
Planning

Based on slides prepared by Tom Lenaerts
SWITCH, Vlaams Interuniversitair Instituut voor Biotechnologie

Modifications by Jacek.Malec@cs.lth.se
Original slides can be found at http://aima.cs.berkeley.edu

Page 2014-02-21 2
Planning

Planning

   The Planning problem
   Planning with State-space search
   Partial-order planning
   Planning graphs
   Planning with propositional logic
   Analysis of planning approaches

Page 2014-02-21 3
Planning

What is Planning

   Generate sequences of actions to perform tasks and
achieve objectives.
–  States, actions and goals

   Search for solution over abstract space of plans.
   Classical planning environment: fully observable,

deterministic, finite, static and discrete.
   Assists humans in practical applications

–  design and manufacturing
–  military operations
–  games
–  space exploration

Page

Why not standard search?

   Consider the task get milk, bananas and a cordless drill
   Standard search algorithms fail

2014-02-21 4
Planning

Page 2014-02-21 5
Planning

Difficulty of real world problems

   Assume a problem-solving agent
 using some search method …

– Which actions are relevant?
– Exhaustive search vs. backward search

– What is a good heuristic functions?
– Good estimate of the cost of the state?
– Problem-dependent vs, -independent

– How to decompose the problem?
– Most real-world problems are nearly decomposable.

Page 2014-02-21 6
Planning

Planning language

   What is a good language?
– Expressive enough to describe a wide variety

of problems.
– Restrictive enough to allow efficient

algorithms to operate on it.
– Planning algorithm should be able to take

advantage of the logical structure of the
problem.

   STRIPS and PDDL

Page 2014-02-21 7
Planning

General language features

   Representation of states
–  Decompose the world in logical conditions and represent a

state as a conjunction of positive literals.
–  Propositional literals: Safe ∧ HasGold
–  FO-literals (grounded and function-free): At(Plane1, Copenhagen) ∧
At(Plane2, Oslo)

–  Closed world assumption

   Representation of goals
–  Partially specified state and represented as a conjunction of

positive ground literals
–  A goal is satisfied if the state contains all literals in goal.

Page 2014-02-21 8
Planning

General language features

   Representations of actions
–  Action = PRECOND + EFFECT

Action(Fly(p, from, to),
 PRECOND: At(p, from) ∧ Plane(p) ∧ Airport(from) ∧ Airport(to)
 EFFECT: ¬AT(p, from) ∧ At(p, to))

= action schema (p, from, to need to be instantiated)
–  Action name and parameter list
–  Precondition (conj. of function-free literals)
–  Effect (conjunction of function-free literals and P is True and

not P is false)

–  Add-list vs delete-list in Effect

Page 2014-02-21 9
Planning

Language semantics?

   How do actions affect states?
– An action is applicable in any state that

satisfies the precondition.
– For FO action schema applicability involves a

substitution θ for the variables in the
PRECOND.

At(P1, JFK) ∧ At(P2, SFO) ∧ Plane(P1) ∧ Plane(P2) ∧ Airport(JFK)
∧ Airport(SFO)

Satisfies : At(p, from) ∧ Plane(p) ∧ Airport(from) ∧ Airport(to)

With θ ={p/P1, from/JFK, to/SFO}
Thus the action is applicable.

Page 2014-02-21 10
Planning

Language semantics?

   The result of executing action a in state
s is the state s’
–  s’ is same as s except

–  Any positive literal P in the effect of a is added to s’
–  Any negative literal ¬P is removed from s’
EFFECT: ¬AT(p, from) ∧ At(p, to):
At(P1, SFO) ∧ At(P2, SFO) ∧ Plane(P1) ∧ Plane(P2) ∧ Airport(JFK) ∧

Airport(SFO)

–  STRIPS assumption: (avoids representational frame
problem)

every literal NOT in the effect remains unchanged

Page 2014-02-21 11
Planning

Expressiveness and extensions

   STRIPS is simplified
–  Important limit: function-free literals

–  Allows for propositional representation
–  Function symbols lead to infinitely many states and actions

   Expressiveness extension: Planning Domain
Description Language (PDDL)

Action(Fly(p: Plane, from: Airport, to: Airport),
 PRECOND: At(p, from) ∧ (from ≠ to)
 EFFECT: ¬At(p, from) ∧ At(p, to))

 Standardization : now (since 2008) in its 3.1 version

Page 2014-02-21 12
Planning

Example: air cargo transport

Init(At(C1, SFO) ∧ At(C2, JFK) ∧ At(P1, SFO) ∧ At(P2, JFK) ∧ Cargo(C1) ∧
Cargo(C2) ∧ Plane(P1) ∧ Plane(P2) ∧ Airport(JFK) ∧ Airport(SFO))

Goal(At(C1, JFK) ∧ At(C2, SFO))

Action(Load(c, p, a)

 PRECOND: At(c, a) ∧ At(p, a) ∧ Cargo(c) ∧ Plane(p) ∧ Airport(a)
 EFFECT: ¬At(c, a) ∧ In(c, p))

Action(Unload(c, p, a)
 PRECOND: In(c, p) ∧ At(p, a) ∧ Cargo(c) ∧ Plane(p) ∧ Airport(a)
 EFFECT: At(c, a) ∧ ¬In(c, p))

Action(Fly(p, from, to)
 PRECOND: At(p, from) ∧ Plane(p) ∧ Airport(from) ∧ Airport(to)
 EFFECT: ¬At(p, from) ∧ At(p, to))

[Load(C1, P1 ,SFO), Fly(P1, SFO, JFK), Load(C2, P2, JFK), Fly(P2, JFK, SFO)]

Page 2014-02-21 13
Planning

Example: Spare tire problem

Init(At(Flat, Axle) ∧ At(Spare, trunk))
Goal(At(Spare, Axle))
Action(Remove(Spare, Trunk)

 PRECOND: At(Spare, Trunk)
 EFFECT: ¬At(Spare, Trunk) ∧ At(Spare, Ground))

Action(Remove(Flat, Axle)
 PRECOND: At(Flat, Axle)
 EFFECT: ¬At(Flat, Axle) ∧ At(Flat, Ground))

Action(PutOn(Spare, Axle)
 PRECOND: At(Spare, Groundp) ∧ ¬At(Flat, Axle)
 EFFECT: At(Spare, Axle) ∧ ¬At(Spare ,Ground))

Action(LeaveOvernight
 PRECOND:
 EFFECT: ¬At(Spare, Ground) ∧ ¬At(Spare, Axle) ∧ ¬At(Spare, trunk) ∧ ¬At(Flat, Ground) ∧
¬At(Flat, Axle))

This example goes beyond STRIPS: negative literal in pre-condition (PDDL description)

Page 2014-02-21 14
Planning

Example: Blocks world

Init(On(A, Table) ∧ On(B, Table) ∧ On(C, Table) ∧ Block(A) ∧ Block(B)
∧ Block(C) ∧ Clear(A) ∧ Clear(B) ∧ Clear(C))

Goal(On(A, B) ∧ On(B, C))

Action(Move(b, x, y)

 PRECOND: On(b, x) ∧ Clear(b) ∧ Clear(y) ∧ Block(b) ∧ (b ≠ x) ∧ (b
≠ y) ∧ (x ≠ y)
 EFFECT: On(b, y) ∧ Clear(x) ∧ ¬On(b, x) ∧ ¬Clear(y))

Action(MoveToTable(b, x)
 PRECOND: On(b, x) ∧ Clear(b) ∧ Block(b) ∧ (b ≠ x)
 EFFECT: On(b, Table) ∧ Clear(x) ∧ ¬On(b, x))

Page 2014-02-21 15
Planning

Planning with state-space search

   Both forward and backward search possible
   Progression planners

–  forward state-space search
–  Consider the effect of all possible actions in a given state

   Regression planners
–  backward state-space search
–  To achieve a goal, what must have been true in the previous

state.

Page 2014-02-21 16
Planning

Progression and regression

Page 2014-02-21 17
Planning

Progression algorithm

   Formulation as state-space search problem:
–  Initial state = initial state of the planning problem

–  Literals not appearing are false
–  Actions = those whose preconditions are satisfied

–  Add positive effects, delete negative
–  Goal test = does the state satisfy the goal
–  Step cost = each action costs 1

   No functions … any graph search that is complete is
a complete planning algorithm.
–  E.g. A*

   Inefficient:
–  (1) irrelevant action problem
–  (2) good heuristic required for efficient search

Page 2014-02-21 18
Planning

Regression algorithm

   How to determine predecessors?
–  What are the states from which applying a given action

leads to the goal?
Goal state = At(C1, B) ∧ At(C2, B) ∧ … ∧ At(C20, B)
Relevant action for first conjunct: Unload(C1, p, B)
Works only if pre-conditions are satisfied.
Previous state= In(C1, p) ∧ At(p, B) ∧ At(C2, B) ∧ … ∧ At(C20, B)
Subgoal At(C1, B) should not be present in this state.

   Actions must not undo desired literals
(consistent)

   Main advantage: only relevant actions are
considered.
–  Often much lower branching factor than forward search.

Page 2014-02-21 19
Planning

Regression algorithm

   General process for predecessor construction
–  Give a goal description G
–  Let A be an action that is relevant and consistent
–  The predecessors are as follows:

–  Any positive effects of A that appear in G are deleted.
–  Each precondition literal of A is added , unless it already appears.

   Any standard search algorithm can be added
to perform the search.

   Termination when predecessor is satisfied by
initial state.
–  In FO case, satisfaction might require a substitution.

Page 2014-02-21 20
Planning

Heuristics for state-space search

   Neither progression or regression are very
efficient without a good heuristic.
–  How many actions are needed to achieve the goal?
–  Exact solution is NP hard, find a good estimate

   Two approaches to find admissible heuristic:
–  The optimal solution to the relaxed problem.

–  Remove all preconditions from actions

–  The subgoal independence assumption:
The cost of solving a conjunction of subgoals is approximated by the sum

of the costs of solving the subproblems independently.

Page 2014-02-21 21
Planning

Partial-order planning

   Progression and regression
planning are totally ordered plan
search forms.
– They cannot take advantage of problem

decomposition.
– Decisions must be made on how to sequence actions on

all the subproblems

   Least commitment strategy:
– Delay choice during search

Page 2014-02-21 22
Planning

Shoe example

Goal(RightShoeOn ∧ LeftShoeOn)

Init()

Action(RightShoe, PRECOND: RightSockOn EFFECT: RightShoeOn)
Action(RightSock, PRECOND: EFFECT: RightSockOn)
Action(LeftShoe, PRECOND: LeftSockOn EFFECT: LeftShoeOn)
Action(LeftSock, PRECOND: EFFECT: LeftSockOn)

Planner: combine two action sequences
(1) leftsock, leftshoe
(2) rightsock, rightshoe

Page 2014-02-21 23
Planning

Partial-order planning(POP)
   Any planning algorithm that can place two

actions into a plan without stating which
comes first is a PO plan.

Page 2014-02-21 24
Planning

POP as a search problem

   States are (mostly unfinished) plans.
–  The empty plan contains only start and finish actions.

   Each plan has 4 components:
–  A set of actions (steps of the plan)
–  A set of ordering constraints: A < B (A before B)

–  Cycles represent contradictions.
–  A set of causal links

–  The plan may not be extended by adding a new action C that conflicts
with the causal link. (if the effect of C is ¬p and if C could come after A
and before B)

–  A set of open preconditions.
–  If precondition is not achieved by action in the plan.

€

A p" → " B

Page 2014-02-21 25
Planning

Example of final plan

   Actions={Rightsock, Rightshoe, Leftsock,
Leftshoe, Start, Finish}

   Orderings={Rightsock < Rightshoe; Leftsock
< Leftshoe}

   Links={Rightsock->Rightsockon ->
Rightshoe, Leftsock->Leftsockon-> Leftshoe,
Rightshoe->Rightshoeon->Finish, …}

   Open preconditions={}

Page

Shopping list example

2014-02-21 26
Planning

Page

Shopping list example

2014-02-21 27
Planning

Page

Shopping list example

2014-02-21 28
Planning

Page 2014-02-21 29
Planning

POP as a search problem

   A plan is consistent iff there are no cycles in
the ordering constraints and no conflicts with
the causal links.

   A consistent plan with no open preconditions
is a solution.

   A partial order plan is executed by repeatedly
choosing any of the possible next actions.
–  This flexibility is a benefit in non-cooperative environments;
–  Gives rise to emergent behaviours.

Page 2014-02-21 30
Planning

Solving POP

   Assume propositional planning
problems:
–  The initial plan contains Start and Finish, the ordering

constraint Start < Finish, no causal links, all the
preconditions in Finish are open.

–  Successor function :
–  picks one open precondition p on an action B and
–  generates a successor plan for every possible consistent way of

choosing action A that achieves p.

–  Test goal

Page 2014-02-21 31
Planning

Enforcing consistency

   When generating successor plan:
– The causal link A->p->B and the ordering

constraint A < B is added to the plan.
– If A is new also add start < A and A < B to the plan

– Resolve conflicts between new causal link and
all existing actions

– Resolve conflicts between action A (if new)
and all existing causal links.

Page 2014-02-21 32
Planning

Process summary

   Operators on partial plans
–  Add link from existing plan to open precondition.
–  Add a step to fulfill an open condition.
–  Order one step w.r.t another to remove possible conflicts

   Gradually move from incomplete/vague plans
to complete/correct plans

   Backtrack if an open condition is
unachievable or if a conflict is irresolvable.

Page 2014-02-21 33
Planning

Example: Spare tire problem

Init(At(Flat, Axle) ∧ At(Spare, trunk))
Goal(At(Spare, Axle))
Action(Remove(Spare, Trunk)

 PRECOND: At(Spare, Trunk)
 EFFECT: ¬At(Spare, Trunk) ∧ At(Spare, Ground))

Action(Remove(Flat, Axle)
 PRECOND: At(Flat, Axle)
 EFFECT: ¬At(Flat, Axle) ∧ At(Flat, Ground))

Action(PutOn(Spare, Axle)
 PRECOND: At(Spare, Groundp) ∧ ¬At(Flat, Axle)
 EFFECT: At(Spare ,Axle) ∧ ¬At(Spare, Ground))

Action(LeaveOvernight
 PRECOND:
 EFFECT: ¬At(Spare, Ground) ∧ ¬At(Spare, Axle) ∧ ¬At(Spare, trunk) ∧
¬At(Flat, Ground) ∧ ¬At(Flat, Axle))

Page 2014-02-21 34
Planning

Solving the problem

   Initial plan: Start with EFFECTS and Finish
with PRECOND.

Page 2014-02-21 35
Planning

Solving the problem

   Initial plan: Start with EFFECTS and Finish with PRECOND.
   Pick an open precondition: At(Spare, Axle)
   Only PutOn(Spare, Axle) is applicable
   Add causal link:
   Add constraint : PutOn(Spare, Axle) < Finish

€

PutOn(Spare,Axle) At(Spare,Axle)" → " " " " Finish

Page 2014-02-21 36
Planning

Solving the problem

   Pick an open precondition: At(Spare, Ground)
   Only Remove(Spare, Trunk) is applicable
   Add causal link:
   Add constraint : Remove(Spare, Trunk) < PutOn(Spare,Axle)

€

Remove(Spare,Trunk) At(Spare,Ground)" → " " " " PutOn(Spare,Axle)

Page 2014-02-21 37
Planning
€

Remove(Spare,Trunk) At(Spare,Ground)" → " " " " PutOn(Spare,Axle)

Solving the problem

   Pick an open precondition: ¬At(Flat, Axle)
   LeaveOverNight is applicable
   conflict: LeaveOverNight also has the effect ¬ At(Spare,Ground)
  
   To resolve, add constraint : LeaveOverNight < Remove(Spare, Trunk)

Page 2014-02-21 38
Planning

Solving the problem

   Pick an open precondition: At(Spare, Trunk)
   Only Start is applicable
   Add causal link:
   Conflict: of causal link with effect ¬At(Spare,Trunk) in LeaveOverNight

–  No re-ordering solution possible.

   backtrack
€

Start At(Spare,Trunk)" → " " " " Remove(Spare,Trunk)

Page 2014-02-21 39
Planning

Solving the problem

   Remove LeaveOverNight, Remove(Spare, Trunk)
and causal links

   Repeat step with Remove(Spare,Trunk)
   Add also RemoveFlatAxle and finish

Page 2014-02-21 40
Planning

Some details …

   What happens when a first-order
representation that includes variables is
used?
–  Complicates the process of detecting and resolving conflicts.
–  Can be resolved by introducing inequality constraint.

   CSP’s most-constrained-variable heuristic
can be used for planning algorithms to select
a PRECOND.

Page 2014-02-21 41
Planning

Planning graphs

   Used to achieve better heuristic estimates.
–  A solution can also be directly extracted using GRAPHPLAN.

   Consists of a sequence of levels that
correspond to time steps in the plan.
–  Level 0 is the initial state.
–  Each level consists of a set of literals and a set of actions.

–  Literals = all those that could be true at that time step, depending upon
the actions executed at the preceding time step.

–  Actions = all those actions that could have their preconditions satisfied
at that time step, depending on which of the literals actually hold.

Page 2014-02-21 42
Planning

Planning graphs

   “Could”?
–  Records only a restricted subset of possible negative

interactions among actions.

   They work only for propositional problems.
   Example:

Init(Have(Cake))
Goal(Have(Cake) ∧ Eaten(Cake))
Action(Eat(Cake), PRECOND: Have(Cake)

 EFFECT: ¬Have(Cake) ∧ Eaten(Cake))
Action(Bake(Cake), PRECOND: ¬ Have(Cake)

 EFFECT: Have(Cake))

Page 2014-02-21 43
Planning

Cake example

   Start at level S0 and determine action level A0 and next level S1.
–  A0 >> all actions whose preconditions are satisfied in the previous level.
–  Connect precond and effect of actions S0 --> S1
–  Inaction is represented by persistence actions.

   Level A0 contains the actions that could occur
–  Conflicts between actions are represented by mutex links

Page 2014-02-21 44
Planning

Cake example

   Level S1 contains all literals that could result from picking any
subset of actions in A0
–  Conflicts between literals that can not occur together (as a consequence of the

selection action) are represented by mutex links.
–  S1 defines multiple states and the mutex links are the constraints that define this set

of states.

   Continue until two consecutive levels are identical: leveled off
–  Or contain the same amount of literals

Page 2014-02-21 45
Planning

Cake example

   A mutex relation holds between two actions when:
–  Inconsistent effects: one action negates the effect of another.
–  Interference: one of the effects of one action is the negation of a precondition of the other.
–  Competing needs: one of the preconditions of one action is mutually exclusive with the precondition

of the other.

   A mutex relation holds between two literals when (inconsistent
support):
–  If one is the negation of the other OR
–  if each possible action pair that could achieve the literals is mutex.

Page 2014-02-21 46
Planning

PG and heuristic estimation

   PG’s provide information about the problem
–  A literal that does not appear in the final level of the graph

cannot be achieved by any plan.
–  Useful for backward search (cost = inf).

–  Level of appearance can be used as cost estimate of
achieving any goal literals = level cost.

–  Small problem: several actions can occur
–  Restrict to one action using serial PG (add mutex links between every

pair of actions, except persistence actions).
–  Cost of a conjunction of goals? Max-level, sum-level and

set-level heuristics.

PG is a relaxed problem.

Page 2014-02-21 47
Planning

The GRAPHPLAN Algorithm

   How to extract a solution directly from the PG

function GRAPHPLAN(problem) return solution or failure

 graph ← INITIAL-PLANNING-GRAPH(problem)
 goals ← GOALS[problem]
 loop do
 if goals all non-mutex in last level of graph then do
 solution ← EXTRACT-SOLUTION(graph, goals, LENGTH(graph))
 if solution ≠ failure then return solution
 else if NO-SOLUTION-POSSIBLE(graph) then return failure
 graph ← EXPAND-GRAPH(graph, problem)

Page 2014-02-21 48
Planning

Example: Spare tire problem

Init(At(Flat, Axle) ∧ At(Spare, trunk))
Goal(At(Spare, Axle))
Action(Remove(Spare, Trunk)

 PRECOND: At(Spare, Trunk)
 EFFECT: ¬At(Spare, Trunk) ∧ At(Spare, Ground))

Action(Remove(Flat, Axle)
 PRECOND: At(Flat, Axle)
 EFFECT: ¬At(Flat, Axle) ∧ At(Flat, Ground))

Action(PutOn(Spare, Axle)
 PRECOND: At(Spare, Groundp) ∧ ¬At(Flat, Axle)
 EFFECT: At(Spare, Axle) ∧ ¬At(Spare, Ground))

Action(LeaveOvernight
 PRECOND:
 EFFECT: ¬At(Spare, Ground) ∧ ¬At(Spare, Axle) ∧ ¬At(Spare, trunk) ∧ ¬At(Flat, Ground) ∧
¬At(Flat, Axle))

Page 2014-02-21 49
Planning

GRAPHPLAN example

   Initially the plan consist of 5 literals from the initial state and the CWA
literals (S0).

   Add actions whose preconditions are satisfied by EXPAND-GRAPH (A0)
   Also add persistence actions and mutex relations.
   Add the effects at level S1

   Repeat until goal is in level Si

Page 2014-02-21 50
Planning

GRAPHPLAN example

   EXPAND-GRAPH also looks for mutex relations
–  Inconsistent effects

–  E.g. Remove(Spare, Trunk) and LeaveOverNight due to At(Spare, Ground) and not At(Spare, Ground)

–  Interference
–  E.g. Remove(Flat, Axle) and LeaveOverNight At(Flat, Axle) as PRECOND and not At(Flat, Axle) as EFFECT

–  Competing needs
–  E.g. PutOn(Spare, Axle) and Remove(Flat, Axle) due to At(Flat. Axle) and not At(Flat, Axle)

–  Inconsistent support
–  E.g. in S2, At(Spare, Axle) and At(Flat, Axle)

Page 2014-02-21 51
Planning

GRAPHPLAN example

   In S2, the goal literals exist and are not mutex with any other
–  Solution might exist and EXTRACT-SOLUTION will try to find it

   EXTRACT-SOLUTION can use Boolean CSP to solve the problem or a
search process:
–  Initial state = last level of PG and goal goals of planning problem
–  Actions = select any set of non-conflicting actions that cover the goals in the state
–  Goal = reach level S0 such that all goals are satisfied
–  Cost = 1 for each action.

Page 2014-02-21 52
Planning

GRAPHPLAN example

   Termination? YES
   PG are monotonically increasing or decreasing:

–  Literals increase monotonically
–  Actions increase monotonically
–  Mutexes decrease monotonically

   Because of these properties and because there is a finite number
of actions and literals, every PG will eventually level off !

Page 2014-02-21 53
Planning

Planning with propositional logic

   Planning can be done by proving theorem in situation calculus.
   Here: test the satisfiability of a logical sentence:

   Sentence contains propositions for every action occurrence.
–  A model will assign true to the actions that are part of the correct plan and

false to the others
–  An assignment that corresponds to an incorrect plan will not be a model

because of inconsistency with the assertion that the goal is true.
–  If the planning is unsolvable the sentence will be unsatisfiable.

€

initial state∧all possible action descriptions∧ goal

Page 2014-02-21 54
Planning

Analysis of planning approach

   Planning is an area of great interest
within AI
– Search for solution
– Constructively prove a existence of solution

   Biggest problem is the combinatorial
explosion in states.

   Efficient methods are under research
– E.g. divide-and-conquer

Page

Planning vs. scheduling

   Classical planning:
 What to do? In what order?

 But not:
 How long? When? Using what resources?

 Normally:
 Plan first, schedule later.

2014-02-21 55
Planning

Page

Representation

   Job-shop scheduling problem:
! A set of jobs
! Each job is a collection of ACTIONS with some ORDERING

CONSTRAINTS
! Each action has a DURATION and a set of RESOURCE

CONSTRAINTS
 resources may be CONSUMABLE or REUSABLE

 Solution:
 Start times for all actions, obeying all constraints

2014-02-21 56
Planning

Page

Assignment 3

•  Planning: PDDL 2.1 (or earlier), FF planner
•  Test simple cases with existing descriptions
•  Apply PDDL to the Wumpus world
•  Have fun!
•  Deadline: March 7th, 23:59

2014-02-21 57
Planning

