Planning

Based on slides prepared by Tom Lenaerts
SWITCH, Vlaams Interuniversitair Instituut voor Biotechnologie

Modifications by Jacek.Malec@cs.lIth.se
Original slides can be found at http://aima.cs.berkeley.edu

¥ Vrije Universiteit Brussel

LUND

UNIVERSITY

What is Planning

Generate sequences of actions to perform tasks and
achieve objectives.
- States, actions and goals

Search for solution over abstract space of plans.

Classical planning environment: fully observable,
deterministic, finite, static and discrete.

Assists humans in practical applications
- design and manufacturing

- military operations

- games

- space exploration

- transport and logistics

Planning
2017-03-08 Page 3

Planning

The Planning problem

Planning with State-space search
Partial-order planning

Planning graphs

Planning with propositional logic

Analysis of planning approaches

Planning
2017-03-08 Page 2

Why not standard search?

Consider the task get milk, bananas and a cordless drill
Standard search algorithms fail

Talk to Parrot l:’
Go To Pet Store Buy a Dog l:l
Go To Class
1]
Go To Supermarket Buy Tuna Fish
——[]
Go To Sleep ‘:I Buy Arugula I:I

Read A Book Buy Milk
Sit in Chair Sit Some More :I

Etc. Etc. ... L. \| Read A Book \:I

Go To School

Planning
2017-03-08 Page 4

Difficulty of real world problems Planning language

Assume a problem-solving agent What is a good language?
using some search method - Expressive enough to describe a wide variety
of problems.

— Which actions are relevant?
- Exhaustive search vs. backward search

- What is a good heuristic functions?
- Good estimate of the cost of the state?
- Problem-dependent vs, -independent

- How to decompose the problem?

- Restrictive enough to allow efficient
algorithms to operate on it.

- Planning algorithm should be able to take
advantage of the logical structure of the
problem.

- Most real-world problems are nearly decomposable. STRIPS a nd PDDL

Planning Planning
2017-03-08 Page 5 2017-03-08 Page 6

General language features General language features

Representation of states Representations of actions
- Decompose the world in logical conditions and represent a — Action = PRECOND + EFFECT
state as a conjunction of positive literals.

Action(Fly(p, from, to),

- Propositional literals: Safe A HasGold PRECOND: At(p, from) A Plane(p) A Airport(from) A Airport(to)
- FO-literals (grounded and function-free): At(Planel, Copenhagen) » EFFECT: —AT(p, from) » At(p, to))

At(Plane2, Stockholm) ti h f . d to be instantiated
_ Closed world assumption = ac |or_\ schema (p, from, q need to be instantiated)
- Action name and parameter list

Representation Of goals - Precondition (conj. of function-free literals)

- Partially specified state and represented as a conjunction of - Effect (conjunction of function-free literals and P is True and
positive ground literals not P is false)

- A goal is satisfied if the state contains all literals in goal. - Add-list vs delete-list in Effect

Planning Planning
2017-03-08 Page 7 2017-03-08 Page g8

Language semantics? Language semantics?

How do actions affect states? The result of executing action a in state
- An action is applicable in any state that s is the state s’
satisfies the precondition. - ¢’ is same as s except
- For FO action schema applicability involves a - Any positive literal P in the effect of a is added to s’
substitution O for the variables in the - Any negative literal =P is removed from s’
PRECON D EFFECT: =AT(p, from) A At(p, to):
. At(P1, CPH) A At(P2, CPH) A Plane(P1) » Plane(P2) » Airport(ARN) A
At(P1, ARN) A At(P2, CPH) A Plane(P1) A Plane(P2) » Airport(CPH)
Airport(ARN) A Airport(CPH)
Satisfies : At(p, from) A Plane(p) ~ Airport(from) A Airport(to) - STRIPS assumption: (avoids representational frame
With © ={p/P1, from/ARN, to/CPH} problem)
Thus the action is applicable. every literal NOT in the effect remains unchanged

Planning Planning
2017-03-08 Page 9 2017-03-08 Page 10

Expressiveness and extensions Example: air cargo transport

Init(At(C1, CPH) A At(C2, ARN) A At(P1, CPH) A At(P2, ARN) A Cargo(C1)
Cargo(C2) A Plane(P1) A Plane(P2) A Airport(ARN) A Airport(CPH))

STRIPS is simplified

- Important limit: function-free literals Goal(At(C1, ARN) » At(C2, CPH))
- Allows for propositional representation)
- Function symbols lead to infinitely many states and actions Action(Load(c, p, a)
. PRECOND: At(c, a) A At(p, a) » Cargo(c) » Plane(p) » Airport(a)
Expressiveness extension: Planning Domain EFFECT: —At(c, a) » In(c, p))
Description Language (PDDL) Action(Unload(c, p, a) .
Action(Fly(p: Plane, from: Airport, to: Airport), PRECOND: In(c, p) » At(p, a) »~ Cargo(c) » Plane(p) A Airport(a)
PRECOND: At(p, from) A (from = to) EFFECT: At(c, a) n =In(c, p))
EFFECT: -At(p, from) A At(p, to)) Action(Fly(p, from, to)
PRECOND: At(p, from) A Plane(p) » Airport(from) A Airport(to)
Standardization : now (since 2008) in its 3.1 version EFFECT: -At(p, from) » At(p, to))

[Load(C1, P1 ,CPH), Fly(P1, CPH, ARN), Load(C2, P2, ARN), Fly(P2, ARN, CPH)]

Planning Planning
2017-03-08 Page 11 2017-03-08 Page 12

Example: Spare tire problem Example: Blocks world

IG”ff(//(‘f\(;’Saff AX’Z)/A)/;f(SPafef trunk)) Init(On(A, Table) A On(B, Table) n On(C, Table) » Block(A) » Block(B)
oa pare, Axle,
Actiom(Remove(Spare, Trunk) A Block(C) A Clear(A) A Clear(B) » Clear(C))
PRECOND: At(Spare, Trunk)
EFFECT: -At(Spare, Trunk) » At(Spare, Ground))
Action(Remove(Flat, Axle) Goal(On(A, B) A On(B, C))
PRECOND: At(Flat, Axle)

B 'EFFECT: -At(Flat, Axle) » At(Flat, Ground)) ACI‘.'fOﬂ(MOVE(b, X, y)
O ORECOND: Ac(Spare, Grounds) » ~At(Fit, Axie) PRECOND: On(b, x) A Clear(b) A Clear(y) Block(b) A (b = x) (b
EFFECT: At(Spare, Axle) A ~At(Spare ,Ground)) ZzYy) A (xzYy)
Action(Leareovermniht EFFECT: On(b, y) » Clear(x) A =0On(b, x) A —Clear(y))
EFFECT: —;At(Spare, Ground) A —At(Spare, Axle) » =At(Spare, trunk) » —At(Flat, Ground) A Action(MoveToTable(b, x)
nAt(Fiat, Axle)) PRECOND: On(b, x) A Clear(b) » Block(b) A (b = x)
This example goes beyond STRIPS: negative literal in pre-condition (PDDL description) EFFECT: On(b, Tab/e) A Clear(x) A ﬂOn(b, X))

Planning Planning
2017-03-08 Page 13 2017-03-08 Page 14

Planning with state-space search Progression and regression

: /
Both forward and backward search possible o EEE i
. //-A R Fly(P ,A.B) L i{P;. ~a
Prog ression planners ” AP A)
At(P,, A) — —
- forward state-space search o :)_;J,,/\F.y“:z AB) \/ e, a7
- Consider the effect of all possible actions in a given state L At(P,, B) S~
Regression planners L ——
- backward state-space search - AP.B /1SFN(F|A.B) :\/___ ~
- To achieve a goal, what must have been true in the previous ®) _\:_ = | »:::g.,g)
state. ~ At(P, . B) \"/‘F»y(ﬁz,&é) il L,/

At(P,, A) |
e

-

Planning Planning
2017-03-08 Page 15 2017-03-08 Page 16

Progression algorithm Regression algorithm

Formulation as state-space search problem: How to determine predecessors?
- Initial state = initial state of the planning problem - What are the states from which applying a given action
- Literals not appearing are false leads to the goal?
- Actions = those whose preconditions are satisfied Goal state = At(C1, B) A At(C2, B) ~ ... » AC20, B)
- Add positive effects, delete negative Relevant action for first conjunct: Unload(C1, p, B)
- Goal test = does the state satisfy the goal Works only if pre-conditions are satisfied.
— Step cost = each action costs 1 Previous state= In(C1, p) A At(p, B) A At(C2, B) » ... A At(C20, B)
p - . . Subgoal At(C1, B) should not be present in this state.
No functions ... any graph search that is complete is Actions must not undo desired literals
a complete planning algorithm. :
" Eq. f* P 9a9 (consistent)
Inefficient: Main advantage: only relevant actions are
- (1) irrelevant action problem considered.

- (2) good heuristic required for efficient search

- Often much lower branching factor than forward search.

Planning Planning
2017-03-08 Page 17 2017-03-08 Page 18

Regression algorithm Heuristics for state-space search

General process for predecessor construction Neither progression or regression are very

~ Give a goal description G efficient without a good heuristic.
- Let A be an action that is relevant and consistent . i
- How many actions are needed to achieve the goal?

- The predecessors are as follows: L : .
- Any positive effects of A that appear in G are deleted. - Exact solution is NP hard, find a good estimate

- Each precondition literal of A is added , unless it already appears. TWO approaches tO flnd admissible heuristiC'
Any standard search algorlthm can be added - The optimal solution to the relaxed problem.
to perform the search. - Remove all preconditions from actions
Termination when predecessor is satisfied by — The subgoal independence assumption: _
T | t t The cost of solving a _con]unctlon of subgo_als is approximated by the sum
|n|t|a state. of the costs of solving the subproblems independently.

- In FO case, satisfaction might require a substitution.

Planning Planning
2017-03-08 Page 19 2017-03-08 Page 20

Partial-order planning Shoe example

Goal(RightShoeOn A LeftShoeOn)

Progression and regression

planning are totally ordered plan Init()
search forms. Action(RightShoe, PRECOND: RightSockOn EFFECT: RightShoeOn)
f Action(RightSock, PRECOND: EFFECT: RightSockOn)
- They cannot take advantage of problem Action(LeftShoe, PRECOND: LeftSockOn EFFECT: LeftShoeOn)
decomp05|t|on. Action(LeftSock, PRECOND: EFFECT: LeftSockOn)

- Decisions must be made on how to sequence actions on
all the subproblems

) Planner: combine two action sequences
Least commitment strategy: (1) leftsock, leftshoe

- Delay choice during search (2) rightsock, rightshoe

Planning Planning
2017-03-08 Page 21 2017-03-08 Page 22

Partial-order planning(POP) POP as a search problem

Any planning algorithm that can place two

actions into a plan without stating which States are (mostly unfinished) plans.
comes first is a PO pIan. - The empty plan contains only start and finish actions.
Partial Order Plan: Total Order Plans:

Each plan has 4 components:

- A set of actions (steps of the plan)

- A set of ordering constraints: A < B (A before B)
- Cycles represent contradictions.

- Asetof causal links A2 5
- The plan may not be extended by adding a new action C that conflicts
with the causal link. (if the effect of C is =p and if C could come after A
and before B)
— A set of open preconditions.
- If precondition is not achieved by action in the plan.

L=ft Right
Sock Sock

LeftSockOn RightSockOn
it

Teft Figh
Shos Shos

Le#ShoeOn, RightShoeOn

Planning Planning
2017-03-08 Page 23 2017-03-08 Page 24

Example of final plan Shopping list example

Actions={Rightsock, Rightshoe, Leftsock,
Leftshoe, Start, Finish}

Orderings={Rightsock < Rightshoe; Leftsock
< Leftshoe}
Links={Rightsock->Rightsockon ->
Rightshoe, Leftsock->Leftsockon-> Leftshoe,
Rightshoe->Rightshoeon->Finish, ...}

Open preconditions={}

)
2017-03-08 Page 25

Shopping list example

At(Home) ~ Sells(HWS,Drill) ~ Sells(SM,Milk) Sells(SM,Ban.)

At(HWS) sbs,onw

At(x)

At(SM) Sells(SM,Milk) At(SM) Sells(SM,Milk) | At(SM) Sells(SM,Ban.

Have(Mik) At(Home) Have(Ban.) Have(Dril) Have(Mik) At(Home) (Ban.) (Drif)

)
2017-03-08 Page 27 2017-03-08 Page 28

POP as a search problem

A plan is consistent iff there are no cycles in
the ordering constraints and no conflicts with
the causal links.

A consistent plan with no open preconditions
is a solution.

A partial order plan is executed by
repeatedly choosing any of the possible next
actions.

- This flexibility is a benefit in non-cooperative environments;
— Gives rise to emergent behaviours.

Planning
2017-03-08 Page 29

Enforcing consistency

When generating successor plan:

- The causal link A->p->B and the ordering
constraint A < B is added to the plan.
- If A is new also add start < A and A < B to the plan
- Resolve conflicts between new causal link and
all existing actions

- Resolve conflicts between action A (if new)
and all existing causal links.

Planning
2017-03-08 Page 31

Solving POP

Assume propositional planning

problems:

- The initial plan contains Start and Finish, the ordering
constraint Start < Finish, no causal links, all the
preconditions in Finish are open.

— Successor function :

— picks one open precondition p on an action B and

- generates a successor plan for every possible consistent way of
choosing action A that achieves p.

- Test goal

Planning

2017-03-08 Page 30

Process summary

Operators on partial plans

- Add link from existing plan to open precondition.

- Add a step to fulfill an open condition.

- Order one step w.r.t another to remove possible conflicts
Gradually move from incomplete/vague plans
to complete/correct plans

Backtrack if an open condition is
unachievable or if a conflict is irresolvable.

Planning
2017-03-08 Page 32

Solving the problem

Example: Spare tire problem

Init(At(Flat, Axle) » At(Spare, trunk))

Goal(At(Spare, Axle))
Action(Remove(Spare, Trunk) "‘3’“"7""*)
PRECOND: At(Spare, Trunk)
EFFECT: —At(Spare, Trunk) At(Spare, Ground)) e ool L) AYSare,Gro T PutOn(Spare Axlg) j-ae-AifSaare Ade)|_ Finish)

—AfRatAde)

Action(Remove(Flat, Axle)
PRECOND: At(Flat, Axle)
EFFECT: -At(Flat, Axle) » At(Flat, Ground))

Action(PutOn(Spare, Axle) iti . i iNi
o e o ndn) Attt Axle) In_|t|al plan: Start with EFFECTS and Finish
EFFECT: At(Spare ,Axle) » =At(Spare, Ground)) with PRECOND.

Action(LeaveOvernight
PRECOND:

EFFECT: -At(Spare, Ground) » =At(Spare, Axle) n =At(Spare, trunk) »
—At(Flat, Ground) » —At(Flat, Axle))

Planning Planning
2017-03-08 Page 33 2017-03-08 Page 34

Solving the problem Solving the problem

AtfSpare Trunk)| Remove (Spare. Trunk) AnfSoreTrigk)| Remove (Spare, Trunk)

At(Spzre Trunk) . Grglng Ar{Spre, Trunk) ound
BT il o BT il e e Ao _Fimish |
Initial plan: Start with EFFECTS and Finish with PRECOND. Pick an open precondition: At(Spare, Ground)
Pick an open precondition: At(Spare, Axle) Only Remove(Spare, Trunk) is applicable
Only PutOn(Spare, Axle) is applicable Add causal link: Remove(Spare,Trunk)—* "0 PyiOn(Spare, Axle)
Add causal link: PutOn(Spare,Axle)—2150aredde) pipich Add constraint : Remove(Spare, Trunk) < PutOn(Spare,Axle)

Add constraint : PutOn(Spare, Axle) < Finish

Planning Planning
2017-03-08 Page 35 2017-03-08 Page 36

Solving the problem Solving the problem

AnSpare. Trunk)|

Ar(Spre, Trunk)
[el

A Spare Trurk))

Remove (Spare.Trunk)

|\Qemove (Spare.Trunk)
D ey [PUtON(Spare Axie) J-e- AGaare A
D o [PutOn(Spare Axie) fSpare Axe)Finish |

Ar(Spre Trunk) —
_513 AnfSpzre Axi _Flmah
rt At (Flax, Axle) %)

A Al
ANt Gretn) R 1~
LeaveOvernight At Soare A |Le.we°vernght l:l‘ Spare Ade)
A# nare, G Sz .Gound)
AN Spzre, Trurk)

AN Sgaser

Pick an open precondition: At(Spare, Trunk)

Pick an open precondition: —At(Flat, Axle) Only Start is applicable

LeaneOverNight is ap'plicable Add causal link: Start—28peelumd s Re move(Spare, Trunk)

conflict: LeaveOverNight also tass thGe e:fect — At(Spare,Ground) Conflict: of causal link with effect =At(Spare, Trunk) in LeaveOverNight
Re move(Spare,Trunk) —2132252d) 5 pytOn(Spare, Axle) — No re-ordering solution possible.

To resolve, add constraint : LeaveOverNight < Remove(Spare, Trunk) backtrack

Planning Planning
2017-03-08 Page 37 2017-03-08 Page 38

Solving the problem Some details ...

Aqsmrw What happens when a first-order
- - representation that includes variables is
[T e i PO 00) | - s o] Folah | used?
atRn Ao Remove(FaL A] — Complicates the process of detecting and resolving conflicts.
- Can be resolved by introducing inequality constraint.
Remove LeaveOverNight, Remove(Spare, Trunk) CSP’s most-constrained-variable heuristic
and causal links can be used for planning algorithms to select
Repeat step with Remove(Spare, Trunk) a PRECOND

Add also RemoveFlatAxle and finish

Planning Planning
2017-03-08 Page 39 2017-03-08 Page 40

Planning graphs

Planning graphs

Used to achieve better heuristic estimates.

- A solution can also be directly extracted using GRAPHPLAN.
Consists of a sequence of levels that
correspond to time steps in the plan.

- Level 0 is the initial state.

— Each level consists of a set of literals and a set of actions.

- Literals = all those that could be true at that time step, depending upon
the actions executed at the preceding time step.

- Actions = all those actions that could have their preconditions satisfied
at that time step, depending on which of the literals actually hold.

Planning
2017-03-08 Page 41

Cake example

S, A, S, A, S»
Have(Cake) .- Have(Cake) - Have(Cake)
— Have(Cake) >< =) — Have(Cake)
Eaten(Cake) f Eaten{Cake)
— Eaten(Cake) = — Eaten(Cake) = — Eaten(Cake)

Start at level S, and determine action level Ay and next level S;.
- A, >> all actions whose preconditions are satisfied in the previous level.
- Connect precond and effect of actions S, --> S,

- Inaction is represented by persistence actions.

Level A, contains the actions that could occur
- Conflicts between actions are represented by mutex links

Plannin
2017-03-08 Page 43

‘
‘

“Could™?

- Records only a restricted subset of possible negative
interactions among actions.

They work only for propositional problems.

Example:
Init(Have(Cake))
Goal(Have(Cake) A Eaten(Cake))
Action(Eat(Cake), PRECOND: Have(Cake)
EFFECT: —Have(Cake) A Eaten(Cake))
Action(Bake(Cake), PRECOND: - Have(Cake)
EFFECT: Have(Cake))

Planning
2017-03-08 Page 42

Cake example

S, A, S, A, S»
Have(Cake) e Have(Cake) - Have(Cake)
— Have(Cake) >< & — Have(Cake)
Eaten(Cake) =+ Eaten{Cake)
— Eaten(Cake) = — Eaten(Cake) = — Eaten(Cake)

Level S; contains all literals that could result from picking any
subset of actions in A,

- Conflicts between literals that can not occur together (as a consequence of the
selection action) are represented by mutex links.

S, defines multiple states and the mutex links are the constraints that define this set

of states.

Continue until two consecutive levels are identical: leveled off
— Or contain the same amount of literals

Plannin
2017-03-08 Page 44

Cake example

PG and heuristic estimation

S, A, S, A S»
Have(Cake) i Have(Cake) = Have(Cake)
— Have(Cake) >< 1= — Have(Cake)
Eaten(Cake) — Eaten{Cake)
— Eaten(Cake) = — Eaten(Cake) = — Eaten(Cake)

A mutex relation holds between two actions when:
- Inconsistent effects: one action negates the effect of another.
- Interference: one of the effects of one action is the negation of a precondition of the other.

of the other.
A mutex relation holds between two literals when (inconsistent
support):
- If one is the negation of the other OR
- if each possible action pair that could achieve the literals is mutex.

Planning
2017-03-08 Page 45

The GRAPHPLAN Algorithm

How to extract a solution directly from the PG

function GRAPHPLAN(problem) return solution or failure
graph <« INITIAL-PLANNING-GRAPH(problem)
goals « GOALS[problem]
loop do
if goals all non-mutex in last level of graph then do

solution < EXTRACT-SOLUTION(graph, goals,
LENGTH(graph))

if solution = failure then return solution
else if NO-SOLUTION-POSSIBLE(graph) then return failure
graph < EXPAND-GRAPH(graph, problem)

Planning
2017-03-08 Page 47

Competing needs: one of the preconditions of one action is mutually exclusive with the precondition

PG’s provide information about the problem
- A literal that does not appear in the final level of the graph
cannot be achieved by any plan.
- Useful for backward search (cost = inf).
- Level of appearance can be used as cost estimate of
achieving any goal literals = level cost.
- Small problem: several actions can occur

- Restrict to one action using serial PG (add mutex links between every
pair of actions, except persistence actions).

- Cost of a conjunction of goals? Max-level, sum-level and
set-level heuristics.

PG is a relaxed problem.

Planning
2017-03-08 Page 46

Example: Spare tire problem

Init(At(Flat, Axle) n At(Spare, trunk))
Goal(At(Spare, Axle))
Action(Remove(Spare, Trunk)

PRECOND: At(Spare, Trunk)

EFFECT: -At(Spare, Trunk) » At(Spare, Ground))
Action(Remove(Flat, Axle)

PRECOND: At(Flat, Axle)

EFFECT: -At(Flat, Axle) A At(Flat, Ground))
Action(PutOn(Spare, Axle)

PRECOND: At(Spare, Groundp) » -At(Flat, Axle)

EFFECT: At(Spare, Axle) n =At(Spare, Ground))
Action(LeaveOvernight

PRECOND:

EFFECT: —At(Spare, Ground) » =At(Spare, Axle) n =At(Spare, trunk) »n =At(Flat, Ground) A
—At(Flat, Axle))

Planning
2017-03-08 Page 48

GRAPHPLAN example GRAPHPLAN example

Sz

Ao s Ay Sz S, Ao S,
At(Spare, Trunk)

4
‘ At(Spare, Trurk) At(Spare, Trunk) A(Spare, Trunk) At(Spare, Trurk)

ﬁemuve (Spare Tronk)

0
A(Spare, Trunk)

=
v
N Remove(Spare,Trunky

—At(Spare, Trunk) f ._‘ —At(Spare, Trunk)
'I Remove(Flat Axe| "

a
g
" Femovelspare Trurk
I~

— At(Spare, Trurk) —— S
I-'-l y

At(Flat, Axle) ‘-‘-A“ At(Flat Axle) A At(Flat, Axle) At(Flat. Axie) At(Flat Axle) ‘ At(Flat, Axle)
[(CeaveOvernight } At (Flat Axle) - —At(Flat,Axle) —At(Flat Axle) 1 At(Flat,Axle)
At(Spare, Axle) ‘\ . umwm - “\ A:sam; \At(Spare, Axle) A::sam)) Aysamd);
—At(Spare,Axle) Al Axle) —At(Spare, - are, Axe) —At(Spare, Axle) ﬁrpas,s
A\ At(Spare Axle) At(Spare Axle)
—At(Flat, Ground) \ —At(Flat,Ground) —“\\ —\;tﬂ-:;&mmﬂ —At(Flat, Ground) —At(Flat.Ground) N ﬂ;r(F/a,Gmumﬂ
At(Flat. Ground) \i At(Flat, Ground) At(Flat. Ground) At(Flat,Ground)
— At(Spare, Ground) %—mt@w&s@m ﬂAl(Spale,Gmumﬂ — At(Spare, Ground) — At(Spare, Ground) \— At(Spare, Ground)
At(Spare, Ground) At(Spare,Ground) At(Spare, Ground) At(Spare,Ground)
Initially the plan consist of 5 literals from the initial state and the CWA EXPAND-GRAPH also looks for mutex relations
literals (S,). - Inconsistent effects
) 0 . Lo - E.g. Remove(Spare, Trunk) and LeaveOverNight due to At(Spare, Ground) and not At(Spare, Ground)
Add actions whose preconditions are satisfied by EXPAND-GRAPH (A,) - Interference
AlSO add persistence aCtiOnS and muteX relations - E.g. Remove(Flat, Axle) and LeaveOverNight At(Flat, Axle) as PRECOND and not At(Flat, Axle) as EFFECT
. - Competing needs
Add the effects at |eve| 51 - E.g. PutOn(Spare, Axle) and Remove(Flat, Axle) due to At(Flat. Axle) and not At(Flat, Axle)
. L. - Inconsistent support
Repeat until goal is in level S ~ E.g.inS, At(Spare, Axle) and At(Flat, Axle)

Planning Planning
2017-03-08 Page 49 2017-03-08 Page 50

GRAPHPLAN example

S, s, Sz S, A, s, Sz
At(Spare, Trunk) At(Spare, Trunk) At(Spare, Trunk) At(Spare, Trunk) At(Spare, Trunk) At(Spare, Trunk)
—At(Spare, Turk) r— —AtSpare Tunk) —J————ry—\ —Al(Spare,Trunk)
Y Y
At{Fiat, Axie) A-‘-A“ At(Flat Axie) ‘- At{Flat, Axie) At(Flat, Axie) A- At(Fiat Axie) A- At{Fiat, Axie)
[Teavevernight | —At(Flat Axle) —At(Flat, Axle) —At(Flat Axle) — At(Flat, Axle)
N\ e
—At(Spare,Axe) 1 At(Spare,Axle) l_‘."‘ —At(Spare,Axle) —At(Spare, Axle) — At(Spare,Axle) == —At(Spare Axle)
At(Spare Axle) At(Spare Axle)
— At{Flat, Ground) —At(Flat,Ground) N — AFiat, Ground) — At{Flat, Ground) —At(Flat,Ground) N — AFiat, Ground)
At{Flat, Ground) At(Flat, Ground) At(Flat, Ground) At(Flat, Ground)
— At(Spare, Ground) A , Ground) A , Ground) — At(Spare, Ground) \— At(Spare, Ground) \— At(Spare, Ground)
\AllSpars,Groumﬂ ;a% At(Spare,Ground) At(Spare, Ground) At(Spare,Ground)
In S,, the goal literals exist and are not mutex with any other Termination? YES
- Solution might exist and EXTRACT-SOLUTION will try to find it PG are monotonica”y increasing or decreasing:
EXTRACT-SOLUTION can use Boolean CSP to solve the problem or a - Literals increase monotonically
search process: - Actions increase monotonically
- Initial state = last level of PG and goal goals of planning problem - Mutexes decrease monotonically
- Actions = select any set of non-conflicting actions that cover the goals in the state Because of these properties and because there is a finite number
- Goal = reach level S, such that all goals are satisfied of actions and literals, every PG will eventually level off !

- Cost = 1 for each action.

Planning Planning
2017-03-08 Page 51 2017-03-08 Page 52

Planning with propositional logic

Planning can be done by proving theorem in situation calculus.
Here: test the satisfiability of a logical sentence:

initial state A all possible action descriptions A goal

Sentence contains propositions for every action occurrence.

- A model will assign true to the actions that are part of the correct plan and
false to the others

- An assignment that corresponds to an incorrect plan will not be a model
because of inconsistency with the assertion that the goal is true.

- If the planning is unsolvable the sentence will be unsatisfiable.

Planning
2017-03-08 Page 53

Planning vs. scheduling

Analysis of planning approach

Planning is an area of great interest
within Al

- Search for solution

- Constructively prove a existence of solution
Biggest problem is the combinatorial
explosion in states.

Efficient methods are under research
- E.g. divide-and-conquer

Planning
2017-03-08 Page 54

Representation

Classical planning:
What to do? In what order?

But not:
How long? When? Using what resources?
Normally:

Plan first, schedule later.

Planning
2017-03-08 Page 55

Job-shop scheduling problem:
@ A set of jobs

& Each job is a collection of ACTIONS with some ORDERING
CONSTRAINTS

@ Each action has a DURATION and a set of RESOURCE
CONSTRAINTS

resources may be CONSUMABLE or REUSABLE

Solution:

Start times for all actions, obeying all constraints

Planning
2017-03-08 Page 56

