Planning

Planning

The Planning problem
Planning with State-space search
Partial-order planning

Based on slides prepared by Tom Lenaerts H
SWITCH, Vlaams Interuniversitair Instituut voor Biotechnologie Pla nni ng g ra phS

Modifications by Jacek.Malec@cs.lth.se Planning Wlth prODOSitionaI IOgiC
Original slides can be found at http://aima.cs.berkeley.edu Analysis Of planning approaCheS

¥ Vrije Universiteit Brussel
Lu N D Planning
UNIVERSITY 2014-02-21 Page 2

What is Planning Why not standard search?

Generate sequences of actions to perform tasks and Consider the task get milk, bananas and a cordless drill
achieve objectives. Standard search algorithms fail

- States, actions and goals e]

Search for solution over abstract space of plans. GoTorersiore ﬁ

Go To School

Classical planning environment: fully observable,
deterministic, finite, static and discrete.

Assists humans in practical applications
- design and manufacturing

- military operations

- games

— space exploration

Go To Class
[—]
Go To Supermarket Buy Tuna Fish
——[]

Go To Sleep EI Buy Arugula :I
Read A Book Buy Milk

L] = [
Sit in Chair Sit Some More D

Etc. Etc. ... \| Read A Book Cl
Planning Planning
2014-02-21 Page 3 2014-02-21 Page 4

Difficulty of real world problems Planning language

Assume a problem-solving agent What is a good language?
using some search method - Expressive enough to describe a wide variety
of problems.

— Which actions are relevant?
- Exhaustive search vs. backward search

- What is a good heuristic functions?
- Good estimate of the cost of the state?

- Restrictive enough to allow efficient
algorithms to operate on it.

- Planning algorithm should be able to take
_ Problem-dependent vs, -independent advantage of the logical structure of the

- How to decompose the problem? problem.
- Most real-world problems are nearly decomposable. STRIPS a nd PDDL

Planning Planning
2014-02-21 Page 5 2014-02-21 Page ¢

General language features General language features

Representation of states Representations of actions
- Decompose the world in logical conditions and represent a — Action = PRECOND + EFFECT
state as a conjunction of positive literals.

Action(Fly(p, from, to),

- Propositional literals: Safe 1 HasGold PRECOND: At(p, from) » Plane(p) » Airport(from) 1 Airport(to)
- FO-literals (grounded and function-free): At(Planel, Copenhagen) 2 EFFECT: -AT(p, from) A At(p, to))

At(Plane2, Oslo) ti h f t d to be instantiated
_ Closed world assumption = ac |on schema (p, from, o_ need to be instantiated)
- Action name and parameter list

Repl’esentation Of goa|S - Precondition (conj. of function-free literals)

- Partially specified state and represented as a conjunction of - Effect (conjunction of function-free literals and P is True and
positive ground literals not P is false)

- A goal is satisfied if the state contains all literals in goal. - Add-list vs delete-list in Effect

Planning Planning
2014-02-21 Page 7 2014-02-21 Page g8

Language semantics? Language semantics?

I ? . . .
How do actions affect statess The result of executing action a in state
- An action is applicable in any state that s is the state s’
satisfies the precondition. _ 5 is same as s except
- For FO action schema applicability involves a - Any positive literal P in the effect of a is added to s’
substitution 6 for the variables in the - Any negative literal - is removed from s’
EFFECT: =AT(p, from) A At(p, to):
PRECOND At(P1, SFO) A At(P2, SFO) A Plane(P1) » Plane(P2) s Airport(JFK) »
At(P1, JFK) » At(P2, SFO) A Plane(P1) A Plane(P2) s Airport(JFK) Airport(SFO)
A Airport(SFO)
Satisfies : At(p, from) a Plane(p) a Airport(from) a Airport(to) - STRIPS assumption: (avoids representational frame
With 6 ={p/P1, from/JFK, to/SFO} problem)
Thus the action is applicable. every literal NOT in the effect remains unchanged

Planning Planning
2014-02-21 Page 9 2014-02-21 Page 10

Expressiveness and extensions Example: air cargo transport

Init(At(C1, SFO) At(C2, JFK) 1 At(P1, SFO) a At(P2, JFK) n Cargo(C1) a

STRIPS iS Slmpl |f|ed Cargo(C2) » Plane(P1) a Plane(P2) Airport(JFK) a Airport(SFO))
- Important limit: function-free literals Goal(At(C1, JFK) 1 At(C2, SFO))
- Allows for propositional representation)
- Function symbols lead to infinitely many states and actions Action(Load(c, p, a)
. . . . PRECOND: At(c, a) » At(p, a) » Cargo(c) » Plane(p) » Airport(a)
Expressiveness extension: Planning Domain EFFECT: —At(c, a) A In(c, p))
Description Language (PDDL) Action(Unload(c, p, a) _
Action(Fly(p: Plane, from: Airport, to: Airport), PRECOND: In(c, p) » At(p, a) » Cargo(c) » Plane(p) a Airport(a)
PRECOND: At(p, from) » (from = to) EFFECT: At(c, a) » =In(c, p))
EFFECT: -At(p, from) » At(p, to)) Action(Fly(p, from, to)
PRECOND: At(p, from) a Plane(p) » Airport(from) » Airport(to)
Standardization : now (since 2008) in its 3.1 version EFFECT: -At(p, from) a At(p, to))

[Load(C1, P1 ,SFO), Fly(P1, SFO, JFK), Load(C2, P2, JFK), Fly(P2, JFK, SFO)]

Planning Planning
2014-02-21 Page 11 2014-02-21 Page 12

Example: Spare tire problem Example: Blocks world

Init(At(Flat, Axle) 1 At(Spare, trunk)) Init(On(A, Table) » On(B, Table) » On(C, Table) a Block(A) » Block(B)
Goal(At(Spare, Axle)) A Block(C) a Clear(A) a Clear(B) a Clear(C))

Action(Remove(Spare, Trunk)
PRECOND: At(Spare, Trunk)
EFFECT: -At(Spare, Trunk) 1 At(Spare, Ground))

Action(Remove(Flat, Axle) Goal(On(A, B) 2 On(B, C))
PRECOND: At(Flat, Axle)

) EFFECT: —At(Flat, Axle) At(Flat, Ground)) Action(Move(b, x, y)
o ORECONDS: At(Spare; Grounds) » ~At(Fiat, Axie) PRECOND: On(b, x) a Clear(b) Clear(y) a Block(b) » (b =x) x (b
EFFECT: At(Spare, Axle) » =At(Spare ,Ground)) =y)A(x=y)
ACt"‘;’;(Eng"Neé’:"er”’ght EFFECT: On(b, y) a Clear(x) n =0On(b, x) n =Clear(y))
EFFECT: -At(Spare, Ground) 1 ~At(Spare, Axle) » ~At(Spare, trunk) » —At(Flat, Ground) Action(MoveToTable(b, x)
-At(Flat, Axle)) PRECOND: On(b, x) » Clear(b) 1 Block(b) (b = x)
This example goes beyond STRIPS: negative literal in pre-condition (PDDL description) EFFECT: On(b, Tab/e) A Clear(x) A —|On(b, X))

Planning Planning
2014-02-21 Page 13 2014-02-21 Page 14

Planning with state-space search Progression and regression

Both forward and backward search possible » B ’_‘/ g \‘/'

Progression planners . AP L L N

- forward state-space search __A"Pb’”_i \E@i@;:;_\'//-_/*t(P.,A)—-\\‘/'

- Consider the effect of all possible actions in a given state ‘.\\ At(P,, B) //\

Regression planners ,\‘/m‘\!

- 'llj'zC:ﬁ?s/es;atgia?ll:,)avsﬁaste:wrlf:t have been true in the previous) /\V At(Pz,B}-/‘\!ﬂyf’!ﬂL\/f At(P, , B) \W

state. ‘\‘/m‘,l?&iiﬁf _/.-\ At(Pz,B)—/

‘/‘\\ At(P,, A)) /

Planning Planning
2014-02-21 Page 15 2014-02-21 Page 16

Progression algorithm

Formulation as state-space search problem:

- Initial state = initial state of the planning problem
— Literals not appearing are false

- Actions = those whose preconditions are satisfied
- Add positive effects, delete negative

- Goal test = does the state satisfy the goal

— Step cost = each action costs 1

No functions ... any graph search that is complete is
a complete planning algorithm.

- E.g. A*

Inefficient:

- (1) irrelevant action problem

- (2) good heuristic required for efficient search

Planning
2014-02-21 Page 17

Regression algorithm

General process for predecessor construction
- Give a goal description G
- Let A be an action that is relevant and consistent

- The predecessors are as follows:
- Any positive effects of A that appear in G are deleted.
- Each precondition literal of A is added , unless it already appears.

Any standard search algorithm can be added
to perform the search.
Termination when predecessor is satisfied by

initial state.
- In FO case, satisfaction might require a substitution.

Planning
2014-02-21 Page 19

Planning
2014-02-21 Page 18

Regression algorithm

How to determine predecessors?

- What are the states from which applying a given action
leads to the goal?
Goal state = At(C1, B) 2 At(C2, B) 4 ... » At(C20, B)
Relevant action for first conjunct: Unload(C1, p, B)
Works only if pre-conditions are satisfied.
Previous state= In(C1, p) A At(p, B) » At(C2, B) 1 ... » At(C20, B)
Subgoal At(C1, B) should not be present in this state.

Actions must not undo desired literals
(consistent)

Main advantage: only relevant actions are
considered.
- Often much lower branching factor than forward search.

Heuristics for state-space search

Neither progression or regression are very
efficient without a good heuristic.

- How many actions are needed to achieve the goal?

- Exact solution is NP hard, find a good estimate

Two approaches to find admissible heuristic:

- The optimal solution to the relaxed problem.
- Remove all preconditions from actions
- The subgoal independence assumption:

The cost of solving a conjunction of subgoals is approximated by the sum
of the costs of solving the subproblems independently.

Planning
2014-02-21 Page 20

Partial-order planning Shoe example

Goal(RightShoeOn a LeftShoeOn)

Progression and regression

planning are totally ordered plan Init()
search forms. Action(RightShoe, PRECOND: RightSockOn EFFECT: RightShoeOn)
h K d £ bl Action(RightSock, PRECOND: EFFECT: RightSockOn)
- They cannot take advantage of problem Action(LeftShoe, PRECOND: LeftSockOn EFFECT: LeftShoeOn)
decomposition. Action(LeftSock, PRECOND: EFFECT: LeftSockOn)

- Decisions must be made on how to sequence actions on

all the subproblems . .
Planner: combine two action sequences

Least commitment strategy: (1) leftsock, leftshoe
- Delay choice during search (2) rightsock, rightshoe

Planning Planning
2014-02-21 Page 21 2014-02-21 Page 22

POP as a search problem

Partial-order planning(POP)

Any planning algorithm that can place two

actions into a plan without Stating which States are (mostly unﬁnished) plansl
comes first is a PO pIan. - The empty plan contains only start and finish actions.

Each plan has 4 components:

- A set of actions (steps of the plan)

- A set of ordering constraints: A < B (A before B)
- Cycles represent contradictions.

- A set of causal links
- The plan may not be extended by adding a new action C that conflicts

with the causal link. (if the effect of C is =p and if C could come after A
and before B)

- A set of open preconditions.
- If precondition is not achieved by action in the plan.

Le#ShoeOn, RightShoeOn

Planning Planning
2014-02-21 Page 23 2014-02-21 Page 24

Example of final plan

Actions={Rightsock, Rightshoe, Leftsock,
Leftshoe, Start, Finish}

Orderings={Rightsock < Rightshoe; Leftsock
< Leftshoe}

Links={Rightsock->Rightsockon ->
Rightshoe, Leftsock->Leftsockon-> Leftshoe,
Rightshoe->Rightshoeon->Finish, ...}

Open preconditions={}

ing
2014-02-21 Page 25

Shopping list example

Shopping list example

At(Home) ~ Sells(HWS,Dril) Sells(SM,Milk) ~ Sells(SM,Ban.)

At(Home) Sells(HWS,Drill) ~ Sells(SM,Milk) ~ Sells(SM,Ban.)

AUHWS) &)s, Drill)

Buy(Drill)

At

(x)

AYSM) Sells(SM,Milk)

Have(Milk) At(Home) Have(Ban.) Have(Drill)

jome

Planning
2014-02-21 Page 27

Have(Mik) At(Home) Have(Ban.) Have(Dril)

Planning
2014-02-21 Page 28

POP as a search problem Solving POP

A plan is consistent iff there are no cycles in Assume propositional planning
the ordering constraints and no conflicts with problems:

the causal links. - _ o _
. | ith diti - The initial plan contains Start and Finish, the ordering
A consistent plan with no open preconditions constraint Start < Finish, no causal links, all the

is a solution. preconditions in Finish are open.
A partial order plan is executed by repeatedly - Successor function :
choosing any of the possible next actions. - picks one open precondition p on an action B and
~ This flexibility is a benefit in non-cooperative environments; ~ generates a successor plan for every possible consistent way of

choosing action A that achieves p.
— Test goal

Planning Planning
2014-02-21 Page 29 2014-02-21 Page 30

- Gives rise to emergent behaviours.

Enforcing consistency Process summary

When generating successor plan: Operators on partial plans

. . - Add link from existing plan to open precondition.
- The causal link A->p->B and the ordering op Pen p

. . dded h | - Add a step to fulfill an open condition.
constraint A < B is added to the plan. - Order one step w.r.t another to remove possible conflicts
- If A is new also add start < A and A < B to the plan

Gradually move from incomplete/vague plans
- Resolve conflicts between new causal link an
otve confic b ausa and to complete/correct plans
all existing actions

- Resolve conflicts between action A (if new) Backtr_ack if an o_pen conc;lltlc_)n_ls
and all existing causal links. unachievable or if a conflict is irresolvable.

Planning Planning
2014-02-21 Page 31 2014-02-21 Page 32

Solving the problem

Example: Spare tire problem

Init(At(Flat, Axle) r At(Spare, trunk))
Goal(At(Spare, Axle))
Action(Remove(Spare, Trunk) "‘57""‘7’"*’
PRECOND: At(Spare, Trunk)
EFFECT: -At(Spare, Trunk) A At(Spare, Ground)) Bl Tni) AlfSpre, Gro
Action(Remove(Flat, Axle) TVARatAde)
PRECOND: At(Flat, Axle)
EFFECT: —At(Flat, Axle) a At(Flat, Ground))

7 [PutOniSpare Ay o H3mse vo]_Fiish)

Action(PutOn(Spare, Axle) Initial plan: Start with EFFECTS and Finish
PRECOND: At(Spare, Groundp) a —At(Flat, Axle))
EFFECT: At(Spare ,Axle) 1 ~At(Spare, Ground)) with PRECOND.

Action(LeaveOvernight
PRECOND:

EFFECT: =At(Spare, Ground) r =At(Spare, Axle) » =At(Spare, trunk) a
=At(Flat, Ground) » =At(Flat, Axle))

Planning Planning
2014-02-21 Page 33 2014-02-21 Page 34

Solving the problem

Solving the problem

Atopsre ok Remove Spare Tk |

Ar{Spre. Trunk) AtfSpare, Grglng . Ground)j~
BT o iz G Py srmins
Initial plan: Start with EFFECTS and Finish with PRECOND. Pick an open precondition: At(Spare, Ground)
Pick an open precondition: At(Spare, Axle) Only Remove(Spare, Trunk) is applicable
Only PutOn(Spare, Axle) is applicable Add causal link: Remove(Spare,Trunk)—*C22&20— pyiOn(Spare, Axle)
Add causal link: PutOn(Spare,Axle)—282wedde) pipich Add constraint : Remove(Spare, Trunk) < PutOn(Spare,Axle)

Add constraint : PutOn(Spare, Axle) < Finish

Planning Planning
2014-02-21 Page 35 2014-02-21 Page 36

Solving the problem Solving the problem

Aif9pere Trurts Romoys Spare Trunk) | Nismovs (Gpare Trunk)
AnfSpzre,

Eas AtfSozre A
D arrare [PutOn(Spare Axie) It o[_Finish_|

A #ﬂaleIe)
1A

LeaveOvernight i:‘ Ade)
=

Pick an open precondition: At(Spare, Trunk)

Pick an open precondition: —=At(Flat, Axle) Only Start is applicable

Leav?OverNight is ap.plicable Add causal link: Start —ASparedrunk) Re move(Spare, Trunk)

conflict: LeaveOverNight also I'/:ass thGe e:fect ~ At(Spare,Ground) Conflict: of causal link with effect =At(Spare, Trunk) in LeaveOverNight
Re move(Spare,Trunk)—252eGrowd) o pyrOn(Spare, Axle) - No re-ordering solution possible.

To resolve, add constraint : LeaveOverNight < Remove(Spare, Trunk) backtrack

Planning Planning
2014-02-21 Page 37 2014-02-21 Page 38

Solving the problem Some details ...

Amgm What happens when a first-order
: representation that includes variables is
=i e o Gy 2y 5 P] e
AR A0 Remove(FitAxe) | - Complicates the process of detecting and resolving conflicts.
- Can be resolved by introducing inequality constraint.
Remove LeaveOverNight, Remove(Spare, Trunk) CSP’s most-constrained-variable heuristic
and causal links can be used for planning algorithms to select
Repeat step with Remove(Spare, Trunk) a PRECOND.

Add also RemoveFlatAxle and finish

Planning Planning
2014-02-21 Page 39 2014-02-21 Page 40

Planning graphs Planning graphs

Used to achieve better heuristic estimates. “Could™?
- A solution can also be directly extracted using GRAPHPLAN. - Records only a restricted subset of possible negative
Consists of a sequence of levels that Interactions among actions. N
- Level 0 is the initial state. Example:
- Each level consists of a set of literals and a set of actions. Init(Have(Cake))
- Literals = all those that could be true at that time step, depending upon Goal(Have(Cake) » Eaten(Cake))
the actions executed at the preceding time step. Action(Eat(Cake), PRECOND: Have(Cake)
- Actions = all those actions that could have their preconditions satisfied EFFECT: ~Have(Cake) A Eaten(Cake))
at that time step, depending on which of the literals actually hold. Action(Bake(Cake), PRECOND: — Have(Cake)

EFFECT: Have(Cake))

Plannin
2014-02-21 Page 41

Planning
2014-02-21 Page 42

|

Cake example Cake example

S, A, S, A, S> S, A, S, A4 S>
Have(Cake) =+ _+ Have(Cake) . X -+ Have(Cake) . Have(Cake) = - Have(Cake) . X ++ - Have(Cake) .
) /' — Have(Cake) ff_‘ S E — Have(Cake)".) ./ —Have(Cake) . e — Have(Cake) ..
) N\ Eaten(Cake) = Eaten(Cake) \/) N\ Eaten(Cake) =m Eaten(Cake) \/
— Eaten(Cake) =4 — Eaten(Cake) - = —Eaten(Cake) © — Eaten(Cake) =4 — Eaten(Cake) - =] — Eaten(Cake)
Start at level S, and determine action level A, and next level S;. Level S; contains all literals that could result from picking any
- A, >> all actions whose preconditions are satisfied in the previous level. subset of actions in A0
- Connect precond and effect of actions S, --> S, - Conflicts between literals that can not occur together (as a consequence of the
- Inaction is represented by persistence actions. selection action) are represented by mutex links.
Level A0 contains the actions that could occur - S, defines multiple states and the mutex links are the constraints that define this set

of states.

Continue until two consecutive levels are identical: /leveled off
— Or contain the same amount of literals

- Conflicts between actions are represented by mutex links

Plannin
2014-02-21 Page 43

Planning
2014-02-21 Page 44

|

Cake example

S, A, S, A Sz
Have(Cake) =5 - Have(Cake) . P=Va! Have(Cake) .
) ./ Have(Cake) . X (et — Have(Cake)".
) " Eaten(Cake) = Eaten(Cake) _"/r
— Eaten(Cake) =8 — Eaten(Cake) = — Eaten(Cake) ©

A mutex relation holds between two actions when:
- Inconsistent effects: one action negates the effect of another.
- Interference: one of the effects of one action is the negation of a precondition of the other.

- Competing needs: one of the preconditions of one action is mutually exclusive with the precondition
of the other.

A mutex relation holds between two literals when (inconsistent
support):

- If one is the negation of the other OR

- if each possible action pair that could achieve the literals is mutex.

Planning
2014-02-21 Page 45

The GRAPHPLAN Algorithm

How to extract a solution directly from the PG

function GRAPHPLAN(problem) return solution or failure

graph < INITIAL-PLANNING-GRAPH(problem)

goals < GOALS[problem]

loop do

if goals all non-mutex in last level of graph then do

solution <— EXTRACT-SOLUTION(graph, goals, LENGTH(graph))
if solution = failure then return solution
else if NO-SOLUTION-POSSIBLE(graph) then return failure
graph <= EXPAND-GRAPH(graph, problem)

Planning
2014-02-21 Page 47

Planning
2014-02-21 Page 46

PG and heuristic estimation

PG’s provide information about the problem
A literal that does not appear in the final level of the graph
cannot be achieved by any plan.

- Useful for backward search (cost = inf).
Level of appearance can be used as cost estimate of
achieving any goal literals = level cost.

Small problem: several actions can occur

- Restrict to one action using serial PG (add mutex links between every
pair of actions, except persistence actions).

Cost of a conjunction of goals? Max-level, sum-level and
set-level heuristics.

PG is a relaxed problem.

Example: Spare tire problem

Init(At(Flat, Axle) r At(Spare, trunk))
Goal(At(Spare, Axle))
Action(Remove(Spare, Trunk)
PRECOND: At(Spare, Trunk)
EFFECT: -At(Spare, Trunk) a At(Spare, Ground))
Action(Remove(Flat, Axle)
PRECOND: At(Flat, Axle)
EFFECT: -At(Flat, Axle) » At(Flat, Ground))
Action(PutOn(Spare, Axle)
PRECOND: At(Spare, Groundp) » -At(Flat, Axle)
EFFECT: At(Spare, Axle) r» =At(Spare, Ground))
Action(LeaveOvernight
PRECOND:
EFFECT: -At(Spare, Ground) » -At(Spare, Axle) » =At(Spare, trunk) r =At(Flat, Ground) s
—At(Flat, Axle))

Planning
2014-02-21 Page 48

GRAPHPLAN example

GRAPHPLAN example

S, A, s, Ay Sz
At(Spare, Trunk) At(Spare,Tunk) < . At(Spare, Trunk)
.
At(Spare, Trunk) ﬁAﬂSmrs,Tfuﬂkl
At{Flat, Axie) ‘- At(Flat, Axle) At(Flat,Axie)
At(Flat Axle) 1 At(Flat, Axle)
—1At(Spare, Axle) Al Axle) —At(Spare,Axle)
\\\\ At(Spare Axle)
—At(Flat, Ground) —At(Flat,Ground) e NN —At(Flat, Ground)
\ rceuns /o N\ e
—At(Spare, Ground) — At(Spare, Ground) N\ At(Spare, Ground)
At(Sy ind) At{Spare,Ground)

Initially the plan consist of 5 literals from the initial state and the CWA
literals (S,).

Add actions whose preconditions are satisfied by EXPAND-GRAPH (A;)
Also add persistence actions and mutex relations.

Add the effects at level S,

Repeat until goal is in level S;

Planning
2014-02-21 Page 49

GRAPHPLAN example

Planning
2014-02-21 Page 50

S, A, s, Sz
At(Spare, Trunk) At(Spare, Trunk) < At(Spare, Trunk)
‘
—At(Spare, Turk) A\ atspars it
At{Flat, Axe) ‘- At{Flat Axle) At{Flat, Axe)
’ “-A\K .
[LeaveOvemight N —At(Flat Axle) N ' ‘ —At(Fiat, Axle)
—1At(Spare, Axle) A A ‘ Y= —At(Spare,Axle)
\\\\ ST A NS At(Spare Axle)
/[N\
— At{Flat, Ground) —\At(Flat,Ground) —At{Flat, Ground)
\\\ At{Flat Ground) _\‘\ At{Fiat, Ground)
— At(Spare, Ground) , Ground) \At(Spare, Ground)

\ At(Spare, Ground) ;9; At(Spare,Ground)

EXPAND-GRAPH also looks for mutex relations
Inconsistent effects
- E.g. Remove(Spare, Trunk) and LeaveOverNight due to At(Spare, Ground) and not At(Spare, Ground)
- Interference
- E.g. Remove(Flat, Axle) and LeaveOverNight At(Flat, Axle) as PRECOND and not At(Flat, Axle) as EFFECT
- Competing needs
- E.g. PutOn(Spare, Axle) and Remove(Flat, Axle) due to At(Flat. Axle) and not At(Flat, Axle)
- Inconsistent support
- E.g.inS,, At(Spare, Axle) and At(Flat, Axle)

S, A, s, Sz
At(Spare, Trunk) At(Spare, Trunk) At(Spare, Trunk)
—At(Spare, Turk) ——0 — At(Spare, Trunk)
' [Remove(Fiat.Axie) | \
o 4-‘__‘ o 4- i ' -
[eaveovemight) ‘ —At(Flat Axle) o' = — At{Flat, Axle)
aht k< J
—At(Spare, Axie) A Axie) Y= — At(Spare, Axle)
ASparo il
— At{Flet, Ground) —At(Flat, Ground) W\ — AtiFlat, Ground)
At(Flat, Ground)
— At(Spare, Ground) At]Spas Ground) \— At(Spare, Ground)
At{Spare,Ground)

In S,, the goal literals exist and are not mutex with any other

- Solution might exist and EXTRACT-SOLUTION will try to find it
EXTRACT-SOLUTION can use Boolean CSP to solve the problem or a
search process:

- Initial state = last level of PG and goal goals of planning problem

- Actions = select any set of non-conflicting actions that cover the goals in the state

- Goal = reach level S, such that all goals are satisfied

- Cost = 1 for each action.

Planning
2014-02-21 Page 51

S,

S, Sz
A(Spare, Trunk) At(Spare, Trunk) At(Spare,Trunk)
—At(Spare, Trurk) [—— I — At/Spare, Trunk)
[PemovelFiatAxe) }
At(Fiat Axle) At{Flat Axie) A— At{Flat Axle)
—VAt(Flat Axle) - > AFlat Axle)
g
—At(Spare, Axie) A Axle) \ TAt(Spare,Axie)
\\\\ A At{Spare Axle)
At(Flat, Ground) At(Flat,Ground) At{Flat, Ground)
\ Y / 2 \ At(Fiat, Ground)
—At(Spare, Ground) , Ground) /

Vimenoms L8 | poeces

Termination? YES

PG are monotonically increasing or decreasing:

- Literals increase monotonically

- Actions increase monotonically

- Mutexes decrease monotonically
Because of these properties and because there is a finite number
of actions and literals, every PG will eventually level off !

Planning
2014-02-21 Page 52

Planning with propositional logic

Planning can be done by proving theorem in situation calculus.
Here: test the satisfiability of a logical sentence:

initial state A all possible action descriptions A goal

Sentence contains propositions for every action occurrence.

- A model will assign true to the actions that are part of the correct plan and
false to the others

- An assignment that corresponds to an incorrect plan will not be a model
because of inconsistency with the assertion that the goal is true.

- If the planning is unsolvable the sentence will be unsatisfiable.

Planning
2014-02-21 Page 53

Planning vs. scheduling

Analysis of planning approach

Planning is an area of great interest
within Al

- Search for solution
- Constructively prove a existence of solution

Biggest problem is the combinatorial
explosion in states.

Efficient methods are under research
- E.g. divide-and-conquer

Planning
2014-02-21 Page 54

Representation

Classical planning:
What to do? In what order?

But not:
How long? When? Using what resources?
Normally:

Plan first, schedule later.

Planning
2014-02-21 Page 55

Job-shop scheduling problem:
@ A set of jobs

@ Each job is a collection of ACTIONS with some ORDERING
CONSTRAINTS

@ Each action has a DURATION and a set of RESOURCE
CONSTRAINTS

resources may be CONSUMABLE or REUSABLE

Solution:

Start times for all actions, obeying all constraints

Planning
2014-02-21 Page 56

Assignment 3

« Planning: PDDL 2.1 (or earlier), FF planner
» Test simple cases with existing descriptions
« Apply PDDL to the Wumpus world

« Have fun!

« Deadline: March 7th, 23:59

ing
2014-02-21 Page 57

