
Lund University
Computer Science
Lennart Andersson

2009-05-04

Programming Language Theory
Lecture notes

7 Domain theory

Recursion and recursive definitions are abundant in programming and computer science. A
recursive definition is in some sense circular; we are defining something in terms of itself. It is
far from obvious that such definitions are meaningful, and some of them lead to paradoxes.

An old paradox is the Liars paradox: A Cretensian said: “All Cretensians are liars.” Assuming
that a liar lies all the time, this statement can be neither true nor false.

Another famous paradox is Bertrand Russel’s paradox in intuitive set theory. In this theory
there is no restriction on the elements of a set. A set has (zero or more) elements and an
element may belong to a set. A set may be a member of a set and it is reasonable to talk about
the set of all sets, U . A set belonging to itself is a questionable option, so let us consider the set
of all sets not belonging to itself. Formally M = {S ∈ U | S 6∈ S }. Now, does M ∈M?

Assume that M ∈ M . By the definition of M we conclude that M does not belong to M , i.e.
M 6∈M . This is a contradiction.

Instead, assume that M 6∈M . It follows that M must be an element of M , i.e. M ∈M . Again
we have a contradiction. This shocked the mathematics community in the early 20th century.

We are familiar with recursive definitions of functions, e.g. the factorial function, fac ∈ N→ N

fac(n) ∆= if n = 0 then 1 else n ∗ fac(n− 1)

or by cases

fac(0) ∆= 1

fac(n) ∆= n ∗ fac(n− 1), n > 0

We are used to interpret this definition operationally and evaluation for a given argument can
be done by repeatedly replacing the left member of the second definition with the right member
until finally we can use the first definition. This example follows a simple pattern called primitive
recursion and there is no problem with termination.

There are other recursive function definitions that are more problematic. Some examples.

f0(0) ∆= 1

f0(n) ∆= f0(n+ 1)/(n+ 1), n ≥ 0

The operational interpretation will not terminate, and there are two definitions of f0(0), but
they don’t seem to be contradictory.

f1(n) ∆= f1(n)

This is a very simple recursive definition, but what is its the meaning? And what about

f2(0) ∆= 0

f2(n) ∆= f2(n+ 1), n > 0

30

and

f3(n) ∆= f3(n) + 1 ?

Another interesting example is the Ackerman function, Ack ∈ N× N→ N.

Ack(n, 0) = n+ 1
Ack(0,m+ 1) = Ack(1,m)

Ack(n+ 1,m+ 1) = Ack(Ack(n,m+ 1),m)

It is recursive in an intricate way and it is not obvious that the operational interpretation will
terminate. If you try to compute Ack(5, 5) you may loose your patience.

In the operational semantics for While we defined the semantic function Sns ∈ Stm →
(State ↪→ State). In the denotational semantics for While we define the semantics by such
semantic functions directly. The type of the semantic function will be Sds ∈ Stm→ (State ↪→
State), where ds indicates that we are using denoational semantics.

The first three axioms are easy. We just have to define how to compute the final state for a
given statement and an initial state.

Sds[[x := a]]σ = σ[x 7→ A[[a]]σ]
Sds[[skip]]σ = σ

Sds[[S1;S2]]σ = Sds[[S2]](Sds[[S1]]σ)

In the last axiom we must first compute the state after execution of the first statement and
then compute the final state using that state and the second statement. Using the composition
operator for functions the last axiom could be written as

Sds[[S1;S2]] = (Sds[[S2]]) ◦ (Sds[[S1]])

For the if statement we borrow the syntax for a conditional expression from C and Java.

Sds[[if b then S1 else S2]]σ = B[[b]]σ ? Sds[[S1]]σ : Sds[[S2]]σ

For the while statement we are inspired by the semantic equivalence of while b do S and
if b then (S; while b do S) else skip.

Sds[[while b do S]]σ = B[[b]]σ ? Sds[[S; while b do S]]σ : σ

Writing W for Sds[[while b do S]] we thus have

Wσ = B[[b]]σ ? W (Sds[[S]]σ) : σ

or

W = λσ . (B[[b]]σ ? W (Sds[[S]]σ) : σ)

This is a recursive definition of W and we are not sure that the recursion will terminate; in fact
we know that for some choices of b, S and σ it will not. Is such a recursive definition meaningful?

In this chapter we will investigate when such recursive definitions are meaningful and what their
meanings are.

31

7.1 Ordered sets

A partially ordered set or shorter a poset is a set with some order relation. Some familiar
examples are the set of natural numbers and the ≤ relation and the set of all subsets of N and
the subset relation ⊆. For the first example all elements in N are related; if m,n ∈ N then
either m ≤ n or n ≤ m (or both). Such a poset is called a totally ordered set. For the second
example some sets are ordered with respect to each other while others are not, e.g neither
{ 0, 1 } ⊆ { 1, 2 } nor { 1, 2 } ⊆ { 0, 1 }. We will use the symbol v as a generic order symbol.
In some of our applications it will order elements with partial information and even if we will
carelessly read it as “is less than”. It should rather be read as “is less defined than or equal to”.

We have carefully defined what a function f ∈ A → B is; it is a subset of A × B where there
is exactly one pair (a, b) for each a ∈ A. A × B is the set of all pairs with a first component
from A and a second component from B. As an example, the logical not function is the set
{ (tt,ff), (ff, tt) }.

A (binary) relation from A to B is a subset of A×B. Thus ≤ on { 0, 1, 2 }× { 0, 1, 2 } is the set
{ (0, 0), (0, 1), (0, 2), (1, 1), (1, 2), (2, 2) }. If A = B we call it a (binary) relation on A.

In general, an order relation on a set D is a relation, v, that is

1. reflexive: d0 v d0

2. transitive: if d0 v d1 and d1 v d2 then d0 v d2

3. anti-symmetric: if d0 v d1 and d1 v d0 then d0 = d1

for all d0, d1, d2 ∈ D

We will write P = 〈DP ,vP 〉 for a generic poset. We will drop the subscripts when there is
little room for confusion.

If there is an element d0 ∈ D such that d0 v d for all d ∈ D then d0 is called a least element or
a bottom element. It is an exercise to show that if there is a bottom element it is unique.

A bottom element of a poset P is often denoted by ⊥P or just ⊥. If there is no bottom element
one often adds a bottom element to the set and redefines the relation making this new element
less than all other elements. This operation is called lifting the poset. If P = (D,v) is a poset
then P⊥

∆= 〈D⊥,v⊥ 〉, where D⊥
∆= D ∪ {⊥}, where ⊥ is a new element not in D and d1 v⊥ d2

iff d1 v d2 or d1 =⊥.

7.2 Hasse diagrams

Sometimes posets are drawn as Hasse diagrams. Such a diagram is like a directed graph but
may contain an infinite number of nodes.

Consider the poset 〈 { ∅, { 0 }, { 1 }, { 0, 1 } },⊆〉. It will be described by

{0,1}

{0} {1}

{}

32

To construct a Hasse diagram one uses one node in the graph for each set element and draws an
edge from d0 to d1 for all elements such that d1 ⊆ d0. Instead of drawing an arrow on each edge
one puts d0 below d1. Finally one removes all edges which can be deduced as a consequence
of the transitivity property of the relation. In the above example the edge from { 0, 1 } to ∅ is
removed (or not drawn in the first place). Technically one draws a graph describing the least
order relation whose “transitive closure” is the given order relation.

For any set D we have the discrete poset (D,=) since = satisfies the requirements for an order
relation. Example: ({ 1, 2, 3 },=)

1 2 3

Next consider a poset with three elements, {ff, tt,⊥} and an order relation given by the diagram.
This poset is called the flat boolean poset.

ff tt

⊥

This will model a situation where we want to reason about a boolean value. Either we know
nothing about the value, represented by ⊥ or we know exactly what the value is, ff or tt For
any set, D, we define the flat poset of D to be D[

∆= (D,=)⊥.

For the set of natural numbers the conventional order, ≤, may be used. In this poset 0 is the
bottom element and the Hasse diagram is a single chain of nodes.

1

2

3

0

In the domain theory other orderings for the natural numbers are more interesting. You could
add a bottom element to N and define a flat ordering as we did for the boolean values; either
you know nothing of a natural number or you know exactly what it is.

Another ordering describes a “lazy” representation of the natural numbers. We consider the set
N ∪ {n | n ∈ N }, where 0 is the bottom element and Hasse diagram is

33

1

2

0

0

2

1

The underlined element n represents the knowledge that a number is greater than or equal to
n, but we don’t know which is the case.

7.3 Poset examples

We are going to define a number of operations and properties for posets in general. For some
familiar posets these operations will be well known and we will use these posets in examples to
follow.

1. Let A be a set. The set of all subsets of A ordered with the subset relation is a poset,
(2A,⊆).

2. The set of partial functions on N, N ↪→ N, ordered by the following relation. Let f, g ∈
N ↪→ N and define f v g if and only if f(n) is defined implies that g(n) is defined and
has the same value, f(n) = g(n). We have considered a function as a set of pairs or even
defined the concept as such. This relation between functions is just the ordinary subset
relation for those sets. Thus (N ↪→ N,⊆) is a poset.

3. Less interesting in this context is the poset (N,≤).

4. Next consider the set of predicates on a set A, i.e. boolean valued functions, A→ B. Then
〈A→ B,⇒〉 where p1 ⇒ p2 iff p1(a)⇒ p2(a) for all a ∈ A, is a poset.

7.4 Bounds

Let P ∆= 〈D,v〉 be a poset and let A ⊆ D. Then d ∈ D is an upper bound of A if a v d for all
a ∈ A. We will write A vP d or just A v d if d is an upper bound of A.

If the set of upper bounds of A has a least element then we call it the supremum or join of A. It
is denoted by

⊔
P A or just

⊔
A. When A has two elements we may write d0 t d1

∆=
⊔
{ d0, d1 }.

7.5 Monotone functions

If f ∈ R→ R is a real monotone function then it is either non increasing or nondecreasing at all
points. In the first case we would require that x1 ≤ x2 implies f(x1) ≤ f(x2) for all x1, x2 ∈ R.

This concept is carried over to functions between posets. Let P and Q be posets and F ∈ DP →
DQ. We say that F is monotone if d0 vP d1 implies F (d0) vQ F (d1) for all d0, d1 ∈ DP . It
would have been more appropriate to call this order preserving.

34

7.6 Continuous functions

A real function is said to be continuous at a if limx→a f(x) = f(a). This could be written

lim
x→a

f(x) = f(lim
x→a

x)

i.e. for a continuous function we may switch the order of taking the limit and applying a function.

A similar property is defined for monotone poset functions, but with t taking the role of lim.
A chain in a poset P is a subset C ⊆ DP which is totally ordered by vP . Thus if c1, c2 ∈ C
then c1 v c2 or c2 v c1. A poset is chain complete, abbreviated ccpo, if every chain has a least
upper bound.

This chapter is named domain theory. A definition of a domain is thus required. There are
different definitions of the concept domain. They all share the property that they are posets
that are “complete” in some way. The ccpo above is just one choice.

A function f ∈ DP → DQ is continuous if it is monotone and
⊔

Q{ f(c) | c ∈ C } = f(
⊔

P C) for
all nonempty chains C in P .

It is convenient to extend f so that it also can take arguments that are subsets of DP . Let
F ∈ (DP × 2DP)→ (DQ × 2DQ) be that function. Thus F (d) ∆= f(d) if d ∈ DP .

If A ⊆ DP then F (A) ∆= { f(a) | a ∈ A }. With this extension we can write the requirement for
continuity as

⊔
F (C) = F (

⊔
C) for all nonempty chains C in DP .

In real analysis it is sometimes possible to find a fixed point of f ∈ R → R by iterating xi+1
∆=

f(xi) from some suitable starting value, x0. If |f ′(x)| < 1 in some interval containing both x0

and a fixed point of f then limi→∞ xi will exist and be equal to the fixed point. The limit could
also be written as limi→∞ f

i(x0). We will see a similar result in a ccpo setting.

Theorem [Least fixed point]. Let F ∈ DP → DP be a continuous function on a
ccpo P with least element ⊥P . Then

d
∆=

⊔
{Fn(⊥P) | n ∈ N }

exists and is the least fixed point of F . �

Proof. First we show that d exists. Since F is continuous and hence monotone
Fn ⊥Pvp F

n+1 ⊥P for all n and {Fn ⊥P | n ∈ N } is a chain in DP . Since DP is a
ccpo the least upper bound of this chain exists.

Next we show that d is a fixed point of F .

F (d) = F (
⊔
{Fn(⊥P) | n ≥ 0 }) by definition of d

=
⊔
{F (Fn(⊥P)) | n ≥ 0 } since F is continuous

=
⊔
{Fn+1(⊥P) | n ≥ 0 } by definition of Fn+1

=
⊔
{Fn(⊥P) | n ≥ 0 } since F 0(⊥P) =⊥PvP F 1(⊥P)

= d by definition of d

Finally we show that d is the least fixed point. Assume that d′ is any fixed point of
F . We have that ⊥PvP d′ and since F is monotone Fn ⊥PvP Fnd′ for all n. But
Fnd′ = d′. Hence d′ is an upper bound of {Fn(⊥P) | n ∈ N }. Now d is the least
upper bound of this chain. It follows that d vP d′. �

35

7.7 Applications

The factorial function fac satisfies the equation

fac(n) = if n = 0 then 1 else n ∗ fac(n− 1)

which may be written as

fac = (λf . (λn . if n = 0 then 1 else n ∗ f(n− 1))) fac

Thus fac must be a fixed point of F (f) ∆= λn . if n = 0 then 1 else n ∗ f(n− 1). Now F ∈ (N ↪→
N) → (N ↪→ N) and (N ↪→ N,⊆) is a ccpo with a least element, the totally undefined function,
∅. Disregard the fact that we don’t know if F is continuous and start iterating. Thus

f0
∆= ∅

fi+1
∆= F (fi)

We get f1 = { (0, 1) }, f2 = { (0, 1), (1, 1) }, f3 = { (0, 1), (1, 1), (2, 2) } , f4 = {(0, 1), (1, 1), (2, 2),
(3, 6)}, We could justify that fn = { (k, k!) | 0 ≤ k < n − 1 } by induction. We see that⊔
{ fn | n ∈ N } denotes the factorial function. We could proceed to show that F is indeed

continuous, but we refrain from doing it.

7.8 A dual theory

For a binary relation ρ ⊆ A × B one defines the inverse relation ρ−1 ∆= { (b, a) | (a, b) ∈ ρ }.
In (N,≤) the inverse relation is ≥. In a poset P = (D,v) we will use w to denote the inverse
relation of v. It is obvious that P−1 ∆= (DP ,wP) is a poset. By inverting the relation we are
“turning everything upside down”. The least element in P will become the largest element in
P−1, top, denoted by >. The least upper bound in P will become the largest lower bound in
P−1. The operation to compute this bound is denoted by .

In this setting we also have a fixed point theorem.

Theorem [Largest fixed point]. Let F ∈ DP → DP be a continuous function
on a poset P = (DP ,vp) where each chain has a largest lower bound, with largest
element >P . Then

d
∆= {Fn(>P) | n ∈ N }

exists and is the largest fixed point of F . �

A poset P = (D,v) with the property that both least upper and largest lower bounds exist for
all subsets of D will be called a complete lattice. This condition is stronger than the condition
for being a ccpo.

7.9 An informal computation

Consider the language While with an abort statement, but without the while statement. Next
consider a “statement equation” W = if b then (S ; W) else skip If there are “solutions”
to this equation one of them should be “equal to” W = while b do S .

36

Define

w0
∆= abort

wi+1
∆= if b then (S;wi) else skip

It is tempting to define

while b do S
∆= lim

n→∞
wi

but this requires a definition of limn→∞.

while b do S
∆=

⊔
{wi | i ∈ N }

but in order to do that we need a ccpo (Stm,v). We will not try this. However we will take a
similar approach when defining the meaning function for the while statement in denotational
semantics.

7.10 Which functions are continuous?

The answer to the above question is: Most interesting and computable functions are continuous.
There are extremely many ways to define functions on ccpo’s. Most of them will not even be
monotone and most of them will not be interesting. We will describe one most interesting but
uncomputable function that is not monotone.

Consider the language While. We will make it a poset (Stm,vns) by defining S1 vns S2

iff Sns[[S1]] ⊆ Sns[[S2]] and equality is defined by =ns. Strictly speaking we are considering
“equivalence classes” in While, not the individual elements in Stm. There is, for example, the
equivalence class containing all statements that are equivalent to skip. This class will contain
e.g. skip and skip; skip and x:=x and skip; x:=x. There is a bottom element in this set
containing all statements that will loop from any state. It would be nice to have a function that
decides if a statement belongs to this class,

loops ∈ Stm→ T

such that

loops(S) ∆= tt, if S loops

loops(S) ∆= ff, otherwise

We have to specify some order relation for T. It is reasonable to choose the discrete order
and the poset (T,=). Now while true do skip vns skip but loops(while true do skip) 6v
loops(skip) since tt and ff are not related by =. It is well known that loops is uncomputable;
it is the halting problem and you cannot write a program that decides if another program loops
forever or not.

Another reasonable poset choice would be to use (T,=)⊥. This would not change the conclusion.
A less reasonable choice would be to let T have an ordering relation with tt v ff. But then the
negation of loops, terminates, would not be monotone.

In order to apply the fixed point theorem we need to prove that F is continuous. If our main
object was to study domain theory we could consider different ways to construct ccpo’s and
functions on them and we would find that most useful constructions yield continuous functions.
The first result on such a course follows below.

A function F ∈ D → E is said to be strict if F (⊥D) =⊥E .

37

Theorem. Any flat poset D[= (D,=)⊥ is a ccpo and any strict function F ∈ D[→
E is continuous. �

Proof. Since every chain in D has at most two elements it has a least upper bound.
If it has two elements then one of them is ⊥D.

In each case it is immediate that F (
⊔
C) =

⊔
F (C). �

It follows that all arithmetic functions, such as + ∈ N × N → N, are continuous when we use
the discrete ordering.

Since our main objective is to study semantics of programming languages we will just con-
sider constructions needed to define the semantic function for a while statement and similar
statements.

This is a good place to look at the denotational semantics of While. We will return here after
discussing Table 4.1 in Nielson.

7.11 Continuity properties

Theorem [4.24].1 Every ccpo has a least element. �

Proof. Let P = (D,v) be a ccpo. By definition ∅ is a chain; since there are
no elements in ∅ the requirements are vacuously fulfilled. Thus

⊔
∅ exists. Every

element in D will vacuously be an upper bound of ∅. It follows that
⊔
∅ v d for all

d ∈ D. So there is a least element. �

Theorem [4.25]. Let A,B be sets. Then (A ↪→ B,⊆) is a ccpo. If C is a chain in
A ↪→ B then

⊔
C =

⋃
C. �

Proof. First we have to show that
⋃
C is an element in A ↪→ B, i.e. a func-

tion. The union of a number of functions is not always a function. Assume that
(a1, b1), (a1, b2) ∈

⋃
C. We have to show that b1 = b2. There must be functions

f1, f2 ∈ C such that (a1, b1) ∈ f1 and (a1, b2) ∈ f2. But since C is a chain f1 ⊆ f2 or
f2 ⊆ f1. In either case (a1, b1) and (a1, b2) must both belong to f1 or f2. It follows
that b1 = b2.

Next we observe that
⋃
{ f ∈ C } is an upper bound of C.

Finally we must show
⋃
C is the least upper bound. Let g ∈ A ↪→ B be an upper

bound of C. Then f ⊆ g for all f ∈ C. It follows that (
⋃
C) ⊆ g. �

Composition of functions preserves monotonicity and continuity as seen by the following theo-
rems.

Theorem [4.29]. Let (D1,v1), (D2,v2) and (D3,v3) be ccpo’s and f ∈ D1 → D2,
g ∈ D2 → D3 be monotone. Then h ∈ D1 → D3 where h(d) ∆= g(f(d)) = (g ◦ f)(d)
is monotone. �

Proof. Let d v d′ in D1. Then f(d) v1 f(d′) and g(f(d)) v2 g(f(d′)), i.e. h(d) v2

h(d′). �

1Theorem numbers refer to Nielson.

38

Chains are mapped into chains by monotone functions.

Theorem [4.30]. Let (D1,v1) and (D2,v2) be ccpo’s. If f ∈ D1 → D2 is monotone
and C is a chain in D1 then f(C) is a chain in D2. Furthermore

⊔
2 f(C) v2 f(

⊔
1C)

�

Proof. Remember that f(C) = { f(c) | c ∈ C }. If C is empty then
⊔

1C =⊥1 and⊔
2 f(C) =⊥2 and ⊥2v2 f(⊥1).

If C is nonempty and f(c1), f(c2) ∈ f(C) then either c1 v1 c2 or c2 v1 c1. It follows
that f(c1) v2 f(c2) or f(c2) v2 f(c1) and f(C) is a chain.

To prove that
⊔

2 f(C) v2 f(
⊔

1C) let c be any element in C. Then c v1
⊔

1C and
by monotonicity f(c) v2 f(

⊔
1C). So f(

⊔
1C) is an upper bound for f(C) and it

must be greater than the least upper bound. �

Continuity would change the last relation into an equality.

Theorem [4.35]. If f and g are continuous then so is g ◦ f . �

Proof. By 4.29 we know that g ◦ f is monotone. Let C be a chain. Since f is
continuous

⊔
f(C) = f(

⊔
C). f is monotone. Thus f(C) is a chain. It follows that⊔

g(f(C)) = g(
⊔
f(C)). Combining these equalities we get

⊔
g(f(C)) = g(f(

⊔
C))

or
⊔

(g ◦ f)(C)) = (g ◦ f)(
⊔
C).

It remains to show that
⊔

(g ◦ f)(C) v (g ◦ f)(
⊔
C) for every chain C. �

The next two theorems are required to define the denotational meaning of the while statement.

Theorem [4.43]. Let g0 ∈ State ↪→ State, p ∈ State → T and F ∈ (State ↪→
State)→ (State ↪→ State) be defined by

F (g) ∆= λσ . if p σ then g σ else g0 σ

Then F is continuous on (State ↪→ State,⊆). �

In the proof we will not use any property of State so it could be replaced by any set. When
we use the theorem g and g0 will be semantic functions. The predicate p will be the semantic
function for a boolean expression.

Proof. First we show that F is monotone. Assume that g1 ⊆ g2. We have to show
that F (g1) ⊆ F (g2). Let (σ, σ′) ∈ F (g1). Now there are two cases.

• If p σ = tt then σ′ = g1 σ. Since g1 ⊆ g2 it follows that σ′ = g2 σ and
(σ, σ′) ∈ F (g2).

• If p σ = ff then σ′ = g0 σ and (σ, σ′) ∈ F (g2).

To prove that F is continuous, let C be a nonempty chain in State ↪→ State. We
must show that

⊔
F (C) = F (

⊔
C). By 4.30 we know

⊔
F (C) v F (

⊔
C) so it suffices

to show that F (
⊔
C) v

⊔
F (C). Let (σ, σ′) ∈ F (

⊔
C). Again there are two cases.

• If p σ = tt then σ′ = (
⊔
C) σ. Since C is a chain of partial functions, for every

g ∈ C either g σ = σ′ or g σ is undefined and there is some g ∈ C such that
g σ = σ′. It follows that (σ, σ′) ∈

⊔
C = F (

⊔
C).

39

• If p σ = ff then σ′ = g0 σ and (σ, σ′) ∈ F (
⊔
C).

�

Finally we need

Theorem [4.45]. Let g0 ∈ State ↪→ State, and F ∈ (State ↪→ State) →
(State ↪→ State) be defined by

F (g) ∆= g ◦ g0 = λσ . g(g0(σ))

Then F is continuous. �

This means that the operation of composition of a function with a fixed function is continuous.
The theorem makes no assumptions on the function argument and this result is independent of
4.35.

Proof. First we show that F is monotone. Assume that g1 ⊆ g2. We have to show
that F (g1) ⊆ F (g2). Let (σ, σ′) ∈ F (g1). This means that there is a σ0 such that
g1(σ) = σ0 and g0(σ0) = σ′. It follows that g2(σ) = σ0 and (σ, σ′) ∈ F (g2).

To prove that F is continuous, let C be a nonempty chain in State ↪→ State. We
must show that

⊔
F (C) = F (

⊔
C). Again by Lemma 4.30 it suffices to show that

F (
⊔
C) v

⊔
F (C). Let (σ, σ′) ∈ (

⊔
C) ◦ g0. Thus there is a σ0 such that g0(σ) = σ0

and (
⊔
C)(σ0) = σ′. It follows that for each g ∈ C either g σ0 is undefined or

g σ0 = σ′ and that the latter case occurs at least once. We conclude that either
(g ◦ g0)(σ) is undefined or (g ◦ g0)(σ) = σ′. This proves that (σ, σ′) ∈

⊔
F (C). �

7.12 Why choose the least fixed point?

If we apply the least fixed point construction to

f2(0) ∆= 0

f2(n) ∆= f2(n+ 1), n > 0

we will get

f2(0) ∆= 0

f2(n) ∆= undefined if n > 0

However for any k ∈ N

f2(0) ∆= 0

f2(n) ∆= k n > 0

will be a fixed point. So if we do not choose the least fixed point we have to make some arbitrary
choice to make the function more defined. This is not reasonable for a definition.

40

7.13 References

These notes are inspired by

1. S. Abramsky, A. Jung: Domain Theory, www.cs.bham.ac.uk/~axj/pub/papers/handy1.pdf

2. D.A. Schmidt: Denotational Semantics, Allyn and Bacon, 1986.

3. J.E. Stoy: Denotational Semantics: The Scott-Strachey Approach to Programming Lan-
guage Theory, MIT Press, 1979.

41

