) = λx .x

I Untyped

Programming Language Theory 2011 F1-14

Recursive definitions and domain theory

Theorem
This theorem is false.

Programming Language Theory 2011 F1-15

Liar paradox

All Cretans lie.

(Stated by a Cretan.)

Programming Language Theory 2011 F1-16



A recursive definition

Let X be a set of numbers.

X = {0} ∪ (X + 1), where

X + 1 = {n + 1 | n ∈ X}

I Is there a solution?

I Are there several solutions?

I Which is the intended solution?

Programming Language Theory 2011 F1-17

Other recursive definitions

Let A and B be a sets.

A = {A}
B = B ∪ {B}

I Are there solutions?

I Are there several solutions?

I Which are the intended solutions?

Programming Language Theory 2011 F1-18

Domain theory

Domain theory provides means to investigate recursive definitions.
It is required as a basis for denotational semantics.

A domain is partially ordered set with a possibility to define limits
of sequences.

The partial order, often denoted by v, may be interpreted as “is
less defined than” or “has less information than”.

Programming Language Theory 2011 F1-19

Type inference

I Haskell has an advanced polymorphic type system

I map (\x -> x+1) [1, 2, 3] = [2, 3, 4]

I map :: (a -> b) -> [a] -> [b]

I Infer types using unification.

Programming Language Theory 2011 F1-20



Prolog

I Prolog is a programming language based on predicate logic.

I A program consists of facts (axioms) and inference rules.

I The execution model uses unification.

Programming Language Theory 2011 F1-21

Execution models

I Imperative languages (text book).

I SECD-machine for lambda calculus.

I Execute Prolog programs using unification.

Programming Language Theory 2011 F1-22

Other topics

I The Peano axioms; m + n = n + m.

I Natural deduction; how do we think?

I Attribute grammars; another way to specify semantics of
programming languages.

I Dependent types; types may be used to specify the meaning
of a program to any desired degree of precision.

Programming Language Theory 2011 F1-23

This week

I Overview (today)

I Concrete and abstract representation, Grammars, Regular
expressions (tomorrow)

I Haskell (Wednesday)

I Seminar 1 (Friday)

Programming Language Theory 2011 F1-24



Seminars

How?

Programming Language Theory 2011 F1-25


