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8 Statement logic

8.1 Introduction

Statement logic is about computing with the logical operators 'not’, ’and’, and ’or’. We assume
that the reader is familiar with such computations both from mathematics and programming.

We will introduce rules that formalize our way to reason. These rules will have the same form
as some rules used to define the semantics of programming languages.

Statement logic is the basis for predicate logic and logic programming.

8.2 Natural deduction

When you prove something you will use inference or deduction rules to combine statements that
already have been proved or are assumed to be true A common inference rule is modus ponens
(rule of detachment). If it is known that P — @ and that P are true one may deduce that @ is
true.

Inference rules are sometimes described by a formula. Modus ponens is given by

u[Mp]

Above the line are the assumptions, the statements that must be true in order to conclude that
the statement below the line, the conclusion, to be true. The name of the rule may be indicated
near the line. The order of the assumptions is not significant.

When using the rule P and@ must be replaced by expressions of statement logic. The rule is
a schema and each use of the rule is called an instance. We are using capital letters as place
holders or variables to be replace by logic expressions. Below two instances of modus ponens
are shown.

p P—”I[MP] (rAq) (pAQ)—Hp[MP]

q -p

When replacing the the variables with composite expressions they should be enclosed in paren-
theses which may be removed if this can be done without changing the meaning.

In a mathematical theory one must always specify which inference rules may be used in proofs.
Often there is also azxioms which are statements that assumed to be true without proof. The
axioms describes the fundamental properties of the objects of the theory. In most theories logic
is an integral part of the theory and standard inference rules formalizes the meaning of the
logical operators.

We shall present some of the inference rules used in mathematical proofs. This particular
formalism is called natural deduction. With these rules it is possible to deduce all tautologies.
The purpose of this section is to show how one may make deductions in a way that makes it
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possible to check them by mechanical means, e.g. by using a computer program. If the purpose
is just to prove that an expression is a tautology it is easier to mechanically fill in a truth table.
If the number of statement letters is large it is sometimes possible to find shortcuts by using the
structure of the expression. However, this is not always the case; the general problem belongs
to class called NP-complete problems that may be intractable when the number of variables
increases.

to every operator there are rules to introduce and to eliminate the operator. The names of the
rules indicate weather an operator is eliminated (E) or introduced (I).

The rules for A.
PAQ PAQ P Q

5 AE, 0 [AE,] A0 [A1]

The rules are easy to understand and accept. The first one states that if we know that P A @ is
true we may conclude that P is true, The second rules says the analogue of ). The third rule
states that if we know that P is true and that @ is true then P A @ is true.

The instances of the rules may be combined so that the conclusions of one or several instances
become the premises of another. Such a construction is called a derivation. A derivation is
thus a tree. A derivation describes a logical reasoning where the statements in the leaves are
premisses that are sufficient to prove the conclusion at the root.

With the above rules we can construct a derivation that proves that if p A ¢ is true then ¢ A p
is true. Since it is easy to see which rule that gas been used in every step the derivation cab be
presented without such information. Since the order of the premises is insignificant the third
derivation is also valid.

pPAq pPAq pPAq pAG  PAg pPAq
— &)l — &l —
q p q p p q
(A1 —_— E—
qAp qAPp qAp

When there is a derivation which uses a set of premises A that proves the conclusion ) we write
AFQ

This formula is called a sequent. Our example shows that {pAq} F ¢gAp. If A is the empty set
it may be omitted, - Q.

Activity 1

Construct a derivation that proves { (p Aq) AT} EpA(gAT).

Some rules allows the use of a hypothetical assumption in the derivation. The hypothetical
assumption is written inside brackets when introduced and stroked out when the rule is used.
The assumption is discharged. A hypothetical assumption may be used with the inference rules
in the same way as other premises.

We meet a hypothetical assumption in the introduction rule for — that states that if we can
deduce ) from a hypothetical assumption, P, then we may conclude that P — ) and at the
same time strike out the hypothesis in the derivation.
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[P]

PHQPH

In the general case the derivation of () is a tree and it is allowed to introduce the hypothetical
assumption zero or more times. Some simple examples using the rule:

pAq pPAq
[p A Cﬂ [ ] [/\Ez] [ ] [/\El]
[p] [AE,] q p
— [~1] P [A1]
p—p — =] qAD
PAG—D — [~1]
PAg—qAD

The elimination rule for — is the same as modus ponens.

P P—qQ
Q

[—E]

Activity 2

Let us use the rules to prove that {p — ¢,q — r} F p — r. The derivation has been started
with a hypothetical assumption. Complete the derivation and indicate which rule has been
used in each node.

] p—gq
R
- [—E]
[—1]
p—r
The rules for V:
[P] Q] . 0
PVQ :
R R PvQWh] PVQWM
[VE]

R

The first rule state that if we know that P or @ is true and if we have a derivation of R
provided that @ is true, then we may conclude that R is true. The introduction rules are easy
to understand.

Activity 3
Show that {pV (¢A7)}FpVa.
[g Al
[p] q
pVi(gAr) pVyq pVq

pVq

33



The introduction rule for — is about proof by contradiction. In a proof by contradiction one
assumes the negation of the statement one plans to prove and shows that this assumption leads
to a contradiction, i.e. two statements where one statement is the negation of the other.

-P

As before it is admissible to introduce the hypothetical assumption any number of times. If
both R and =R have been derived without any hypothetical assumptions then any statement
may be concluded.

A simple example using — introduction shows that = —(p A —p).

[p A —p] [p A —p]

p —p
=(p A —p)

The elimination rule for — differs from the other elimination rules as it eliminates two operators
in one step:

p ' F

Using the inference rules all tautologies may be derived without any undischarged assumptions
and vice versa. If we use = P to mean that P is true for all all values of the identifiers in P
then we have

Theorem. = P om och endast om - P. W

In mathematical theorems and proofs one often use the symbol < in this context:
FEPsEP

The proof is a usual, by induction. We will not prove this theorem.

Some tautologies requires derivations that are astonishingly long. The following derivation of
F p V —p uses three hypothetical assumptions.

Activity 4
Indicate which rule is used in each node. |
-p
[Vi]
W][v] pV-p h@vﬂM][]
I I
pV-p [=(p V)] —=p
1] — [l
-p p
(1]
- _‘E]
V —p
When the derivation is complete all hypothetical assumptions have been discharged. We have
proved - pV —p.

34



It is easy to understand that we could replace p by any statement logic expression. We could
add a new inference rule

PV -P

without changing the set of statements that could be deerived, but some derivations would be
shorter. Such rules are named derived. In mathematical proofs many sch derived rules are used.

This derived rule differs from the other rules in the respect that it has no premises. An axiom
may be seen as an inference rule without premises.

8.3 Theories

A mathematical theory is defined by a number of axioms and inference rules. Using these
theorems may be derived. An axiom is a statement that is assumed to be true without proof.
The axiom describes the fundamental properties of the elements of the theory. In the geometrical
theory of Euclides points, lines, and planes are some of the fundamental elements.
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