
Lund University
Computer Science
Lennart Andersson

Course description
EDA145/DATN19

2009-03-16

Programming language theory

Introduction

Which value will the variable x have after the execution of these statements?

x = 1;
y = 2;

If the programming language is Java the answer is 1 (unless there are multiple threads using the
same variables). If it is part of a C, C++ or Fortran program then there are two answers: The
value is 1 or 2.

If you are familiar with some of those languages you will be able to construct a context where
the latter alternative is true. Similar behavior will occur with Java when using objects. Define

class IntVar {
int value;
void assign(int value) {

this.value = value;
}

}

and suppose that x and y are instances of IntVar in

x.assign(1);
y.assign(2);

Here it is not certain that x has the value 1. This is a question of the semantics of the program-
ming language, i.e. what the statements mean or accomplish.

Are languages with such semantics good?

Programming language theory

Courses in compiler construction are often very formal about describing the syntax of languages
using regular expressions and context-free grammars but very informal when it comes to se-
mantics. We will not repeat these parts in the current course, but start off where the compiler
course becomes informal. This does not mean that a compiler construction course is a required
prerequisite for this course. In fact, they can be read in any order. The interface between them
is just an object-oriented model of a program that can be understood after a data structures
course.

So the course is about formal semantics, i.e. different ways to describe the meaning of program-
ming language constructs. Constructs with simple semantics are presumably easy to understand
and use, while those with complicated semantics are error prone. The formal semantics for the

1



goto statement present in some languages is quite complicated. It is well known that undisci-
plined use of goto statements may lead to erroneous programs that are hard correct. Formal
semantics provides an objective way to judge programming languages.

In introductory programming courses, semantics is described by explaining in what order the
statements are executed and how they change the contents of the memory. This can be formalized
and is called operational semantics.

The semantics for a programming language can also be given as a logical theory in the same
way as mathematics with axioms, theorems, and inference rules. Proofs can be made so formal
that a simple program can check them. In this context, axioms describe the properties of simple
statements, and the inference rules describes the meaning of composed statements like an if-
statement. This kind of semantics is called axiomatic. The axiomatic semantics emphasizes the
task of the programmer; to construct a program that fulfills its specification.

Denotational semantics is more abstract. Every program construct is mapped onto a mathe-
matical object, its denotation. The denotations are often mathematical functions. It may be
convenient to define these functions using a functional programming language rather than with
conventional mathematical notation. This will give an interpreter for language for free.

There are several reasons why a student in Computer science should know formal semantics:

• It provides exact definitions of the meaning of programming constructs which informal
descriptions seldom do.

• It makes programming into a science rather than an engineering task or an art.

• It allows strict mathematical reasoning about programs.

• It gives new understandings of what a program is, different from understandings based on
implementations on conventional computers.

• It is a support for program language designer by clearly distinguishing between simple and
difficult constructs or between good and bad programming languages.

• It supports the programmer in constructing correct programs. A program constructed
in a way that makes correctness proofs possible in principle are presumably better than
programs that are difficult or impossible to prove correct.

The course will also introduce you to the abstractions and formalisms used throughout theoret-
ical computer science, not just semantics. You will be able to read and understand many more
scientific articles than prior to the course.

Lambda calculus

Conventional languages like C and Java, have complicated semantics. It is hard to explain the
semantics to the novice without referring to how data is moved in the computer memory, how
parameters are transferred, how inheritance is implemented, etc.

There are other kinds of programming languages that can be understood without knowing how
a computer works. A very simple one is lambda calculus which is the basis for all functional
programming languages. The lambda calculus has just three constructs, identifiers, abstractions
that are simple function definitions, and applications where an abstraction is applied to one
construct. This is all there is. There are no predefined data types or other operations apart from
applications. Still, all computations that can be described using a conventional programming
language can be implemented in lambda calculus.

2



Recursive definitions and domain theory

Both in programs and denotational semantics we use recursive definitions of functions and data
types. Domain theory is about the meaning of such definitions. Defining something using the
defined concept recursively may be problematic. Consider

Theorem 1 Theorem 1 is false.

Is Theorem 1 true or false? Both alternatives lead to contradictions. The problem with the
theorem is that it refers to itself. Is it meaningful? And if so, what is the meaning? The domain
theory gives semantics of recursive definitions.

Course prerequisites

The course belongs to the advanced level according to the Bologna classification. The formal
requirements are a course in algorithms and data structures and some mathematics courses.
What makes it advanced is all the abstractions. You should be interested in abstractions and
logical reasoning to enjoy it.

Seminars

For every seminar there will be a set of problems which the students are supposed to solve at
home and present at the seminar. The solutions should be written down, but they will usually
not be collected nor checked. At the start of the seminar each student shall mark on a list all
problems which he/she is willing to present a solution to at the blackboard. The marks will give
a bonus on the exam in May 2007. A maximal bonus will increase the exam score by 20% of
the maximal score.

Students are encouraged to cooperate when solving the problems. The bonus will not be reduced
for erratic solutions. However marking a problem which the student hasn’t solved completely in
his/her mind is not acceptable.

The seminar problems will appear on the course home page.

Programming assignments

This year I will try to provide a number of voluntary programming assignments on a weekly
basis. For those who complete the assignments there will either be a special exam or a bonus
system. The details has not been settled yet. The regular exam will not presuppose that you
have carried out the assignments.

You may use any program language for the implementations, but you are supposed to manage
on your own. I believe that a functional programming language such as Haskell is best suited
for the purpose, but any high level language with good data abstraction facilities should be fine.

Examination

There will be written exam in June. The text book and the lecture notes may be consulted
during the exam.

3


