PROBLEM SOLVING AND SEARCH BY STUART RUSSELL

MODIFIED BY JACEK MALEC FOR LTH LECTURES JANUARY 24TH, 2014

CHAPTER 3 OF AIMA

Outline

- ♦ Problem-solving agents
- ♦ Problem types
- ♦ Problem formulation
- \Diamond Example problems
- ♦ Basic (uninformed) search algorithms
- ♦ Informed search algorithms

Problem-solving agents

Restricted form of general agent:

```
function SIMPLE-PROBLEM-SOLVING-AGENT (percept) returns an action
   static: seq, an action sequence, initially empty
            state, some description of the current world state
            qoal, a goal, initially null
            problem, a problem formulation
   state \leftarrow \text{Update-State}(state, percept)
   if seq is empty then
        goal \leftarrow FORMULATE-GOAL(state)
        problem \leftarrow Formulate-Problem(state, goal)
        seq \leftarrow Search(problem)
   action \leftarrow \text{RECOMMENDATION}(seq, state)
   seq \leftarrow \text{Remainder}(seq, state)
   return action
```

Note: this is offline problem solving; solution executed "eyes closed." Online problem solving involves acting without complete knowledge.

Example: Blocket

© Jorchr / Wikimedia Commons / CC-BY-SA-3.0 / GFDL

Example: Blocket

Service robot Odin, delivering drugs to divisions. Currently in the Pharmacy. There is a drug order from Intensive Care Unit.

Formulate goal:

be in Intensive Care Unit

Formulate problem:

states: various locations

actions: drive between locations

Find solution:

sequence of locations, e.g., Pharmacy, Elevator A, Surgery, ICU

Example: Blocket

Problem types

Deterministic, fully observable \Longrightarrow single-state problem Agent knows exactly which state it will be in; solution is a sequence

Non-observable \Longrightarrow conformant problem

Agent may have no idea where it is; solution (if any) is a sequence

Nondeterministic and/or partially observable \Longrightarrow contingency problem percepts provide **new** information about current state solution is a contingent plan or a policy often **interleave** search, execution

Unknown state space ⇒ exploration problem ("online")

Single-state, start in #5. Solution??

Single-state, start in #5. Solution?? [Right, Suck]

Conformant, start in $\{1, 2, 3, 4, 5, 6, 7, 8\}$ e.g., Right goes to $\{2, 4, 6, 8\}$. Solution??

Single-state, start in #5. Solution?? [Right, Suck]

Conformant, start in $\{1, 2, 3, 4, 5, 6, 7, 8\}$ e.g., Right goes to $\{2, 4, 6, 8\}$. Solution?? [Right, Suck, Left, Suck]

Contingency, start in #5 Murphy's Law: Suck can dirty a clean carpet

Local sensing: dirt, location only.

Solution??

Single-state, start in #5. Solution??

[Right, Suck]

Conformant, start in $\{1, 2, 3, 4, 5, 6, 7, 8\}$ e.g., Right goes to $\{2, 4, 6, 8\}$. Solution?? [Right, Suck, Left, Suck]

Contingency, start in #5

Murphy's Law: *Suck* can dirty a clean carpet Local sensing: dirt, location only.

Solution??

[Right, if dirt then Suck]

1 2 2

2 038 038

3 2

Single-state problem formulation

A problem is defined by four items:

```
initial state e.g., "at Pharmacy"  \begin{aligned} & \text{successor function } S(x) = \text{set of action-state pairs} \\ & & \text{e.g., } S(Pharmacy) = \{\langle Pharmacy \rightarrow Storage, Storage \rangle, \ldots \} \end{aligned}   \begin{aligned} & \text{goal test, can be} \\ & & \text{explicit, e.g., } x = \text{"at ICU"} \\ & & \text{implicit, e.g., } NoDirt(x) \end{aligned}   \begin{aligned} & \text{path cost (additive)} \\ & & \text{e.g., sum of distances, number of actions executed, etc.} \\ & & c(x,a,y) \end{aligned}  is the step cost, assumed to be \geq 0
```

A solution is a sequence of actions leading from the initial state to a goal state

Selecting a state space

Real world is absurdly complex

⇒ state space must be **abstracted** for problem solving

(Abstract) state = set of real states

(Abstract) action = complex combination of real actions e.g., "Pharmacy \rightarrow Storage" represents a complex set of possible routes, detours, rest stops, etc.

For guaranteed realizability, **any** real state "in Pharmacy" must get to some real state "in Storage"

(Abstract) solution = set of real paths that are solutions in the real world

Each abstract action should be "easier" than the original problem!

states??
actions??
goal test??
path cost??

states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??
goal test??
path cost??

states??: integer dirt and robot locations (ignore dirt amounts etc.)

actions??: Left, Right, Suck, NoOp

goal test??

path cost??

states??: integer dirt and robot locations (ignore dirt amounts etc.)

actions??: Left, Right, Suck, NoOp

goal test??: no dirt

path cost??

states??: integer dirt and robot locations (ignore dirt amounts etc.)

actions??: Left, Right, Suck, NoOp

goal test??: no dirt

path cost??: 1 per action (0 for NoOp)

states??
actions??
goal test??
path cost??

states??: integer locations of tiles (ignore intermediate positions)
actions??
goal test??
path cost??


```
states??: integer locations of tiles (ignore intermediate positions)
actions??: move blank left, right, up, down (ignore unjamming etc.)
goal test??
path cost??
```



```
states??: integer locations of tiles (ignore intermediate positions)
actions??: move blank left, right, up, down (ignore unjamming etc.)
goal test??: = goal state (given)
path cost??
```



```
states??: integer locations of tiles (ignore intermediate positions)
actions??: move blank left, right, up, down (ignore unjamming etc.)
goal test??: = goal state (given)
path cost??: 1 per move
```

[Note: optimal solution of n-Puzzle family is NP-hard]

Example: robotic assembly

states??: real-valued coordinates of robot joint angles parts of the object to be assembled

actions??: continuous motions of robot joints

goal test??: complete assembly with no robot included!

path cost??: time to execute

Tree search algorithms

Basic idea:

```
offline, simulated exploration of state space
by generating successors of already-explored states
(a.k.a. expanding states)
```

```
function TREE-SEARCH( problem, strategy) returns a solution, or failure initialize the search tree using the initial state of problem loop do

if there are no candidates for expansion then return failure choose a leaf node for expansion according to strategy

if the node contains a goal state then return the corresponding solution else expand the node and add the resulting nodes to the search tree end
```

Tree search example

Tree search example

Tree search example

Implementation: states vs. nodes

A state is a (representation of) a physical configuration A node is a data structure constituting part of a search tree includes parent, children, depth, path cost g(x) States do not have parents, children, depth, or path cost!

The Expand function creates new nodes, filling in the various fields and using the SuccessorFn of the problem to create the corresponding states.

Implementation: general tree search

```
function Tree-Search (problem, fringe) returns a solution, or failure
   fringe \leftarrow Insert(Make-Node(Initial-State[problem]), fringe)
   loop do
       if fringe is empty then return failure
        node \leftarrow \text{Remove-Front}(fringe)
       if Goal-Test(problem, State(node)) then return node
       fringe \leftarrow InsertAll(Expand(node, problem), fringe)
function EXPAND( node, problem) returns a set of nodes
   successors \leftarrow the empty set
   for each action, result in Successor-Fn(problem, State[node]) do
        s \leftarrow a new NODE
        PARENT-NODE[s] \leftarrow node; ACTION[s] \leftarrow action; STATE[s] \leftarrow result
      Path-Cost[s] \leftarrow Path-Cost[node] + Step-Cost(State[node], action,
result)
       Depth[s] \leftarrow Depth[node] + 1
        add s to successors
   return successors
```

Search strategies

A strategy is defined by picking the order of node expansion

Strategies are evaluated along the following dimensions:

completeness—does it always find a solution if one exists?

time complexity—number of nodes generated/expanded

space complexity—maximum number of nodes in memory

optimality—does it always find a least-cost solution?

Time and space complexity are measured in terms of

b—maximum branching factor of the search tree

d—depth of the least-cost solution

m—maximum depth of the state space (may be ∞)

Uninformed search strategies

Uninformed strategies use only the information available in the problem definition

Sometimes called **blind** search strategies

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening search

Expand shallowest unexpanded node

Implementation:

fringe is a FIFO queue, i.e., new successors go at end

Expand shallowest unexpanded node

Implementation:

fringe is a FIFO queue, i.e., new successors go at end

Expand shallowest unexpanded node

Implementation:

fringe is a FIFO queue, i.e., new successors go at end

Expand shallowest unexpanded node

Implementation:

fringe is a FIFO queue, i.e., new successors go at end

Complete??

Complete?? Yes (if b is finite)

Time??

Complete?? Yes (if b is finite)

Time??
$$1 + b + b^2 + b^3 + \ldots + b^d + b(b^d - 1) = O(b^{d+1})$$
, i.e., exp. in d

Space??

Complete?? Yes (if b is finite)

Time??
$$1 + b + b^2 + b^3 + \ldots + b^d + b(b^d - 1) = O(b^{d+1})$$
, i.e., exp. in d

Space?? $O(b^{d+1})$ (keeps every node in memory)

Optimal??

Complete?? Yes (if b is finite)

<u>Time</u>?? $1 + b + b^2 + b^3 + \ldots + b^d + b(b^d - 1) = O(b^{d+1})$, i.e., exp. in d

Space?? $O(b^{d+1})$ (keeps every node in memory)

Optimal?? Yes (if cost = 1 per step); not optimal in general

Space is the big problem; can easily generate nodes at 100MB/sec so 24hrs = 8640GB.

Uniform-cost search

Expand least-cost unexpanded node

Implementation:

fringe = queue ordered by path cost, lowest first

Equivalent to breadth-first if step costs all equal

Complete?? Yes, if step cost $\geq \epsilon$

Time?? # of nodes with $g \leq \text{cost of optimal solution}$, $O(b^{\lceil C^*/\epsilon \rceil})$ where C^* is the cost of the optimal solution

Space?? # of nodes with $g \leq cost of optimal solution, <math>O(b^{\lceil C^*/\epsilon \rceil})$

Optimal?? Yes—nodes expanded in increasing order of g(n)

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front

Complete??

Complete?? No: fails in infinite-depth spaces, spaces with loops Modify to avoid repeated states along path ⇒ complete in finite spaces

Time??

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
⇒ complete in finite spaces

<u>Time??</u> $O(b^m)$: terrible if m is much larger than d but if solutions are dense, may be much faster than breadth-first

Space??

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
⇒ complete in finite spaces

<u>Time??</u> $O(b^m)$: terrible if m is much larger than d but if solutions are dense, may be much faster than breadth-first

Space?? O(bm), i.e., linear space!

Optimal??

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
⇒ complete in finite spaces

<u>Time??</u> $O(b^m)$: terrible if m is much larger than d but if solutions are dense, may be much faster than breadth-first

Space?? O(bm), i.e., linear space!

Optimal?? No

Depth-limited search

= depth-first search with depth limit l, i.e., nodes at depth l have no successors

Recursive implementation:

```
function DEPTH-LIMITED-SEARCH( problem, limit) returns soln/fail/cutoff RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[problem]), problem, limit) function RECURSIVE-DLS(node, problem, limit) returns soln/fail/cutoff cutoff-occurred? \leftarrow false if GOAL-TEST(problem, STATE[node]) then return node else if DEPTH[node] = limit then return cutoff else for each successor in EXPAND(node, problem) do result \leftarrow RECURSIVE-DLS(successor, problem, limit) if result = cutoff then cutoff-occurred? \leftarrow true else if result \neq failure then return result if cutoff-occurred? then return cutoff else return failure
```

Iterative deepening search

```
function ITERATIVE-DEEPENING-SEARCH( problem) returns a solution inputs: problem, a problem for depth \leftarrow 0 to \infty do  result \leftarrow \text{DEPTH-LIMITED-SEARCH}( problem, depth)  if result \neq \text{cutoff then return } result  end
```

Iterative deepening search l = 0

Limit = 0

Iterative deepening search l=1

Iterative deepening search l=2

Iterative deepening search l=3

Complete??

Complete?? Yes

Time??

Complete?? Yes

Time??
$$(d+1)b^0 + db^1 + (d-1)b^2 + \ldots + b^d = O(b^d)$$

Space??

Complete?? Yes

Time??
$$(d+1)b^0 + db^1 + (d-1)b^2 + \ldots + b^d = O(b^d)$$

 $\underline{\mathsf{Space}??}\ O(bd)$

Optimal??

Complete?? Yes

Time??
$$(d+1)b^0 + db^1 + (d-1)b^2 + \ldots + b^d = O(b^d)$$

Space?? O(bd)

Optimal?? Yes, if step cost = 1

Can be modified to explore uniform-cost tree

Numerical comparison for b=10 and d=5, solution at far right leaf:

$$N(IDS) = 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450$$

 $N(BFS) = 10 + 100 + 1,000 + 10,000 + 100,000 + 999,990 = 1,111,100$

IDS does better because other nodes at depth d are not expanded

BFS can be modified to apply goal test when a node is generated

Summary of algorithms

Criterion	Breadth-	Uniform-	Depth-	Depth-	Iterative
	First	Cost	First	Limited	Deepening
Complete?	Yes*	Yes*	No	Yes, if $l \geq d$	Yes
Time	b^{d+1}	$b^{\lceil C^*/\epsilon ceil}$	b^m	b^l	b^d
Space	b^{d+1}	$b^{\lceil C^*/\epsilon ceil}$	bm	bl	bd
Optimal?	Yes^*	Yes	No	No	Yes*

Repeated states

Failure to detect repeated states can turn a linear problem into an exponential one!

Graph search

```
function GRAPH-SEARCH( problem, fringe) returns a solution, or failure  \begin{array}{l} closed \leftarrow \text{an empty set} \\ fringe \leftarrow \text{INSERT}(\text{Make-Node}(\text{Initial-State}[problem]), fringe) \\ \textbf{loop do} \\ \textbf{if } fringe \text{ is empty then return failure} \\ node \leftarrow \text{Remove-Front}(fringe) \\ \textbf{if } \text{Goal-Test}(problem, \text{State}[node]) \textbf{ then return } node \\ \textbf{if } \text{State}[node] \text{ is not in } closed \textbf{ then} \\ \text{add } \text{State}[node] \text{ to } closed \\ fringe \leftarrow \text{InsertAll}(\text{Expand}(node, problem), fringe) \\ \textbf{end} \end{array}
```

Partial summary

Problem formulation usually requires abstracting away real-world details to define a state space that can feasibly be explored

Variety of uninformed search strategies

Iterative deepening search uses only linear space and not much more time than other uninformed algorithms

Graph search can be exponentially more efficient than tree search

Informed Search Algorithms

- ♦ Best-first search
- \Diamond A* search
- ♦ Heuristics

Best-first search

Idea: use an evaluation function for each node
- estimate of "desirability"

⇒ Expand most desirable unexpanded node

Implementation:

fringe is a queue sorted in decreasing order of desirability

Special cases:

greedy search A* search

Blocket with distances in seconds

Greedy search

Evaluation function h(n) (heuristic) = estimate of cost from n to the closest goal

E.g., $h_{\rm SLD}(n) = \text{straight-line distance from } n \text{ to ICU}$

Greedy search expands the node that appears to be closest to goal

Complete??

Complete?? No-can get stuck in loops, e.g., with Geriatrics as goal, Radiology \rightarrow Orthopedy \rightarrow Radiology \rightarrow Orthopedy \rightarrow Complete in finite space with repeated-state checking

Time??

<u>Time??</u> $O(b^m)$, but a good heuristic can give dramatic improvement

Space??

 $\frac{\text{Complete}?? \text{ No-can get stuck in loops, e.g.,}}{\text{Radiology} \rightarrow \text{Orthopedy} \rightarrow \text{Radiology} \rightarrow \text{Orthopedy} \rightarrow}$ Complete in finite space with repeated-state checking

<u>Time??</u> $O(b^m)$, but a good heuristic can give dramatic improvement

Space?? $O(b^m)$ —keeps all nodes in memory

Optimal??

 $\frac{\text{Complete}?? \text{ No-can get stuck in loops, e.g.,}}{\text{Radiology} \rightarrow \text{Orthopedy} \rightarrow \text{Radiology} \rightarrow \text{Orthopedy} \rightarrow}$ Complete in finite space with repeated-state checking

<u>Time??</u> $O(b^m)$, but a good heuristic can give dramatic improvement

Space?? $O(b^m)$ —keeps all nodes in memory

Optimal?? No

A^* search

Idea: avoid expanding paths that are already expensive

Evaluation function f(n) = g(n) + h(n)

 $g(n) = \cos t$ so far to reach n

h(n) =estimated cost to goal from n

f(n) =estimated total cost of path through n to goal

A* search uses an admissible heuristic

i.e., $h(n) \le h^*(n)$ where $h^*(n)$ is the **true** cost from n. (Also require $h(n) \ge 0$, so h(G) = 0 for any goal G.)

E.g., $h_{\rm SLD}(n)$ never overestimates the actual road distance

Theorem: A* search is optimal

Optimality of A* (standard proof)

Suppose some suboptimal goal G_2 has been generated and is in the queue. Let n be an unexpanded node on a shortest path to an optimal goal G_1 .

$$f(G_2) = g(G_2)$$
 since $h(G_2) = 0$
> $g(G_1)$ since G_2 is suboptimal
 $\geq f(n)$ since h is admissible

Since $f(G_2) > f(n)$, A* will never select G_2 for expansion

Complete??

<u>Complete</u>?? Yes, unless there are infinitely many nodes with $f \leq f(G)$

Time??

<u>Complete</u>?? Yes, unless there are infinitely many nodes with $f \leq f(G)$

<u>Time??</u> Exponential in [relative error in $h \times$ length of solution]

Space??

<u>Complete</u>?? Yes, unless there are infinitely many nodes with $f \leq f(G)$

<u>Time??</u> Exponential in [relative error in $h \times$ length of soln.]

Space?? Keeps all nodes in memory

Optimal??

<u>Complete</u>?? Yes, unless there are infinitely many nodes with $f \leq f(G)$

<u>Time??</u> Exponential in [relative error in $h \times$ length of soln.]

Space?? Keeps all nodes in memory

Optimal?? Yes—cannot expand f_{i+1} until f_i is finished

 A^* expands all nodes with $f(n) < C^*$

 A^* expands some nodes with $f(n) = C^*$

 A^* expands no nodes with $f(n) > C^*$

© Stuart Russell

Admissible heuristics

E.g., for the 8-puzzle:

 $h_1(n) = \text{number of misplaced tiles}$

 $h_2(n) = \text{total Manhattan distance}$

(i.e., no. of squares from desired location of each tile)

Goal State

$$\frac{h_1(S)}{h_2(S)} = ??$$

Admissible heuristics

E.g., for the 8-puzzle:

 $h_1(n) = \text{number of misplaced tiles}$

 $h_2(n) = \text{total Manhattan distance}$

(i.e., no. of squares from desired location of each tile)

$$\underline{\frac{h_1(S)}{h_2(S)}} = ?? 6$$

 $\underline{\frac{h_2(S)}{h_2(S)}} = ?? 4+0+3+3+1+0+2+1 = 14$

Dominance

If $h_2(n) \ge h_1(n)$ for all n (both admissible) then h_2 dominates h_1 and is better for search

Typical search costs:

$$d=14$$
 IDS = 3,473,941 nodes $A^*(h_1)=539$ nodes $A^*(h_2)=113$ nodes $d=24$ IDS $\approx 54,000,000,000$ nodes $A^*(h_1)=39,135$ nodes $A^*(h_2)=1,641$ nodes

Given any admissible heuristics h_a , h_b ,

$$h(n) = \max(h_a(n), h_b(n))$$

is also admissible and dominates h_a , h_b

Relaxed problems

Admissible heuristics can be derived from the **exact** solution cost of a **relaxed** version of the problem

If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution

Key point: the optimal solution cost of a relaxed problem is no greater than the optimal solution cost of the real problem

Summary

Heuristic functions estimate costs of shortest paths

Good heuristics can dramatically reduce search cost

Greedy best-first search expands lowest h

- incomplete and not always optimal

 A^* search expands lowest g + h

- complete and optimal
- also optimally efficient (up to tie-breaks, for forward search)

Admissible heuristics can be derived from exact solution of relaxed problems