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Programming language theory

3 Structural induction

The induction axiom for the natural numbers can be used to establish induction principles that
are more convenient to prove properties of values defined by an abstract grammar. A property
will be a function from some type T defined by the grammar to the set of truth values B. We
always require that a property p is a total function, i.e. it is defined for all values in T. We say
that t ∈ T has property p if and only if p(t).

3.1 Induction over N

Addition for the data type N is defined by

add Zero m = m
add (Suc n) m = Suc (add n m)

We are going to show that add n m = add m n for all n and m of type N.

We will use an induction principle for the Haskell type N defined in the previous section.

Sats.Induction principle Let p ∈ N→ B be a property. If

a) p(Zero) is true and

b) p(k) implies p(Suc k) for every k ∈ N

then p(n) is true for all n ∈ N. �

We will establish the principle in a subsequent section.

We start to prove that n + 0 = n for all n, i.e. add n Zero = n. Since this result is a special
case of the main theorem we state it as a lemma.

Lemma. add n Zero = n for all n in N. �

Proof. We use the induction principle with p(n) = (add n Zero=n).

a) First we prove that p(Zero) is true, i.e add Zero Zero = Zero. This follows from the first
clause for add.

b) Next we assume that p(k) is true for an arbitrary but fixed k ∈ N, i.e. add k Zero = k.
We shall prove that p(Suc k), i.e. add (Suc k) Zero = Suc k. :
add (Suc k) Zero = Suc(add k Zero) = Suc k.

Thus booth the conditions hold and the proof is complete.

We leave the next lemma as an exercise.

Lemma. Let m be any element in N. Then add n (Suc m) = add (Suc n) m for
all n in N. �
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The main theorem:

Sats. add n m = add m n for all n, m in N. �

Proof. Let m ∈ N be arbitrary but fixed throughout this proof. Let p(n) = (add n m = add m n)

a) p(Zero) = (add Zero m = add m Zero). This is true because of the first lemma.

b) Assume that add k m = add m k for an arbitrary but fixed k. We have to show that add
(Suc k) m = add m (Suc k).
add (Suc k) m = Suc (add k m) = Suc (add m k) = add (Suc m) k.
add m (Suc k) = add (Suc m) k by the previous lemma.

3.2 Expressions

Next we state an induction principle for the arithmetic expressions from the first lecture.

data Expr = Num Integer | Add Expr Expr | Mul Expr Expr
deriving Eq

Sats.Induction principle Let p ∈ Expr→ B be a property. If

a) p(Num n) is true for all n.

b) p(e1) and p(e2) implies p(Add e1 e2) for every e1, e2 ∈ Expr

c) p(e1) and p(e2) implies p(Mul e1 e2) for every e1, e2 ∈ Expr

then p(e) is true for all e ∈ Expr. �

We define two functions:

value :: Expr -> Integer
value (Num n) = n
value (Add expr1 expr2) = value expr1 + value expr2
value (Mul expr1 expr2) = value expr1 * value expr2

mirror :: Expr -> Expr
mirror (Num i) = Num i
mirror (Add e1 e2) = Add (mirror e2) (mirror e1)
mirror (Mul e1 e2) = Mul (mirror e2) (mirror e1)

Then the following is true.

Sats. value e = value (mirror e) is true for all e ∈ Expr. �

Proof. a) If e = Num i then
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value (mirror e) =
value (mirror (Num i)) =
value (Num i) =
value e

b) Let e = (Add e1 e2) and assume that value e1 = value (mirror e1) and value e2
= value (mirror e2) then

value (mirror e) = value (mirror (Add e1 e2)) =
value (Add (mirror e2) (mirror e1)) =
value (mirror e2) + value (mirror e1)=
value e2 + value e1 =
value e1 + value e2 =
value (Add e1 e2) =
value e

c) When e = Mul e1 e2 we reason in the same way.

3.3 Induction principles

We shall prove the induction principle for Expr.

Sats. Let p ∈ Expr→ B be a property. If

a) p(Num n) is true for all n.
b) p(e1) and p(e2) implies p(Add e1 e2) for every e1, e2 ∈ Expr

c) p(e1) and p(e2) implies p(Mul e1 e2) for every e1, e2 ∈ Expr

then p(e) is true for all e ∈ Expr. �

Proof. Define the depth d of an Expr:

d :: Expr -> Integer
d (Num _) = 0
d (Add e1 e2) = 1 + max (d e1) (d e2)
d (Mul e1 e2) = 1 + max (d e1) (d e2)

Let q(n) be the property that all Expr e with d e ≤ n have the property p(e). Let A = {n | q(n)}
be the set of all n such that q(n) is true.

1. Because of a) we have that 0 ∈ A.

2. Now assume that k ∈ A where k is a fixed arbitrary number. This means that all e with
d e ≤ k has property p. We have to show that q(k + 1) is true, i.e. p(e) for all e with
d e ≤ k + 1. It remains to prove that all e with d e = k + 1 has property p. Since e must
be either of the form Add e1 e2 or Mul e1 e2 where d e1 ≤ k d e2 ≤ k it follows from
b) and c) that e has property p.

Using the induction axiom for natural numbers we conclude that A = N and the proof is
complete.

It is easy to extend this theorem to any recursive data type that does not depend on a mutually
recursive data type.
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