Programming Language Theory Lecture notes

3 Structural induction

The induction axiom for the natural numbers can be used to establish induction principles that are more convenient to prove properties of values defined by an abstract grammar. A *property* will be a function from some type T defined by the grammar to the set of truth values \mathbb{B} . We always require that a property p is a *total* function, i.e. it is defined for all values in T. We say that $t \in T$ has property p if and only if p(t).

3.1 Induction over N

Addition for the data type N is defined by

```
add Zero m = m
add (Suc n) m = Suc (add n m)
```

We are going to show that add n = add = n for all n = add = n for all n = add = n.

We will use an induction principle for the Haskell type N defined in the previous section.

Theorem [Induction principle]. Let $p \in \mathbb{N} \to \mathbb{B}$ be a property. If

- a) p(Zero) is true and
- b) p(k) implies p(Suc k) for every $k \in N$

then $p(\mathbf{n})$ is true for all $\mathbf{n} \in \mathbb{N}$.

We will establish the principle in a subsequent section.

We start to prove that n + 0 = n for all n, i.e. add n Zero = n. Since this result is a special case of the main theorem we state it as a lemma.

```
Lemma. add n Zero = n for all n in N. ■
```

Proof. We use the induction principle with $p(n) = (add \ n \ Zero=n)$.

- a) First we prove that p(Zero) is true, i.e add Zero Zero = Zero. This follows from the first clause for add.
- b) Next we assume that p(k) is true for an arbitrary but fixed $k \in \mathbb{N}$, i.e. add k Zero = k. We shall prove that $p(\operatorname{Suc} k)$, i.e. add (Suc k) Zero = Suc k. : add (Suc k) Zero = Suc(add k Zero) = Suc k.

Thus booth the conditions hold and the proof is complete. \square

We leave the next lemma as an exercise.

Lemma. Let m be any element in N. Then add n (Suc m) = add (Suc n) m for all n in N. \blacksquare

The main theorem:

Theorem. add n m = add m n for all n, m in N.

Proof. Let $m \in \mathbb{N}$ be arbitrary but fixed throughout this proof. Let p(n) = (add n m = add m n)

- a) p(Zero) = (add Zero m = add m Zero). This is true because of the first lemma.
- b) Assume that add k m = add m k for an arbitrary but fixed k. We have to show that add (Suc k) m = add m (Suc k).
 add (Suc k) m = Suc (add k m) = Suc (add m k) = add (Suc m) k.
 add m (Suc k) = add (Suc m) k by the previous lemma.

3.2 Expressions

Next we state an induction principle for the arithmetic expressions from the first lecture.

```
data Expr = Num Integer | Add Expr Expr | Mul Expr Expr
  deriving Eq
```

Theorem [Induction principle]. Let $p \in \text{Expr} \to \mathbb{B}$ be a property. If

- a) p(Num n) is true for all n.
- b) p(e1) and p(e2) implies $p(Add\ e1\ e2)$ for every e1, $e2 \in Expr$
- c) p(e1) and p(e2) implies p(Mul e1 e2) for every e1, $e2 \in Expr$

then p(e) is true for all $e \in Expr.$

We define two functions:

```
value :: Expr -> Integer
value (Num n) = n
value (Add expr1 expr2) = value expr1 + value expr2
value (Mul expr1 expr2) = value expr1 * value expr2
mirror :: Expr -> Expr
mirror (Num i) = Num i
mirror (Add e1 e2) = Add (mirror e2) (mirror e1)
mirror (Mul e1 e2) = Mul (mirror e2) (mirror e1)
```

Then the following is true.

Theorem. value e = value (mirror e) is true for all $e \in Expr$.

Proof.

```
a) If e = Num i then
           value (mirror e) =
           value (mirror (Num i)) =
           value (Num i) =
           value e
 b) Let e = (Add e1 e2) and assume that value e1 = value (mirror e1) and
    value e2 = value (mirror e2) then
           value (mirror e) = value (mirror (Add e1 e2)) =
           value (Add (mirror e2) (mirror e1)) =
           value (mirror e2) + value (mirror e1)=
           value e2 + value e1 =
           value e1 + value e2 =
           value (Add e1 e2) =
           value e
 c) When e = Mul e1 e2 we reason in the same way.
```

3.3 Induction principles

We shall prove the induction principle for Expr.

Theorem. Let $p \in \text{Expr} \to \mathbb{B}$ be a property. If

- a) p(Num n) is true for all n.
- b) p(e1) and p(e2) implies $p(Add\ e1\ e2)$ for every e1, $e2 \in Expr$
- c) p(e1) and p(e2) implies p(Mul e1 e2) for every e1, $e2 \in Expr$

then p(e) is true for all $e \in Expr$.

Proof. Define the depth d of an Expr:

```
d :: Expr -> Integer
d (Num _) = 0
d (Add e1 e2) = 1 + max (d e1) (d e2)
d (Mul e1 e2) = 1 + max (d e1) (d e2)
```

Let q(n) be the property that all Expr e with d e $\leq n$ have the property p(e). Let $A = \{ n \mid q(n) \}$ be the set of all n such that q(n) is true.

- 1. Because of a) we have that $0 \in A$.
- 2. Now assume that $k \in A$ where k is a fixed arbitrary number. This means that all e with $d \in k$ has property p. We have to show that q(k+1) is true, i.e. all e with $d \in k+1$. It remains to prove that all e with $d \in k+1$ has property p. Since e must be either of the form Add e1 e2 or Mul e1 e2 where $d \in k+1$ at $e \in k+1$ as property $e \in k+1$.

Using	the	induction	axiom	for	natural	numbers	we	conclude	that	A =	\mathbb{N}	and	the
proof	is co	omplete. \Box	j										

It is easy to extend this theorem to any recursive data type that does not depend on a mutually recursive data type.