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What is the value of x?

void p(int& x, int& y) {
x = 1;
y = 2;

}

int main() {
int z;
p(z, z);

}
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What is the value?

class Variable {
int value;
void assign(int value) {
this.value = value;

}
}

void p(Variable x, Variable y) {
x.assign(1);
y.assign(2);

}

Variable z;
p(z,z);
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Why take this course?

I Learn to read and write scientific articles with a theoretical
flavor.
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Who should not take this course?

I If you hate mathematics then you should keep away.
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Why formal semantics

I Exact definitions

I Programming as a science rather than an art

I Proving program properties

I New perspectives on programs

I Discriminates good program constructs from bad

I Supports construction of correct programs
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Different semantics

I Operational

I Denotational

I Axiomatic

I Predicate transformer

I Attribute grammars

I Algebraic semantics
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Structural operational semantics

< z = x ; x = y ; y = z , [x 7→ 5, y 7→ 7, z 7→ 0] > ⇒

< x = y ; y = z , [x 7→ 5, y 7→ 7, z 7→ 5] > ⇒

< y = z , [x 7→ 7, y 7→ 7, z 7→ 5] > ⇒

[x 7→ 7, y 7→ 5, z 7→ 5]
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Natural operational semantics

σ0 = [x 7→ 5, y 7→ 7, z 7→ 0]

σ1 = [x 7→ 5, y 7→ 7, z 7→ 5]

σ2 = [x 7→ 7, y 7→ 7, z 7→ 5]

σ3 = [x 7→ 7, y 7→ 5, z 7→ 5]

< z = x , σ0 >→ σ1 < x = y , σ1 >→ σ2

< z = x ; x = y , σ0 >→ σ2 < y = z , σ2 >→ σ3

< z = x ; x = y ; y = z , σ0 >→ σ3
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Denotational semantics

A state is a function (map) from names to values.

σ0 = [x 7→ 5, y 7→ 7, z 7→ 0]

State = Name → Z
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Denotational semantics

The denotational semantics of a statement is a function from
states to states.

Sds [[x = e]] ∈ State → State

Sds [[z = x ]](σ0) = σ1

σ0 = [x 7→ 5, y 7→ 7, z 7→ 0]

σ1 = [x 7→ 5, y 7→ 7, z 7→ 5]
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Denotational semantics

Sds [[z = x ; x = y ]](σ0) =

Sds [[x = y ]](Sds [[z = x ]](σ0)) =

(Sds [[x = y ]] ◦ Sds [[z = x ]])(σ0)

Sds [[z = x ; x = y ]] = Sds [[x = y ]] ◦ Sds [[z = x ]]
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Weakest precondition semantics

Weakest precondition semantics is a variant of axiomatic
semantics.

Swp[[z = x ; x = y ; y = z ]](postcondition) =
weakest precondition

Swp[[z = x ; x = y ; y = z ]](x = m ∧ y = n) =

(x = n ∧ y = m)

Swp[[z = x ; x = y ; y = z ]] ∈ Predicate → Predicate
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Lambda calculus

I Minimal functional language

I Simple syntax

I Simple semantics

I (λx .x x)(λx .x) = (λx .x)(λx .x) = λx .x

I Untyped
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Recursive definitions and domain theory

Theorem
This theorem is false.
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Liar paradox

All Cretans lie.

(Stated by a Cretan.)
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A recursive definition

Let X be a set of numbers.

X = {0} ∪ (X + 1), where

X + 1 = {n + 1 | n ∈ X}

I Is there a solution?

I Are there several solutions?

I Which is the intended solution?
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Other recursive definitions

Let A and B be a sets.

A = {A}
B = B ∪ {B}

I Are there solutions?

I Are there several solutions?

I Which are the intended solutions?
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Domain theory

Domain theory provides means to investigate recursive definitions.
It is required as a basis for denotational semantics.

A domain is partially ordered set with a possibility to define limits
of sequences.

The partial order, often denoted by v, may be interpreted as “is
less defined than” or “has less information than”.
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Type inference

I Haskell has an advanced polymorphic type system

I map (\x -> x+1) [1, 2, 3] = [2, 3, 4]

I map :: (a -> b) -> [a] -> [b]

I Infer types using unification.
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Prolog

I Prolog is a programming language based on predicate logic.

I A program consists of facts (axioms) and inference rules.

I The execution model uses unification.
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Execution models

I Imperative languages (text book).

I SECD-machine for lambda calculus.

I Execute Prolog programs using unification.
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Other topics

I The Peano axioms; m + n = n + m.

I Natural deduction; how do we think?

I Attribute grammars; another way to specify semantics of
programming languages.

I Dependent types; types may be used to specify the meaning
of a program to any desired degree of precision.
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This week

I Overview (today)

I Concrete and abstract representation, Grammars, Regular
expressions (tomorrow)

I Haskell (Wednesday)

I Seminar 1 (Friday)
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Seminars

How?

Programming Language Theory 2011 F1-25


