Problems

These problems will be discussed at seminar 2. Programs in Haskell are not required to compile. The exercises in Nielson have been renumbered. My references are to 1999 edition.

Problems

1 Define multiplication and exponentiation for the datatype N given that

```
data N = Zero | Suc N
add Zero m = m
add (Suc n) m = Suc (add n m)
```

2 Prove
Lemma. Let m be any element in N. Then add $n(S u c m)=\operatorname{add}(S u c n) m$ for all n in N .

3 State an induction principle for

```
data List = Empty | Cons Integer List
```

4 Define the length of a List and composition of two Lists by

```
len :: List -> Integer
len Empty = 0
len (Cons _ tail) = 1 + len tail
append :: List -> List -> List
append Empty ls = ls
append (Cons i ls) ls' = Cons i (append ls ls')
```

Prove that len (append 11 12) = len $11+$ len 12 for all 11 and 12 in List.
5 Prove that $\mathcal{A} \llbracket a\left[y \mapsto a_{0}\right] \rrbracket \sigma=\mathcal{A} \llbracket a \rrbracket\left(\sigma\left[y \mapsto \mathcal{A} \llbracket a_{0} \rrbracket \sigma\right]\right)$. (Exercise 1.13.)
6 Define substitution for boolean expressions $b\left[y \mapsto a_{0}\right]$ and prove that $\mathcal{B} \llbracket b\left[y \mapsto a_{0}\right] \rrbracket \sigma=$ $\mathcal{B} \llbracket b \rrbracket\left(\sigma\left[y \mapsto \mathcal{A} \llbracket a_{0} \rrbracket \sigma\right]\right)$. (Exercise 1.14.)

7 Define a natural semantics for binary numerals, Num, defined by the grammar $n::=$ $0|1| n 0 \mid n 1$. The formulae of the theory should be on the form $\langle n\rangle \rightarrow z$, where $n \in \mathbf{N u m}$ and $z \in \mathbb{N}$ is a natural number.

8 With the semantics of the previous problem and \mathcal{N} from the text book use structural induction and induction over the shape of derivation trees to prove that $\langle n\rangle \rightarrow z$ if and only if $\mathcal{N} \llbracket n \rrbracket=z$.

