Programming language theory

3 Structural induction

The induction axiom for the natural numbers can be used to establish induction principles that are more convenient to prove properties of values defined by an abstract grammar. A property will be a function from some type T defined by the grammar to the set of truth values \mathbb{B}. We always require that a property p is a total function, i.e. it is defined for all values in T. We say that $\mathrm{t} \in \mathrm{T}$ has property p if and only if $\mathrm{p}(\mathrm{t})$.

3.1 Induction over N

Addition for the data type N is defined by
add Zero $\mathrm{m}=\mathrm{m}$
add (Suc n) $m=$ Suc (add $n m$)

We are going to show that add $\mathrm{n} \mathrm{m}=$ add m n for all n and m of type N .
We will use an induction principle for the Haskell type N defined in the previous section.

Sats.Induction principle Let $p \in \mathbb{N} \rightarrow \mathbb{B}$ be a property. If
a) p (Zero) is true and
b) $p(\mathrm{k})$ implies $p($ Suc k$)$ for every $\mathrm{k} \in \mathrm{N}$
then $p(\mathrm{n})$ is true for all $\mathrm{n} \in \mathrm{N}$.

We will establish the principle in a subsequent section.
We start to prove that $n+0=n$ for all n, i.e. add n Zero $=n$. Since this result is a special case of the main theorem we state it as a lemma.

Lemma. add n Zero $=\mathrm{n}$ for all n in N .

Proof. We use the induction principle with $p(\mathrm{n})=($ add n Zero=n).
a) First we prove that p (Zero) is true, i.e add Zero Zero $=$ Zero. This follows from the first clause for add.
b) Next we assume that $p(\mathrm{k})$ is true for an arbitrary but fixed $\mathrm{k} \in \mathrm{N}$, i.e. add k Zero $=\mathrm{k}$. We shall prove that p (Suc k), i.e. add (Suc k) Zero = Suc k. : add (Suc k) Zero $=$ Suc (add k Zero) $=$ Suc k.

Thus booth the conditions hold and the proof is complete.

We leave the next lemma as an exercise.

Lemma. Let m be any element in N. Then add $n(S u c m)=$ add (Suc n) m for all n in N .

The main theorem:

Sats. add $\mathrm{n} \mathrm{m}=$ add m n for all n, m in N .

Proof. Let $\mathrm{m} \in \mathrm{N}$ be arbitrary but fixed throughout this proof. Let $p(\mathrm{n})=(\operatorname{add} \mathrm{n} \mathrm{m}=\operatorname{add} \mathrm{m} \mathrm{n})$
a) $p($ Zero $)=($ add Zero $\mathrm{m}=$ add m Zero $)$. This is true because of the first lemma.
b) Assume that add $\mathrm{k} \mathrm{m}=$ add m k for an arbitrary but fixed k . We have to show that add (Suc k) $\mathrm{m}=$ add m (Suc k).
add (Suc k) m = Suc (add k m) = Suc (add mk) = add (Suc m) k. add m (Suc k) = add (Suc m) k by the previous lemma.

3.2 Expressions

Next we state an induction principle for the arithmetic expressions from the first lecture.

```
data Expr = Num Integer | Add Expr Expr | Mul Expr Expr
    deriving Eq
```

Sats.Induction principle Let $p \in \operatorname{Expr} \rightarrow \mathbb{B}$ be a property. If
a) $p(\operatorname{Num} \mathrm{n})$ is true for all n .
b) $p(\mathrm{e} 1)$ and $p(\mathrm{e} 2)$ implies p (Add e1 e2) for every e1, e2 $\in \operatorname{Expr}$
c) $p(\mathrm{e} 1)$ and $p(\mathrm{e} 2)$ implies $p(\mathrm{Mul} \mathrm{e} 1 \mathrm{e} 2)$ for every e1, e2 $\in \operatorname{Expr}$
then $p(\mathrm{e})$ is true for all $\mathrm{e} \in \operatorname{Expr}$.

We define two functions:

```
value :: Expr -> Integer
value (Num n) = n
value (Add expr1 expr2) = value expr1 + value expr2
value (Mul expr1 expr2) = value expr1 * value expr2
mirror :: Expr -> Expr
mirror (Num i) = Num i
mirror (Add e1 e2) = Add (mirror e2) (mirror e1)
mirror (Mul e1 e2) = Mul (mirror e2) (mirror e1)
```

Then the following is true.
Sats. value e = value (mirror e) is true for all e \in Expr.

Proof.
a) If $\mathrm{e}=\mathrm{Num} \mathrm{i}$ then

```
value (mirror e) =
value (mirror (Num i)) =
value (Num i) =
value e
```

b) Let $\mathrm{e}=($ Add e1 e2) and assume that value e1 = value (mirror e1) and value e2 $=$ value (mirror e2) then

```
value (mirror e) = value (mirror (Add e1 e2)) =
value (Add (mirror e2) (mirror e1)) =
value (mirror e2) + value (mirror e1)=
value e2 + value e1 =
value e1 + value e2 =
value (Add e1 e2) =
value e
```

c) When e $=$ Mul e1 e2 we reason in the same way.

3.3 Induction principles

We shall prove the induction principle for Expr.
Sats. Let $p \in \operatorname{Expr} \rightarrow \mathbb{B}$ be a property. If
a) $p($ Num n$)$ is true for all n .
b) $p(\mathrm{e} 1)$ and $p(\mathrm{e} 2)$ implies p (Add e1 e2) for every e1, e2 $\in \operatorname{Expr}$
c) $p(\mathrm{e} 1)$ and $p(\mathrm{e} 2)$ implies $p(\mathrm{Mul} \mathrm{e} 1 \mathrm{e} 2)$ for every e1, e2 $\in \operatorname{Expr}$
then $p(\mathrm{e})$ is true for all $\mathrm{e} \in$ Expr.
Proof. Define the depth d of an Expr:

```
d :: Expr -> Integer
d (Num _) = 0
d (Add e1 e2) = 1 + max (d e1) (d e2)
d (Mul e1 e2) = 1 + max (d e1) (d e2)
```

Let $q(n)$ be the property that all Expr e with $\mathrm{d} \mathrm{e} \leq n$ have the property $p(\mathrm{e})$. Let $A=\{n \mid q(n)\}$ be the set of all n such that $q(n)$ is true.

1. Because of a) we have that $0 \in A$.
2. Now assume that $k \in A$ where k is a fixed arbitrary number. This means that all e with $\mathrm{d} \mathrm{e} \leq k$ has property p. We have to show that $q(k+1)$ is true, i.e. $p(e)$ for all e with $\mathrm{d} \mathrm{e} \leq k+1$. It remains to prove that all e with $\mathrm{d} \mathrm{e}=k+1$ has property p. Since e must be either of the form Add e1 e2 or Mul e1 e2 where d e1 $\leq k \mathrm{~d}$ e2 $\leq k$ it follows from b) and c) that e has property p.

Using the induction axiom for natural numbers we conclude that $A=\mathbb{N}$ and the proof is complete.

It is easy to extend this theorem to any recursive data type that does not depend on a mutually recursive data type.

