Planning 1

Based on slides prepared by Tom Lenaerts
SWITCH, Vlaams Interuniversitair Instituut voor Biotechnologie

Modifications by Jacek.Malec@cs.Ith.se
Original slides can be found at http://aima.cs.berkeley.edu

¥ Vrije Universiteit Brussel

What is Planning

Generate sequences of actions to perform tasks and
achieve objectives.

- States, actions and goals

Search for solution over abstract space of plans.
Classical planning environment: fully observable,
deterministic, finite, static and discrete.

Assists humans in practical applications

- design and manufacturing

- military operations

- games

- space exploration

Planning 1
February Page 3
21,2013

Difficulty of real world problems

Assume a problem-solving agent

using some search method ...

- Which actions are relevant?
- Exhaustive search vs. backward search
- What is a good heuristic functions?
- Good estimate of the cost of the state?
- Problem-dependent vs, -independent
- How to decompose the problem?
- Most real-world problems are nearly decomposable.

Planning 1
February Page 5
21,2013

Planning

The Planning problem

Planning with State-space search
Partial-order planning

Planning graphs

Planning with propositional logic

Analysis of planning approaches

Planning 1
ebruary Page 2
21,2013

Why not standard search?

Consider the task get milk, bananas and a cordless drill
Standard search algorithms fail

Talk o Parrot
GoTo Pet Store BuyaDog

GoTo Class

-
]

T e
-
-

‘:' Buy Arugula
l:l Buy Mik

it Somo More I:I
; Read A Book l:l
A1
February Page 4
21, 2013

Planning language

What is a good language?

- Expressive enough to describe a wide variety
of problems.

- Restrictive enough to allow efficient
algorithms to operate on it.

- Planning algorithm should be able to take
advantage of the logical structure of the
problem.

STRIPS and PDDL

Planning 1
February Page 6
21,2013

General language features

Representation of states

- Decompose the world in logical conditions and represent a
state as a conjunction of positive literals.
- Propositional literals: Poor 1 Unknown
- FO-literals (grounded and function-free): At(Planel, Copenhagen) a
At(Plane2, Oslo)
- Closed world assumption

Representation of goals

- Partially specified state and represented as a conjunction of
positive ground literals

- A goal is satisfied if the state contains all literals in goal.

Planning 1
February Page 7
21, 2013

Language semantics?

How do actions affect states?

- An action is applicable in any state that
satisfies the precondition.

- For FO action schema applicability involves a
substitution 0 for the variables in the
PRECOND.

At(P1,JFK) 2 At(P2,SFO) » Plane(P1) Plane(P2) » Airport(JFK) a
Airport(SFO)

Satisfies : At(p,from) a Plane(p) » Airport(from) a Airport(to)

With 6 ={p/P1,from/JFK,to/SFO}

Thus the action is applicable.

Planning 1
February Page g
21,2013

Expressiveness and extensions

STRIPS is simplified

- Important limit: function-free literals

- Allows for propositional representation

- Function symbols lead to infinitely many states and actions
Expressiveness extension: Planning Domain
Description language (PDDL)

Action(Fly(p:Plane, from: Airport, to: Airport),
PRECOND: At(p,from) (from = to)
EFFECT: -At(p,from) a At(p,to))

Standardization : now (since 2008) in its 3.1 version

Planning 1
February Page 11
21,2013

General language features

Representations of actions

- Action = PRECOND + EFFECT
Action(Fly(p,from, to),
PRECOND: At(p,from) » Plane(p) » Airport(from) a Airport(to)
EFFECT: -AT(p,from) 2 At(p,to))
= action schema (p, from, to need to be instantiated)
- Action name and parameter list
- Precondition (conj. of function-free literals)
- Effect (conj of function-free literals and P is True and not P is
false)

- Add-list vs delete-list in Effect

Planning 1
February Page §
21,2013

Language semantics?

The result of executing action a in state
s is the state s’

- s’ is same as s except
- Any positive literal P in the effect of a is added to s’
- Any negative literal =P is removed from s’
EFFECT: =AT(p,from) A At(p,to):

At(P1,SFO) » At(P2,SFO) » Plane(P1) s Plane(P2) s Airport(JFK)
Airport(SFO)

- STRIPS assumption: (avoids representational frame
problem)
every literal NOT in the effect remains unchanged

Planning 1
February Page 10
21, 2013

Example: air cargo transport

Init(At(C1, SFO) 1 At(C2,JFK) a At(P1,SFO) 1 At(P2,JFK) » Cargo(C1) Cargo(C2)
A Plane(P1) a Plane(P2) a Airport(JFK) a Airport(SFO))

Goal(At(C1,JFK) » At(C2,SF0))

Action(Load(c,p,a)
PRECOND: At(c,a) sAt(p,a) aCargo(c) rPlane(p) aAirport(a)
EFFECT: =At(c,a) rIn(c,p))

Action(Unload(c,p,a)
PRECOND: In(c,p) rAt(p,a) aCargo(c) rPlane(p) sAirport(a)
EFFECT: At(c,a) » =In(c,p))

Action(Fly(p,from,to)
PRECOND: At(p,from) aPlane(p) aAirport(from) aAirport(to)
EFFECT: = At(p,from) a At(p,to))

[Load(C1,P1,SFO), Fly(P1,SFO,JFK), Load(C2,P2,JFK), Fly(P2,JFK,SFO)]

Planning 1
February Page 12
21,2013

Example: Spare tire problem

Example: Blocks world

Init(At(Flat, Axle) » At(Spare,trunk)) Init(On(A, Table) » On(B,Table) » On(C,Table) r Block(A) a Block(B)
Goal(At(Spare,Axle)) 2 Block(C) » Clear(A) a Clear(B) a Clear(C))

Action(Remove(Spare, Trunk)
PRECOND: At(Spare, Trunk)
EFFECT: ~At(Spare, Trunk) At(Spare,Ground))

Action(Remove(Flat, Axle) Goal(On(A,B) » On(B,C))
PRECOND: At(Flat,Axle)

EFFECT: -At(Flat,Axle) A At(Flat,Ground)) Action(Move(b,x,y)
Action(PutOn(Spare,Axle)
PRECOND: At(Spare, Groundp) A~At(Flat,Axle) PRECOND: On(b,x) a Clear(b) a Clear(y) a Block(b) a (b=x) a (b=
EFFECT: At(Spare,Axle) 1 -At(Spare,Ground)) y) A (x=y)
AC“OP”R(ELEZ"/\TSVE’”’W” EFFECT: On(b,y) a Clear(x) » = On(b,x) a = Clear(y))
EFFECT: — At(Spare,Ground) 1 - At(Spare,Axle) a - At(Spare,trunk) » - At(Flat,Ground) » ~ Action(MoveToTable(b,x)
AtfFtat,Axie)) PRECOND: On(b,x) Clear(b) Block(b) (b= x)
This example goes beyond STRIPS: negative literal in pre-condition (PDDL description) EFFECT: On(b,Table) » Clear(x) » = On(b,x))

Planning 1 Planning 1
February Page 13 February ~ Page 14
21, 2013 21,2013

Planning with state-space search Progression and regression

. o TN
Both forward and backward search possible o Mna r’
. P TN FyPAB) 8 2
Progression planners ® apLy e A
AP A) — —
- forward state-space search - _ eas | aea \‘/
- Considef the effect of all possible actions in a given state - - L At(Fs, B) /\
Regression planners L ——
- backward state-space search ol AP, B) /\"n,'(é(ﬁja,' L~ ~
- To achieve a goal, what must have been true in the previous ® = =7 I 2;’:'?
state. ~" ap.p \’Fyi?}?{é) /‘\\ g ’”

At(P, , A
/\.;,_ t(P;, A) /

Planning 1 Planning 1
February Page 15 February Page 16
21,2013 21, 2013

Progression algorithm Regression algorithm

Formulation as state-space search problem: How to determine predecessors?
- Initial state = initial state of the planning problem - What are the states from which applying a given action
- Literals not appearing are false leads to the goal?
- Actions = those whose preconditions are satisfied Goal state = At(C1, B) 4 At(C2, B) A ... At(C20, B)
- Add positive effects, delete negative Relevant action for first conjunct: Unload(C1,p,B)
- Goal test = does the state satisfy the goal Works only if pre-conditions are satisfied.

Previous state= In(C1, p) 1 At(p, B) 1 At(C2, B) A ... 1 At(C20, B)
Subgoal At(C1,B) should not be present in this state.

Actions must not undo desired literals
(consistent)

- Step cost = each action costs 1
No functions ... any graph search that is complete is
a complete planning algorithm.

- E.g. A*
Inefficient: Main advantage: only relevant actions are
- (1) irrelevant action problem considered.

- (2) good heuristic required for efficient search

- Often much lower branching factor than forward search.

Planning 1 Planning 1
February Page 17 February Page 18
21,2013 21,2013

Regression algorithm

General process for predecessor construction
- Give a goal description G
- Let A be an action that is relevant and consistent

- The predecessors are as follows:
- Any positive effects of A that appear in G are deleted.
- Each precondition literal of A is added , unless it already appears.

Any standard search algorithm can be added
to perform the search.

Termination when predecessor is satisfied by
initial state.

- In FO case, satisfaction might require a substitution.

Planning 1
February Page 19
21, 2013

Partial-order planning

Heuristics for state-space search

Neither progression or regression are very
efficient without a good heuristic.

- How many actions are needed to achieve the goal?

- Exact solution is NP hard, find a good estimate

Two approaches to find admissible heuristic:
- The optimal solution to the relaxed problem.

- Remove all preconditions from actions
- The subgoal independence assumption:

The cost of solving a conjunction of subgoals is approximated by the sum
of the costs of solving the subproblems independently.

Planning 1

February Page 20
21,2013

Shoe example

Progression and regression
planning are totally ordered plan
search forms.

- They cannot take advantage of problem
decomposition.

- Decisions must be made on how to sequence actions on
all the subproblems

Least commitment strategy:
- Delay choice during search

Planning

Goal(RightShoeOn » LeftShoeOn)

Init()

Action(RightShoe, PRECOND: RightSockOn
EFFECT: RightShoeOn)

Action(RightSock, PRECOND:
EFFECT: RightSockOn)

Action(LeftShoe, PRECOND: LeftSockOn

EFFECT: LeftShoeOn)
Action(LeftSock, PRECOND:
EFFECT: LeftSockOn)

Planner: combine two action sequences (1)leftsock, leftshoe
(2)rightsock, rightshoe

Planning 1

1
February ~ Page 21
21,2013

Partial-order planning(POP)

Any planning algorithm that can place two
actions into a plan without which comes first
IS a Po plan_ Partial Order Plan: Total Order Plans:

G Reht
seck Sock

Le#SockOn RightSeckOn

= Fight
Shos Shos

LokShoaOn, RightShoaOn

Planning 1
February Page 23
21,2013

February Page 22
21, 2013

POP as a search problem

States are (mostly unfinished) plans.
- The empty plan contains only start and finish actions.

Each plan has 4 components:
- A set of actions (steps of the plan)
- A set of ordering constraints: A < B (A before B)
- Cycles represent contradictions.
- A set of causal links
- The plan may not be exténded by adding a new action C that conflicts

with the causal link. (if the effect of C is =p and if C could come after A
and before B)

- A set of open preconditions.
- If precondition is not achieved by action in the plan.

Planning 1
February Page 24.
21,2013

Example of final plan

Actions={Rightsock, Rightshoe, Leftsock,
Leftshoe, Start, Finish}

Orderings={Rightsock < Rightshoe; Leftsock
< Leftshoe}

Links={Rightsock->Rightsockon ->
Rightshoe, Leftsock->Leftsockon-> Leftshoe,
Rightshoe->Rightshoeon->Finish, ...}

Open preconditions={}

Planning 1
February Page 25
21, 2013

Shopping list example

Shopping list example

AlfHome) Solls(HWS.Drl) Sols(SMMIK) Sels(Sh Ban)

Have(Mik) AttHome) Have(an.) Have(Dri)

ALL
February Page 26
21,2013

Shopping list example

AltHome) Sels{HWS,Dril) Sels(SMMik) Sels(SM,Ban.)

Aws) Sots(Hls, o)

)

sy Sols(s k)

Have(Mik) AtiHome) Have(Ban) Have(Dri)

AT 1
February Page 27
21,2013

POP as a search problem

Have(Mik) AtiHome) Have(Ban) Have(Dri)

A1
February Page 28
21, 2013

Solving POP

A plan is consistent iff there are no cycles in

the ordering constraints and no conflicts with
the causal links.

A consistent plan with no open preconditions
is a solution.

A partial order plan is executed by repeatedly
choosing any of the possible next actions.
- This flexibility is a benefit in non-cooperative environments.

Planning 1
February Page 29
21,2013

Assume propositional planning
problems:

- The initial plan contains Start and Finish, the ordering
constraint Start < Finish, no causal links, all the
preconditions in Finish are open.

- Successor function :

- picks one open precondition p on an action B and

- generates a successor plan for every possible consistent way of
choosing action A that achieves p.

- Test goal

Planning 1
February Page 30
21,2013

Enforcing consistency

Process summary

When generating successor plan:

- The causal link A->p->B and the ordering
constraint A < B is added to the plan.
- If Ais new also add start < A and A < B to the plan
- Resolve conflicts between new causal link and
all existing actions
- Resolve conflicts between action A (if new)
and all existing causal links.

Planning 1
February Page 31
21, 2013

Example: Spare tire problem

Init(At(Flat, Axle) » At(Spare,trunk))
Goal(At(Spare,Axle))
Action(Remove(Spare, Trunk)

PRECOND: At(Spare, Trunk)

EFFECT: —At(Spare, Trunk) At(Spare,Ground))
Action(Remove(Flat,Axle)

PRECOND: At(Flat,Axle)

EFFECT: -At(Flat,Axle) » At(Flat,Ground))
Action(PutOn(Spare,Axle)

PRECOND: At(Spare,Groundp) a-At(Flat,Axle)

EFFECT: At(Spare,Axle) » ~At(Spare,Ground))
Action(LeaveOvernight

PRECOND:

EFFECT: = At(Spare,Ground) » —~ At(Spare,Axle) » -~ At(Spare,trunk) » =

At(Flat,Ground) » — At(Flat,Axle))

Planning 1
February Page 33
21,2013

Solving the problem

At5pee o Famovs Gpare Turk |

AtfSozeTrunk) AHSa
[BETT Wiy

1_"|Fm0n(5pm1\xh) J- AfSaare Aig)[_Finish |

Initial plan: Start with EFFECTS and Finish with PRECOND.
Pick an open precondition: At(Spare, Axle)

Only PutOn(Spare, Axle) is applicable

Add causal link: PutOn(Spare,Axle)—2822weA) s pipjsh

Add constraint : PutOn(Spare, Axle) < Finish

Planning 1
February Page 35
21,2013

Operators on partial plans

- Add link from existing plan to open precondition.

- Add a step to fulfill an open condition.

- Order one step w.r.t another to remove possible conflicts
Gradually move from incomplete/vague plans
to complete/correct plans

Backtrack if an open condition is
unachievable or if a conflict is irresolvable.

Planning 1
February Page 32
21,2013

Solving the problem

Ay Rmore Gpare Tk

A Spare, Ground
VA RatAde)

[PuonEpar 261

Initial plan: Start with EFFECTS and Finish
with PRECOND.

Planning 1
February ~ Page 34
21,2013

Solving the problem

AnfSpreTr

[Femovs Gpare Trnk |

t{Sore Trunk) AfSazre,
[T M e

=[PutOn(Spare Axke) | AffSaare Axe)| Finish |

Pick an open precondition: At(Spare, Ground)

Only Remove(Spare, Trunk) is applicable

Add causal link: Remove(Spare,Trunk)—282eeomd) s pyiOp(Spare, Axle)
Add constraint : Remove(Spare, Trunk) < PutOn(Spare,Axle)

Planning 1
February Page 36
21,2013

Solving the problem

Solving the problem

AtfSoc e Trunk)

r(So e Trunk)
[T i

PutOntGpare Axle) |- AfSaare Ade)| Finish |

Pick an open precondition: —At(Flat, Axle)
LeaveOverNight is applicable
conflict: LeaveOverNight also has the effect - At(Spare,Ground)
Re move(Spare,Trunk) —22282d) s pysOn(Spare, Axle)
To resolve, add constraint : LeaveOverNight < Remove(Spare, Trunk)

Planning 1
February Page 37
21, 2013

Solving the problem

»47m;

'm“"""‘"’ AR G S Spare Axle) - AlSaare Ade_Finish |

(Pl Axle)

Doy

Remove LeaveOverNight, Remove(Spare, Trunk)
and causal links

Repeat step with Remove(Spare, Trunk)
Add also RemoveFlatAxle and finish

Planning 1
February Page 39
21, 2013

Planning graphs

Used to achieve better heuristic estimates.
- A solution can also be directly extracted using GRAPHPLAN.

Consists of a sequence of levels that
correspond to time steps in the plan.
- Level 0 is the initial state.
- Each level consists of a set of literals and a set of actions.
- Literals = all those that could be true at that time step, depending upon
the actions executed at the preceding time step.

- Actions = all those actions that could have their preconditions satisfied
at that time step, depending on which of the literals actually hold.

Planning 1
February Page 41
21,2013

[Gemove (Spare. Trunk) |
ey [Puion(Spare Axe) =
D vmaiane [Puton(Spare Axie) AnfSaare Ade)|_Finish_]

e
e

Pick an open precondition: At(Spare, Trunk)

Only Start is applicable

Add causal link: Start—2522eImb 5 Re move(Spare, Trunk)

Conflict: of causal link with effect =At(Spare, Trunk) in LeaveOverNight
- No re-ordering solution possible.

backtrack

Planning 1
February Page 38
21,2013

Some details ...

What happens when a first-order
representation that includes variables is
used?

- Complicates the process of detecting and resolving conflicts.
- Can be resolved by introducing inequality constraint.
CSP’s most-constrained-variable constraint
can be used for planning algorithms to select
a PRECOND.

Planning 1
February Page 40
21, 2013

Planning graphs

“Could™?

- Records only a restricted subset of possible negative
interactions among actions.

They work only for propositional problems.

Example:
Init(Have(Cake))
Goal(Have(Cake) A Eaten(Cake))
Action(Eat(Cake), PRECOND: Have(Cake)
EFFECT: —Have(Cake) a Eaten(Cake))
Action(Bake(Cake), PRECOND: - Have(Cake)
EFFECT: Have(Cake))

Planning 1
February Page 42
21,2013

Cake example

So Ao Sy Ay Sz
Y . Have(Cake) . = Have(Cake)
) < —Have(Cake)".
. = Eaten(Cake) .
— Eaten(Cake) = =3 — Eaten(Cake)

Start at level SO and determine action level A0 and next level S1.
- A0 >> all actions whose preconditions are satisfied in the previous level.
- Connect precond and effect of actions SO --> S1
- Inaction is represented by persistence actions.

Level AO contains the actions that could occur

- Conflicts between actions are represented by mutex links

Planning 1
February Page 43
21, 2013

Cake example

S, A, s, A, S»
Have(Cake) = . Have(Cake) . = Have(Cake) .
" Have(Cake) . — Have(Cake)
" Eaten(Cake) — 8 Eaten(Cake) . |
= = —Eaten(Cake) ©

A mutex relation holds between two actions when:
- Inconsistent effects: one action negates the effect of another.
- Interference: one of the effects of one action is the negation of a precondition of the other.

- Competing needs: one of the preconditions of one action is mutually exclusive with the precondition
of the other.

A mutex relation holds between two literals when (inconsistent
support):

- If one is the negation of the other OR

- if each possible action pair that could achieve the literals is mutex.

Planning 1
February Page 45
21, 2013

The GRAPHPLAN Algorithm

How to extract a solution directly from the PG

function GRAPHPLAN(problem) return solution or failure

graph < INITIAL-PLANNING-GRAPH(problem)

goals < GOALS[problem]

loop do

if goals all non-mutex in last level of graph then do

solution < EXTRACT-SOLUTION(graph, goals, LENGTH(graph))
if solution = failure then return solution
else if NO-SOLUTION-POSSIBLE(graph) then return failure
graph < EXPAND-GRAPH(graph, problem)

Planning 1
February Page 47
21,2013

Cake example

So Ao S, As Sz
Have(Cake) . Have(Cake) . o \
—Have(Cake) / —Have(Cake) .
. Eaten(Cake)

— Eaten(Cake) ———————H———————— —Eaten(Cake) ‘— B —Eaten(Cake)

Level S1 contains all literals that could result from picking any
subset of actions in AO
- Conflicts between literals that can not occur together (as a consequence of the
selection action) are represented by mutex links.
- S1 defines multiple states and the mutex links are the constraints that define this set
of states.
Continue until two consecutive levels are identical: /eveled off
- Or contain the same amount of literals

Planning 1
February Page 44
21,2013

PG and heuristic estimation

PG’s provide information about the problem
- A literal that does not appear in the final level of the graph
cannot be achieved by any plan.
- Useful for backward search (cost = inf).
- Level of appearance can be used as cost estimate of
achieving any goal literals = level cost.
— Small problem: several actions can occur

- Restrict to one action using serial PG (add mutex links between every
pair of actions, except persistence actions).

- Cost of a conjunction of goals? Max-level, sum-level and
set-level heuristics.

PG is a relaxed problem.

Planning 1
February Page 46
21, 2013

Example: Spare tire problem

Init(At(Flat, Axle) A At(Spare,trunk))
Goal(At(Spare,Axle))
Action(Remove(Spare, Trunk)

PRECOND: At(Spare, Trunk)

EFFECT: -At(Spare, Trunk) At(Spare,Ground))
Action(Remove(Flat,Axle)

PRECOND: At(Flat,Axle)

EFFECT: -At(Flat,Axle) A At(Flat,Ground))
Action(PutOn(Spare,Axle)

PRECOND: At(Spare,Groundp) 1-At(Flat,Axle)

EFFECT: At(Spare,Axle) A -~At(Spare,Ground))
Action(LeaveOvernight

PRECOND:

EFFECT: - At(Spare,Ground) 1 - At(Spare,Axle) » - At(Spare,trunk) » - At(Flat,Ground) A -

At(Flat,Axle))

This example goes beyond STRIPS: negative literal in pre-condition (ADL description)

Planning 1
February Page 48
21,2013

GRAPHPLAN example

GRAPHPLAN example

So S, A Sz
ASpare, Tronk) AtfSpar, Trurk) At(Spare, Trunk)
e
e— At)
e i S As
T N
p—— Re— Lo e)
\\ T Apar e
N\ wianry —] N
\ aispae aruns tSeare Greun)
Initially the plan consist of 5 literals from the initial state and the CWA

literals (S0).

Add actions whose preconditions are satisfied by EXPAND-GRAPH (AQ)
Also add persistence actions and mutex relations.

Add the effects at level S1

Repeat until goal is in level Si

Planning 1
February Page 49
21, 2013

GRAPHPLAN example

A

Sz
a pr——
i
= — -
'\
P

(D (AlFiat Axie)
e
s v

In S2, the goal literals exist and are not mutex with any other

—- Solution might exist and EXTRACT-SOLUTION will try to find it
EXTRACT-SOLUTION can use Boolean CSP to solve the problem or a
search process:

- Initial state = last level of PG and goal goals of planning problem

- Actions = select any set of non-conflicting actions that cover the goals in the state

- Goal = reach level SO such that all goals are satisfied

- Cost = 1 for each action.

Planning 1
February Page 51
21, 2013

Planning with propositional logic

Planning can be done by proving theorem in situation calculus.
Here: test the satisfiability of a logical sentence:

initial state A all possible action descriptions n goal

Sentence contains propositions for every action occurrence.
- A model will assign true to the actions that are part of the correct plan and
false to the others
- An assignment that corresponds to an incorrect plan will not be a model
because of inconsistency with the assertion that the goal is true.
- If the planning is unsolvable the sentence will be unsatisfiable.

Planning 1
February Page 53
21,2013

s, Ao s, A Sz

Ao Ty ‘- A Turk) <0} Atispare, Ty
[T
m—

. " R— v

— -
m
. i N o) (DS Sy
%QE =t
PR N = I
e

Yoy T\ s

| P] V srspon g

EXPAND-GRAPH also looks for mutex relations
- Inconsistent effects
- Remove(Spare, Trunk) and LeaveOverNight due to At(Spare,Ground) and not At(Spare, Ground)
- Interference
- E.g. Remove(Flat, Axle) and LeaveOverNight At(Flat, Axle) as PRECOND and not At(Flat,Axle) as EFFECT
- Competing needs
- E.g. PutOn(Spare,Axle) and Remove(Flat, Axle) due to At(Flat.Axle) and not At(Flat, Axle)
- Inconsistent support
- E.g. in 52, At(Spare,Axle) and At(Flat,Axle)

Planning 1
February Page 50
21,2013

GRAPHPLAN example

8, Ay Sz
A S PR
=
e — TR
p——
. o
(S
==
- 3 S
L
\ e — e
|prieter e

Termination? YES
PG are monotonically increasing or decreasing:
- Literals increase monotonically
- Actions increase monotonically
- Mutexes decrease monotonically
Because of these properties and because there is a finite number
of actions and literals, every PG will eventually level off !

Planning 1
February Page 52
21,2013

Analysis of planning approach

Planning is an area of great interest
within AI

— Search for solution

- Constructively prove a existence of solution
Biggest problem is the combinatorial
explosion in states.

Efficient methods are under research
- E.g. divide-and-conquer

Planning 1
February Page 54
21,2013

Planning vs. scheduling Representation

Classical planning: Job-shop scheduling problem:

What to do? In what order? @ A set of jobs

@ Each job is a collection of ACTIONS with some ORDERING
But not: CONSTRAINTS
. @ Each action has a DURATION and a set of RESOURCE

How long? When? Using what resources? CONSTRAINTS
NormaIIy' resources may be CONSUMABLE or REUSABLE

Plan first, schedule later. Solution:

Start times for all actions, obeying all constraints

A1 ALL
2013-02-21 Page 55 2013-02-21 Page 56

