
Lund University
Computer Science
Lennart Andersson

2009-04-14

Programming Language Theory
Lecture notes

5 Lambda calculus

Lambda calculus is a formal system based on a notation for functions that was introduced by
Church in 1930. The objective was to make a general theory of functions and to provide a formal
basis for logic and mathematics.

The first goal has established a rich and beautiful theory which has inspired the construction of
functional programming languages such as Lisp and Haskell and has been used to define formal
semantics for programming languages.

The objects of the theory are terms which may be interpreted both as functions defined by
computational rules and values which are the arguments of the functions. There is no distinction
between functions and values and a function may even be applied to itself.

There are terms called combinators in the λ-calculus with a certain property which can describe
computations without variables. The corresponding theory is called combinatory logic having
Schönfinkel and Curry as originators.

Lambda notation

A standard way to define a function in mathematics is to give it a name and give the value of
the function as an expression in the formal arguments the function. A simple example is the
successor function, f(x) = x+1. Using λ-notation we can express this function as a λ-expression
without giving it a name. We write λx . x+ 1. Just as f may be applied to the argument 1, f(1),
we may apply the lambda expression to the same argument, (λx . x+ 1)(1). It is customary to
omit the parentheses around the argument when it is a simple constant or variable, so we write
(λx . x+ 1) 1.

We evaluate both f(1) and (λx . x+ 1) 1 by substituting 1 for x in x + 1 and performing the
addition.

In mathematics a function of two variables may be defined like f(x, y) = x + y. With λ-
notation we would write λ(x, y) . x+ y to denote the same function. There is, however, another
way to regard the addition function, not usually done in mathematics. Using lambda notation
we could write λx . λy . x+ y or more clearly λx . (λy . x+ y). Applying this λ-expression to 1
yields λy . 1 + y after substituting 1 for x. So the result of the application is a function, the
successor function. Starting with ((λx . λy . x+ y) 1) 2 we get (λy . 2 + y) 1 and 2 + 1 after two
substitutions.

In mathematics there are also functions returning functions as values and having function argu-
ments. They are usually called operators or functionals. A well known example is the differen-
tiation operator d

dxx
2 = 2x. Another one is composition of functions. If f and g are functions,

e.g. from R to R, h = f ◦ g is defined by h(x) = f(g(x)). The differentiation and composition
operators are functions according to the standard set theoretic definition of a function as a set
of pairs.

21

Grammar for the lambda calculus

The objects of the λ-calculus are called λ-terms. There are three kinds of λ-terms. The simplest
one is an identifier. The form of an identifier is not very important. The theory needs an
unbounded supply of identifiers, but in our examples we will usually manage with a small number
of them. We could allow Java identifiers, but it is customary to use single letter identifiers,
possibly with an index. Examples: x, y, z, x0 and x1.

The second kind is an abstraction. An abstraction can be thought of as a function with a formal
parameter and a function body which is a λ-term. A simple example is the identity abstraction
λx . x. When an abstraction is part of a more complex λ-term we will enclose it in parentheses,
(λx . x).

The third kind is an application. It can be thought of as an application of a function to its
argument, but any λ-term may be applied to any λ-term, so x y is a legal application as
is (λx . x) y. When an application appears inside a complex term it may be surrounded by
parentheses, ((λx . x) y).

The first concrete grammar requires a parentheses pair around each abstraction and each appli-
cation. Using Backus-Naur formalism we write

term → id | (λid . term) | (term term)

where a term is defined to be an identifier, id, an abstraction with an identifier and a term or
an application with two terms.

Some examples of λ-terms:

((λx . x) (λy . y))

(λx . (λy . x))

(λx . (λy . (λz . ((x z) (y z)))))

We observe that there are no numbers or arithmetic operators in the λ-calculus. The calculus
can be used to denote and evaluate numerical functions, but the numbers will be represented
by λ-terms and the arithmetic operators will be defined by λ-terms.

When we state and prove theorems about λ-calculus we need names standing for arbitrary terms
and identifiers. We will use capitals in the middle of the alphabet, sometimes with an index,
to range over λ-terms and small Greek letters, possibly indexed, to range over identifiers. Thus
there are three kinds of λ-terms:

An identifier σ,

an abstraction (λα .M),

and an application (M1 M2),

A Haskell data type for representing λ-terms is

data Lambda = Id String | Abstr String Lambda | Appl Lambda Lambda

In Java we would define one abstract class Lambda with three subclasses.

Nielson would give the following abstract grammar

M ::= x | λx .M |M1 M2

22

Simplified syntax

A complex λ-term will have a lot of parentheses. Parentheses is not very reader friendly. One
usually introduces a relaxed syntax for λ-terms where parentheses may be omitted using two
associativity rules.

A sequence of applications is assumed to associates to the left so that

M1 M2 M3 . . . Mn
∆= (. . . ((M1 M2) M3) . . . Mn)

We use the symbol ∆= when we make definitions.

The abstraction dot, on the other hand, associates to the right so that

λσ1 . λσ2 λσn .M
∆= (λσ1.(λσ2 . (. . . (λσn .M) . . .)))

These conventions is expressed in the following concrete grammar.

term → factor factor∗

factor → id | λid . term | (term)

The grammar is ambiguous; there are, for example, two derivation trees for λx . x x, correspond-
ing to λx . (xx) or (λx . x)x. The first one should be chosen; the term in the abstraction should
extend as far as possible.

An even shorter notation with the same meaning will be used

λσ1 σ2 . . . σn .M
∆= (λσ1.(λσ2 . (. . . (λσn .M) . . .)))

Free and bound identifiers

In f(x) = x+y the identifier x is a formal parameter while y is a identifier whose value is defined
elsewhere. In λ-calculus we will call x a bound identifier and y a free identifier. We define the
set of free identifiers in M inductively.

F(σ) ∆= {σ }

F(λσ .M) ∆= F(M) \ {σ }

F(MN) ∆= F(M) ∪ F(N)

The set of bound identifiers is defined likewise.

B(σ) ∆= ∅

B(λσ .M) ∆= B(M) ∪ {σ }

B(MN) ∆= B(M) ∪ B(N)

A identifier may occur both free an bound in a λ-term, but each occurrence of an identifier is
either free or bound. In (λx . x) x the first two occurrences of x is bound while the last is free.
We define the set of all identifiers occurring in a λ-term;

I(M) ∆= F(M) ∪ B(M)

23

A λ-term without free identifiers is called a combinator. Some important combinators have
standard names:

I
∆= λx . x

K
∆= λx . λy . x

K∗
∆= λx . λy . y

S
∆= λx . λy . λz . xz(yz)

Conversions

There are two kinds of conversions that may be performed on λ-terms, α- and β-conversions. α-
conversion means renaming all bound occurrences of an identifier in an abstraction. β-conversion
corresponds to applying a function to an argument and represents one step in the evaluation of
a function. The conversions are essentially performed by substitutions. There are however some
complications with name collisions.

The basic operation is substitution. First we define substitution in λ-terms. We use M1[M/σ] to
denote the result after substituting the term M for the identifier σ in the term M1. We define
it over the structure of M .

σ[M/σ] ∆= M

τ [M/σ] ∆= τ

if τ and σ are different identifiers
(M1M2)[M/σ] ∆= (M1[M/σ])(M2[M/σ])

Substitution in abstractions are more complicated since with a naive substitution a free occur-
rence of an identifier in N may become bound in the abstraction as in (λx . y)[x/y].

(λσ .M)[N/σ] ∆= (λσ .M)

(λτ .M)[N/σ] ∆= (λτ . (M [N/σ]))
if τ 6= σ ∧ τ 6∈ F(N)

(λτ .M)[N/σ] ∆= (λυ . ((M [υ/τ])[N/σ]))
if τ 6= σ ∧ τ ∈ F(N) ∧ υ 6∈ I(M) ∪ I(N) ∪ {σ}

In the last line υ is a new identifier not occurring in M or N .

We can formally define the conversions with axioms and inference rules. We start with α-
conversion.

λσ .M −→α λτ .M [τ/σ] provided that τ 6∈ F(M)

M −→α M
′

M N −→α M
′N

N −→α N
′

M N −→α M N ′

M −→α M
′

λσ .M −→α λσ .M
′

We write M =α N if there is a sequence M = M0 −→α M1 −→α · · · −→α Mk = N for some
k ≥ 0. =α is an equivalence relation, i.e.

24

1. M =α M , reflexivity

2. if M =α N then N =α M , symmetry

3. if M =α N and N =α L then M =α L, transitivity

We define −→β similarly
(λσ .M)N −→β M [N/σ]

M −→β M
′

M N −→β M
′N

N −→β N
′

M N −→β M N ′

M −→β M
′

λσ .M −→β λσ .M
′

We write M �β N if there is a sequence M ≡ M0 −→β M1 −→β · · · −→β Mk ≡ N for some
k ≥ 0. The relation �β is not an equivalence relation, why?

We write M =β N if M �β N or N �β M . The relation =β is an equivalence relation.

Normal form

Let M be a λ-term. If there is no λ-term N such that M −→β N we say that M is a normal form.
If a λ-term is not a normal form then it must have a sub term that has the form ((λα .M)N).
Such a sub term will be called a redex.

The term λx . (x y) is a normal form and ((λx . x)y) may be reduced to y which is a normal
form. We say that a λ-term, M , can be reduced to normal form if there is a normal form N
such that M �β N .

Some terms cannot be reduced to normal form:

(λx . (xx))(λx . (xx)) −→β (xx)[(λx . (xx))/x] = (λx . (xx))(λx . (xx))

Reductions may even make a term more complicated:

(λx . (xxx))(λx . (xxx)) −→β (λx . (xxx))(λx . (xxx))(λx . (xxx))

Further reductions will make it even worse.

A term may often be reduced in several ways. If the middle application in

(λxy . y)((λx . xxx)(λx . xxx))z

is reduced repeatedly we will never reach a normal form while reduction from the left will produce
z after two reductions.

The normal form would not deserve its name if a term could be reduced to two essentially
different normal forms. Church and Rosser have proved that this is not the case.

Theorem [Church-Rosser]. If M �β N and M �β N
′ where N are N ′ normal

forms then N =α N
′. �

25

The original proof required several pages. A recent proof by Per Martin-Lf is substantially
shorter. The proof consists of several proofs by structural induction. We will omit the proof.

A stronger version of the theorem can be used when the terms cannot be reduced to normal
form.

Theorem [Diamond property]. If M �β M0 and M �β M1 then there are
terms, M ′0 =α M

′
1, such that M0 �β M

′
0 and M1 �β M

′
1. �

Henceforth we will write M = N if and only if there are λ-terms, M ′ =α N
′, such that M �β M

′

and N �β N
′.

Two reduction orders are of special interest: normal order and applicative order. Normal order
means that in each step the leftmost redex is reduced. An example:

(λx . xx)((λy . y)(λz . z)) −→β ((λy . y)(λz . z))((λy . y)(λz . z)) −→β

(λz . z)((λy . y)(λz . z)) −→β (λy . y)(λz . z) −→β λz . z

Using applicative order we compute the argument in an application before reducing the ap-
plication. The argument may contain applications with arguments which have to be reduced
recursively. An example

(λx . xx)((λy . y)(λz . z)) −→β (λx . xx)(λz . z) −→β (λz . z)(λz . z) −→β λz . z

Church and Rosser also showed that if a term may be reduced to normal form this can be done
by using normal order reductions. We have seen that applicative order may fail to terminate
when normal order reduction succeeds.

Fixed points

Given a mapping f ∈ R→ R we say that x is a fixed point of f if f maps x on itself. The fixed
points are solutions to the equation f(x) = x. The function f(x) = x2 − 2 has two fixed points,
−1 and 2. In same way we say that a λ-term is a fixed point of a combinator F if FX = X.
The following theorem shows that any combinator has a fixed point and provides a method to
find it.

Theorem [Fixed point]. For any combinator F there is a combinator X such that
FX = X. Furthermore, there is a combinator, Y ∆= λf.(λx . f(xx))(λx . f(xx)), such
that Y F is a fixed point of F , i.e. Y F = F (Y F). �

Proof. Let W ∆= λx . F (xx) and X
∆= WW . Then

X = WW = (λx . F (xx))W = F (WW) = FX

Further

Y F = (λx . F (xx))(λx . F (xx)) = WW = X

�

26

The fixed point combinator Y can be used to mimic evaluation of functions defined by recursion
in the λ-calculus. We present an informal example using λ-notation with natural numbers,
arithmetic operators and conditional expressions. The factorial function is defined by

fac(n) ∆= if n = 0 then 1 else n ∗ fac(n− 1);

Using λ-notation we can write

fac = λn . if n = 0 then 1 else n ∗ fac(n− 1)
= (λf . (λn . if n = 0 then 1 else n ∗ f(n− 1)))fac = F fac

where

F
∆= λfn . (if n = 0 then 1 else n ∗ f(n− 1))

Now fac is a fixed point F . Let us investigate if YF is a fixed that represents the factorial
function. Let us check that fac 3 can be reduced to 6.

fac 3 = (Y F)3 = F (Y F)3 = if 3 = 0 then 1 else 3 ∗ ((Y F)2) = 3 ∗ ((Y F)2)
(Y F)2 = F (Y F)2 = if 2 = 0 then 1 else 2 ∗ ((Y F)1) = 2 ∗ ((Y F)1
(Y F)1 = F (Y F)1 = if 1 = 0 then 1 else 1 ∗ ((Y F)1) = 1 ∗ ((Y F)0

(Y F)0 = F (Y F)0 = if 0 = 0 then 1 else 0 ∗ ((Y F)0) = 1

In the following sections we shall represent natural numbers by λ-terms and define combinators
that can be used to add and multiply numbers represented in this way. This will make this
example fully formal.

Booleans and conditional expressions

Boolean values will be used in conditional expression to choose between alternative expressions.
It is convenient to use representations which make this choice simple. Thus we define

T
∆= K = λx . λy . x

F
∆= K∗ = λx . λy . y

A conditional expression if B then P else Q may now be represented by BPQ where B is
a term that either reduces to T or F. We get

T PQ = KPQ = (λx . λy . x)PQ = P

F PQ = K∗PQ = (λx . λy . y)PQ = Q

The logical terms T and F can be applied to two terms and select the first or the second.

27

Pairs and natural numbers

We can represent an ordered pair as a λ-term:

[M,N] ∆= λz.zMN

and extract the components with T and F .

[M,N]T = M

[M,N]F = N

We use pairs to represent natural numbers in a way that makes the successor function simple.
We will use dne as a name of the λ-term which represents the natural number n and define dne

by induction:

d0e ∆= I = λx . x
dn+ 1e ∆= [F, dne]

There are simple combinators that represents the successor function suc n = n + 1, the prede-
cessor function pred n = n− 1 and the predicate iszero n = (n = 0):

Suc
∆= λx . [F, x]

Pred
∆= λx . x F

IsZero
∆= λx . x T

We leave it as an exercise to show that these terms are adequate representations.

We proceed as we did for the factorial function to get a representation for addition.

add n m = if m = 0 then n else suc(add n (pred m));

Translation to λ-calculus

Add
∆= λn . λm . IsZero m n (Suc(Add n (Pred m)))

This is rewritten as a fixed point equation

Add = F Add

where

F = λf . λn . λm . IsZero m n (Suc(f n (Pred m)))

with the solution Add = Y F .

In a similar way we may define a combinator Mul such that Mul dme dne = dm ∗ ne. With
these in hand a factorial combinator may be constructed.

28

Problems

1. Rewrite the following terms with all parentheses required by the formal grammar.

(a) λxy.yx

(b) λxyz.xz(yz)

(c) w(λxyz.xz(yz))uv

2. Rewrite the following terms according to the simplified syntax.

(a) (λx . (λy.(x(xy))))

(b) (λf.(λn.(λm.(((z m) n)(s((a n)(f m)))))))

3. Evaluate

(a) (λy . x(λx . x))[λy . xy/x]

(b) (y(λv . xv))[λy . vy/x]

4. Reduce (λx . xxx)((λyz.y)I(SS)) to normal form, where I and S are defined in the lecture
notes.

5. Compute (λyz.zy)((λx . xxx)(λx . xxx))(λw.I).

6. Compute SSSSSS. (This is rather long.)

7. Let

A
∆= λabcdefghijklmnopqstuvwxyzr.r(thisisafixedpointcombinator)

B
∆= AAAAAAAAAAAAAAAAAAAAAAAAAA

Show that B is a fixed point combinator, i.e. BF = F (BF) for any F .

8. Use the idea from the previous problem to define another simpler fixed point combinator.

9. Rewrite d1e, d2e och d3e using I, F and pairs, [,].

10. Verify that T and F can be used to extract the components of a pair.

11. Verify that Suc, Pred and IsZero has the following properties.

Suc dne = dn+ 1e

Pred dn+ 1e = dne

IsZero d0e = T

IsZero dn+ 1e = F

12. Show that Add d1e d1e = d2e , where Add = Y F as in the lecture notes.

13. Find a combinator which has itself as a fixed point, i.e. F F = F .

14. Find a combinator M such that M I S S = M . Hint: Rewrite the equation as a fixed
point equation.

15. It can be shown that all combinators can be expressed by S and K alone. Show that
SKK = I.

29

