
Lund University
Computer Science

EDA145
Lecture notes

7 Weakest precondition semantics

In axiomatic semantics the formulae take the form {P}S{Q}. For a given postcondition, Q, and
a given statement, S, there are many preconditions, P , that make the formula true or provable.
For the While language there is always a weakest precondition with this property. For the
assignment statement this precondition is present in

{Q[x 7→ a]}x := a{Q}

We shall define the semantics of While using such weakest preconditions. We define the semantic
function

Swp ∈ Stm→ Lexp→ Lexp

where Lexp is a set of logical expressions. We do not specify the grammar and will freely
use any logical expression containing the arithmetic and boolean expressions of While as well
as standard mathematical expressions of numerical and boolean. There are two disjoint sets
of variables, Var with programming variables, and Const with “mathematical” variables. A
mathematical variable has a value that cannot be changed by a program, hence the name Const.
Formally we consider an element of Lexp to be a function that, given a state and an ’assignment’
for all (free) mathematical variables, will return a boolean value. In the concrete representation
we just use the expression without indicating that it is a function and we may freely change the
representation as long as it doesn’t change the function.

In particular we will use ∀n ∈ S . e and ∃n ∈ S . e where n ∈ Const, S is a set, and e is a
logical expression in Lexp. e will usually contain free occurrences of n. ∀n ∈ S . e will be true
iff e is true when n is replaced by all values in S. An example ∀n ∈ N . (n+ 1)2 = n2 + 2n+ 1.

∃n ∈ S . e will be true iff e is true if n is replaced by at least one value in S. An example
∃n ∈ N . (n + 1)2 = 25. When there is no doubt about which set n should belong to this
information may be omitted, e.g. ∃n . (n+ 1)2 = 25.

We may perform substitutions in Lexp using the notation e[x 7→ a] where x ∈ Var and a ∈
Aexp. Again we omit the formal definition. It should be noted that n in ∀n ∈ S . e is a bound
variable and substitution may require name changes as in the λ-calculus.

The semantic function is defined over the structure of Stm.

Swp[[x := a]]P M= P [x 7→ a]

Swp[[skip]]P M= P

Swp[[S1;S2]]P M= Swp[[S1]](Swp[[S2]]P)

Swp[[if b then S1 else S2]]P M= (b⇒ Swp[[S1]]P) ∧ (¬b⇒ Swp[[S2]]P)

Swp[[while b do S]]P M= ∃n ∈ N . Wn(P)

where W0(P) M= ¬b ∧ P

Wn+1(P) M= W0(P) ∨ Swp[[if b then S else skip]](Wn(P))

The first two lines require no explanations. The case for composition is intuitive. To find the
weakest precondition for S1;S2 to establish P we first compute the weakest precondition for S2

to establish P , i.e. Swp[[S2]]P . This must in turn be established by S1, so the execution must
start in a state where Swp[[S1]](Swp[[S2]]P) holds.

35

Exempel.

Swp[[x:=x+1; x:=x*x]](x = 4) =
Swp[[x:=x+1]](Swp[[x:=x*x]](x = 4)) =
Swp[[x:=x+1]](x ∗ x = 4) =
((x + 1) ∗ (x + 1) = 4) =
x = 1 ∨ x = −3

♦

The definition for if statement looks natural. If b is true then S1 must establish P which it will
do with the precondition Swp[[S1]]P and if b is false then S2 must establish P .

Exempel.

Swp[[if 0≤x then y:=x else y:=-x]](y = |n|) =
(0 ≤ x⇒ Swp[[y:=x]](y = |n|)) ∧ (¬(0 ≤ x)⇒ Swp[[y:=-x]](y = |n|))
(0 ≤ x⇒ x = |n|) ∧ (¬(0 ≤ x)⇒ −x = |n|) =
(|x| = |n|)

♦

The definition for the while statement requires some explanation. If we start the execution
of while b do S in a state where W0 = ¬b ∧ P is true then statement will terminate without
executing S in a state where P will hold. It can be proved by induction that

Wn(P) = Swp[[IF ; IF ; ...; IF]](¬b ∧ P), with n repetitions

where IF M= if b then S else skip. We understand that Wn(P) is the weakest precondition
that will make the while statement establish P in at most n iterations. Finally ∃n ∈ N . Wn(P)
will be true if the while statement establish P in a finite number of iterations. In fact, ∃n ∈
N . Wn(P) will be equal to Wk(P), where k is the smallest number such that Wk(P) is true,
when such a k exists.

We observe that Swp[[]] specifies total correctness; if the precondition is satisfied then the execu-
tion will terminate.

Sats. Swp[[S]]ff = ff for all S ∈ Stm. �

Proof. (Exercise). The proof is by induction over the structure of S. To justify this proof
method the definition of Swp[[S]] must be compositional. Thus the definition of Wn+1(P) must
be changed

Wn+1(P) M= W0(P) ∨ (b⇒ Swp[[S]](Wn(P)) ∧ (¬b⇒Wn(P)))

Exempel. From the previous theorem it follows that there is no statement in While
with the property Swp[[S]]P = tt for all P . If such a statement existed it would put all
programmers out of work; it could be used to establish any predicate, even x = x + 1.
♦

36

The function Swp[[S]] is monotone when we use implication, ⇒, as the ordering relation.

Sats. If P ⇒ Q then Swp[[S]]P ⇒ Swp[[S]]Q for all S ∈ Stm. �

Sats. If P ⇒ Swp[[S]]R then {P} S {R}. �

In the present setting an invariant for while b do S is a predicate, P , satisfying b ∧ P ⇒
Swp[[S]]P .

7.1 Finding invariants

In order to compute something that couldn’t be computed by hand repetition or recursion is
needed. In order to prove something defined by recursion an inductive assumption is needed
and for a repetition an invariant plays a similar role.

If a program is constructed without considering the possibility to prove (in principle) that the
program satisfies its specification then it will be very hard or impossible to actually prove it.
Actually thinking about invariants and formally defining them will improve program quality
even if a proof is not constructed.

When a programmer wants to establish some postcondition, P , and a while statement may solve
the problem, P itself cannot be an invariant since it will not be satisfied before the execution of
the while statement. A natural way to find an invariant is to find a weaker condition than P .

If the postcondition is a conjunction, P = P1 ∧ P2, then P1 may be a suitable invariant and the
negation of P2 should be used to construct b in while b do S.

Exempel. Suppose that we want to develop a program that computes the integer
part of the square root of a given natural number n, i.e a program that establishes

R
M= x2 ≤ n ∧ n < (x + 1)2

Delete the second conjunct and let

P
M= x2 ≤ n

be an invariant. The statement x:=0 will establish P . In order to establish R we
need a statement that preserves P and gets us closer to R. Being slightly informal
we use n in the program rather than a program variable that has the same value as
n.

while ((x+1)*(x+1) ≤ n) do x:=x+1

We observe that Swp[[x:=x+1]]P = ((x + 1)2 ≤ n) so P is an invariant. ♦

Another way to make the postcondition weaker is to replace some “constant” with a program
variable with bounds.

37

Exempel. We consider the same problem as above, but now we use

P
M= x2 ≤ n ∧ n < (y + 1)2 ∧ x ≤ y ≤ n

To establish P we use x:=0; y:=n . In order to get closer to R we have to de-
crease y-x to 0. Dividing something in two equal parts sometimes leads to efficient
algorithms. Let’s try it:

while ¬(x = y) do

d := (x+y)/2;

if d*d ≤ n then x:=d

else y:=d

where we can prove that P is an invariant. We have extended arithmetic expressions
with division by 2. This cannot give rise to an runtime error which general division
could. ♦

Our next example deals with arrays. We will use the notation v[a], where v is an array name
and a is an integer expression, to denote an array element with a given index. We ignore the fact
that arrays should have fixed index bounds and errors should occur if we use an index outside
the bounds. We have to define

Swp[[v[a1] := a2]]R M= R[v 7→ v[a1 7→ a2]]

The intention is that we are to replace every occurrence of the array name v in R by an array
expression v[a1 7→ a2]. When evaluated in a state, σ, the value of every element of v[a1 7→ a2]
has the same value in v except for the element with index A[[a1]]σ which has the value A[[a2]]σ.

If v is an array name v[k..l] will denote the subarray with indices from k to l.

Exempel. Let v[0..n−1] be a sorted array. We say that v has a plateau with length
p if there is an index i such that v[i] = v[i+ p− 1] (and equal to all the elements in
between). We are going to construct a program to compute the length of the longest
plateau in v[0..n− 1]. We want to establish

R
M= (∃k ∈ {0..n−p} . v[k] = v[k+p−1])∧ (∀k ∈ {0..n−p−1} . v[k] 6= v[k+p])

As an invariant we use

P
M= (1 ≤ i ≤ n) ∧ p is the length of the longest plateau in v[0..i− 1]

P is established by i:=1; p:=0. To get closer to R we increment i. There are two
cases; either p remains the same or it is incremented:

while ¬(i=n) do

if ¬(v[i] = v[i− p]) then i:=i+1

else (i:=i+1; p:=p+1)

Constructing a program for this problem without considering invariants would prob-
ably lead to a more complicated solution. ♦

7.2 References

These notes are inspired by

1. D. Gries: The Science of Programming, Springer Verlag, 1981.

2. E.C.R Hehner: The Logic of Programming, Prentice-Hall, 1984.

38

