
Planning 1 

Based on slides prepared by Tom Lenaerts 
SWITCH, Vlaams Interuniversitair Instituut voor Biotechnologie 

Modifications by Jacek.Malec@cs.lth.se 
Original slides can be found at http://aima.cs.berkeley.edu 

Page  March 3, 
2011 

2 
Planning 1 

Planning 

   The Planning problem 
   Planning with State-space search 
   Partial-order planning 
   Planning graphs 
   Planning with propositional logic 
   Analysis of planning approaches 
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What is Planning 

   Generate sequences of actions to perform tasks and 
achieve objectives. 
–  States, actions and goals 

   Search for solution over abstract space of plans. 
   Classical planning environment: fully observable, 

deterministic, finite, static and discrete. 
   Assists humans in practical applications 

–  design and manufacturing 
–  military operations 
–  games 
–  space exploration 
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Why not standard search? 

   Consider the task get milk, bananas and a cordless drill 
   Standard search algorithms fail 
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Difficulty of real world problems 

   Assume a problem-solving agent 
 using some search method … 

– Which actions are relevant? 
– Exhaustive search vs. backward search 

– What is a good heuristic functions? 
– Good estimate of the cost of the state? 
– Problem-dependent vs, -independent 

– How to decompose the problem? 
– Most real-world problems are nearly decomposable. 
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Planning language 

   What is a good language? 
– Expressive enough to describe a wide variety 

of problems. 
– Restrictive enough to allow efficient 

algorithms to operate on it. 
– Planning algorithm should be able to take 

advantage of the logical structure of the 
problem. 

   STRIPS and PDDL 
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General language features 

   Representation of states 
–  Decompose the world in logical conditions and represent a 

state as a conjunction of positive literals.  
–  Propositional literals: Poor ! Unknown 
–  FO-literals (grounded and function-free): At(Plane1, Copenhagen) !  
At(Plane2, Oslo) 

–  Closed world assumption 

   Representation of goals 
–  Partially specified state and represented as a conjunction of 

positive ground literals 
–  A goal is satisfied if the state contains all literals in goal. 
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General language features 

   Representations of actions 
–  Action = PRECOND + EFFECT 

Action(Fly(p,from, to), 
 PRECOND: At(p,from) ! Plane(p) ! Airport(from) ! Airport(to) 
 EFFECT: ¬AT(p,from) ! At(p,to)) 

= action schema (p, from, to need to be instantiated) 
–  Action name and parameter list 
–  Precondition (conj. of function-free literals) 
–  Effect (conj of function-free literals and P is True and not P is 

false) 

–  Add-list vs delete-list in Effect 
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Language semantics? 

   How do actions affect states? 
– An action is applicable in any state that 

satisfies the precondition. 
– For FO action schema applicability involves a 

substitution ! for the variables in the 
PRECOND. 

At(P1,JFK) ! At(P2,SFO) ! Plane(P1) ! Plane(P2) ! Airport(JFK) ! 
Airport(SFO) 

Satisfies : At(p,from) ! Plane(p) ! Airport(from) ! Airport(to) 

With ! ={p/P1,from/JFK,to/SFO} 
Thus the action is applicable. 
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Language semantics? 

   The result of executing action a in state 
s is the state s’  
–  s’ is same as s except 

–  Any positive literal P in the effect of a is added to s’ 
–  Any negative literal ¬P is removed from s’ 
EFFECT: ¬AT(p,from) ! At(p,to): 
At(P1,SFO) ! At(P2,SFO) ! Plane(P1) ! Plane(P2) ! Airport(JFK) ! Airport

(SFO) 

–  STRIPS assumption: (avoids representational frame 
problem) 

every literal NOT in the effect remains unchanged 
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Expressiveness and extensions 

   STRIPS is simplified   
–  Important limit: function-free literals 

–  Allows for propositional representation 
–  Function symbols lead to infinitely many states and actions 

   Expressiveness extension: Planning Domain 
Description language (PDDL) 

Action(Fly(p:Plane, from: Airport, to: Airport), 
 PRECOND: At(p,from) ! (from " to) 
 EFFECT: ¬At(p,from) ! At(p,to)) 

 Standardization : now (2008) in its 3.1 version 
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Example: air cargo transport 

Init(At(C1, SFO) ! At(C2,JFK) ! At(P1,SFO) ! At(P2,JFK) ! Cargo(C1) ! Cargo(C2) 
! Plane(P1) ! Plane(P2) ! Airport(JFK) ! Airport(SFO)) 

Goal(At(C1,JFK) ! At(C2,SFO)) 
Action(Load(c,p,a) 

 PRECOND: At(c,a) !At(p,a) !Cargo(c) !Plane(p) !Airport(a) 
 EFFECT: ¬At(c,a) !In(c,p))  

Action(Unload(c,p,a) 
 PRECOND: In(c,p) !At(p,a) !Cargo(c) !Plane(p) !Airport(a) 
 EFFECT: At(c,a) ! ¬In(c,p)) 

Action(Fly(p,from,to) 
 PRECOND: At(p,from) !Plane(p) !Airport(from) !Airport(to) 
 EFFECT: ¬ At(p,from) ! At(p,to)) 

[Load(C1,P1,SFO), Fly(P1,SFO,JFK), Load(C2,P2,JFK), Fly(P2,JFK,SFO)] 
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Example: Spare tire problem 

Init(At(Flat, Axle) ! At(Spare,trunk)) 
Goal(At(Spare,Axle)) 
Action(Remove(Spare,Trunk) 

 PRECOND: At(Spare,Trunk)   
 EFFECT: ¬At(Spare,Trunk) ! At(Spare,Ground))  

Action(Remove(Flat,Axle) 
 PRECOND: At(Flat,Axle)   
 EFFECT: ¬At(Flat,Axle) ! At(Flat,Ground))  

Action(PutOn(Spare,Axle) 
 PRECOND: At(Spare,Groundp) !¬At(Flat,Axle) 
 EFFECT: At(Spare,Axle) ! ¬At(Spare,Ground)) 

Action(LeaveOvernight 
 PRECOND: 
 EFFECT: ¬ At(Spare,Ground) ! ¬ At(Spare,Axle) ! ¬ At(Spare,trunk) ! ¬ At(Flat,Ground) ! ¬ At
(Flat,Axle) ) 

This example goes beyond STRIPS: negative literal in pre-condition (PDDL description) 
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Example: Blocks world 

Init(On(A, Table) ! On(B,Table) ! On(C,Table) ! Block(A) ! Block(B) 
! Block(C) ! Clear(A) ! Clear(B) ! Clear(C)) 

Goal(On(A,B) ! On(B,C)) 
Action(Move(b,x,y) 

 PRECOND: On(b,x) ! Clear(b) ! Clear(y) ! Block(b) ! (b" x) ! (b" 
y) ! (x" y)   
 EFFECT: On(b,y) ! Clear(x) ! ¬ On(b,x) ! ¬ Clear(y))  

Action(MoveToTable(b,x) 
 PRECOND: On(b,x)  ! Clear(b) ! Block(b) ! (b" x)  
 EFFECT: On(b,Table) ! Clear(x) ! ¬ On(b,x))  

Spurious actions are possible: Move(B,C,C) 
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Planning with state-space search 

   Both forward and backward search possible 
   Progression planners 

–  forward state-space search 
–  Consider the effect of all possible actions in a given state 

   Regression planners  
–  backward state-space search 
–  To achieve a goal, what must have been true in the previous 

state. 
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Progression and regression 
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Progression algorithm 

   Formulation as state-space search problem: 
–  Initial state = initial state of the planning problem 

–  Literals not appearing are false 
–  Actions = those whose preconditions are satisfied 

–  Add positive effects, delete negative 
–  Goal test = does the state satisfy the goal 
–  Step cost = each action costs 1 

   No functions … any graph search that is complete is 
a complete planning algorithm. 
–  E.g. A* 

   Inefficient:  
–  (1) irrelevant action problem  
–  (2) good heuristic required for efficient search 
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Regression algorithm 

   How to determine predecessors? 
–  What  are the states from which applying a given action 

leads to the goal? 
Goal state = At(C1, B) ! At(C2, B) ! … ! At(C20, B) 
Relevant action for first conjunct: Unload(C1,p,B) 
Works only if pre-conditions are satisfied. 
Previous state= In(C1, p) ! At(p, B) ! At(C2, B) ! … ! At(C20, B) 
Subgoal At(C1,B) should not be present in this state. 

   Actions must not undo desired literals 
(consistent) 

   Main advantage: only relevant actions are 
considered. 
–  Often much lower branching factor than forward search. 
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Regression algorithm   

   General process for predecessor construction 
–  Give a goal description G 
–  Let A be an action that is relevant and consistent 
–  The predecessors is as follows: 

–  Any positive effects of A that appear in G are deleted. 
–  Each precondition literal of A is added , unless it already appears. 

   Any standard search algorithm can be added 
to perform the search. 

   Termination when predecessor satisfied by 
initial state. 
–  In FO case, satisfaction might require a substitution. 
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Heuristics for state-space search 

   Neither progression or regression are very 
efficient without a good heuristic. 
–  How many actions are needed to achieve the goal? 
–  Exact solution is NP hard, find a good estimate  

   Two approaches to find admissible heuristic: 
–  The optimal solution to the relaxed problem. 

–  Remove all preconditions from actions 

–  The subgoal independence assumption: 
The cost of solving a conjunction of subgoals is approximated by the sum 

of the costs of solving the subproblems independently. 
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Partial-order planning 

   Progression and regression 
planning are totally ordered plan 
search forms. 
– They cannot take advantage of problem 

decomposition. 
– Decisions must be made on how to sequence actions on 

all the subproblems 

   Least commitment strategy: 
– Delay choice during search 
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Shoe example 

Goal(RightShoeOn " LeftShoeOn) 
Init() 
Action(RightShoe,  PRECOND: RightSockOn 

 EFFECT: RightShoeOn) 
Action(RightSock,  PRECOND:  

 EFFECT: RightSockOn) 
Action(LeftShoe,   PRECOND: LeftSockOn 

 EFFECT: LeftShoeOn) 
Action(LeftSock,  PRECOND:  

 EFFECT: LeftSockOn) 

Planner: combine two action sequences (1)leftsock, 
leftshoe (2)rightsock, rightshoe 
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Partial-order planning(POP) 
   Any planning algorithm that can place two 

actions into a plan without which comes first 
is a PO plan. 
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POP as a search problem 

   States are (mostly unfinished) plans. 
–  The empty plan contains only start and finish actions. 

   Each plan has 4 components: 
–  A set of actions (steps of the plan) 
–  A set of ordering constraints: A < B (A before B) 

–  Cycles represent contradictions. 

–  A set of causal links 
–  The plan may not be extended by adding a new action C that conflicts 

with the causal link. (if the effect of C is ¬p and if C could come after A 
and before B) 

–  A set of open preconditions. 
–  If precondition is not achieved by action in the plan.  

! 

A p" # " B
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Example of final plan 

   Actions={Rightsock, Rightshoe, Leftsock, 
Leftshoe, Start, Finish} 

   Orderings={Rightsock < Rightshoe; Leftsock 
< Leftshoe} 

   Links={Rightsock->Rightsockon -> 
Rightshoe, Leftsock->Leftsockon-> Leftshoe, 
Rightshoe->Rightshoeon->Finish, …} 

   Open preconditions={} 
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Shopping list example 
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Shopping list example 

March 3, 
2011 

27 
AI 1 

Page  

Shopping list example 
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POP as a search problem 

   A plan is consistent iff there are no cycles in 
the ordering constraints and no conflicts with 
the causal links. 

   A consistent plan with no open preconditions 
is a solution. 

   A partial order plan is executed by repeatedly 
choosing any of the possible next actions. 
–  This flexibility is a benefit in non-cooperative environments. 
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Solving POP 

   Assume propositional planning 
problems:   
–  The initial plan contains Start and Finish, the ordering 

constraint Start < Finish, no causal links, all the 
preconditions in Finish are open. 

–  Successor function : 
–  picks one open precondition p on an action B and 
–  generates a successor plan for every possible consistent way of 

choosing action A that achieves p. 

–  Test goal 
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Enforcing consistency 

   When generating successor plan: 
– The causal link A->p->B  and the ordering 

constraint A < B is added to the plan. 
– If A is new also add start < A and A < B to the plan 

– Resolve conflicts between new causal link and 
all existing actions 

– Resolve conflicts between action A (if new) 
and all existing causal links. 
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Process summary 

   Operators on partial plans 
–  Add link from existing plan to open precondition. 
–  Add a step to fulfill an open condition. 
–  Order one step w.r.t another to remove possible conflicts 

   Gradually move from incomplete/vague plans 
to complete/correct plans 

   Backtrack if an open condition is 
unachievable or if a conflict is irresolvable. 
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Example: Spare tire problem 

Init(At(Flat, Axle) ! At(Spare,trunk)) 
Goal(At(Spare,Axle)) 
Action(Remove(Spare,Trunk) 

 PRECOND: At(Spare,Trunk)   
 EFFECT: ¬At(Spare,Trunk) ! At(Spare,Ground))  

Action(Remove(Flat,Axle) 
 PRECOND: At(Flat,Axle)   
 EFFECT: ¬At(Flat,Axle) ! At(Flat,Ground))  

Action(PutOn(Spare,Axle) 
 PRECOND: At(Spare,Groundp) !¬At(Flat,Axle) 
 EFFECT: At(Spare,Axle) ! ¬At(Spare,Ground)) 

Action(LeaveOvernight 
 PRECOND: 
 EFFECT: ¬ At(Spare,Ground) ! ¬ At(Spare,Axle) ! ¬ At(Spare,trunk) ! ¬ At
(Flat,Ground) ! ¬ At(Flat,Axle) ) 
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Solving the problem 

   Initial plan: Start with EFFECTS and Finish 
with PRECOND. 
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Solving the problem 

   Initial plan: Start with EFFECTS and Finish with PRECOND. 
   Pick an open precondition: At(Spare, Axle) 
   Only PutOn(Spare, Axle) is applicable 
   Add causal link:  
   Add constraint : PutOn(Spare, Axle) < Finish 

! 

PutOn(Spare,Axle) At(Spare,Axle )" # " " " " Finish
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Solving the problem 

   Pick an open precondition: At(Spare, Ground) 
   Only Remove(Spare, Trunk) is applicable 
   Add causal link:  
   Add constraint : Remove(Spare, Trunk) < PutOn(Spare,Axle) 

! 

Remove(Spare,Trunk) At(Spare,Ground )" # " " " " PutOn(Spare,Axle)
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Remove(Spare,Trunk) At(Spare,Ground )" # " " " " PutOn(Spare,Axle)

Solving the problem 

   Pick an open precondition: ¬At(Flat, Axle) 
   LeaveOverNight is applicable 
   conflict: LeaveOverNight also has the effect ¬ At(Spare,Ground) 

   To resolve, add constraint : LeaveOverNight < Remove(Spare, Trunk) 
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Solving the problem 

   Pick an open precondition: At(Spare, Trunk) 
   Only Start is applicable 
   Add causal link:  
   Conflict: of causal link with effect At(Spare,Trunk) in LeaveOverNight 

–  No re-ordering solution possible. 

   backtrack 
! 

Start At(Spare,Trunk )" # " " " " Remove(Spare,Trunk)

Page  March 3, 
2011 

39 
Planning 1 

Solving the problem 

   Remove LeaveOverNight, Remove(Spare, Trunk) 
and causal links 

   Repeat step with Remove(Spare,Trunk) 
   Add also RemoveFlatAxle and finish 
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Some details … 

   What happens when a first-order 
representation that includes variables is 
used? 
–  Complicates the process of detecting and resolving conflicts. 
–  Can be resolved by introducing inequality constraint. 

   CSP’s most-constrained-variable constraint 
can be used for planning algorithms to select 
a PRECOND. 



Page  March 3, 
2011 

41 
Planning 1 

Planning graphs 

   Used to achieve better heuristic estimates. 
–  A solution can also directly extracted using GRAPHPLAN. 

   Consists of a sequence of levels that 
correspond to time steps in the plan. 
–  Level 0 is the initial state. 
–  Each level consists of a set of literals and a set of actions. 

–  Literals = all those that could be true at that time step, depending upon 
the actions executed at the preceding time step. 

–  Actions = all those actions that could have their preconditions satisfied 
at that time step, depending on which of the literals actually hold. 
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Planning graphs 

   “Could”? 
–  Records only a restricted subset of possible negative 

interactions among actions. 

   They work only for propositional problems. 
   Example: 

Init(Have(Cake)) 
Goal(Have(Cake) " Eaten(Cake)) 
Action(Eat(Cake), PRECOND: Have(Cake) 

 EFFECT: ¬Have(Cake) " Eaten(Cake)) 
Action(Bake(Cake), PRECOND: ¬ Have(Cake) 

 EFFECT: Have(Cake))  
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Cake example 

   Start at level S0 and determine action level A0 and next level S1. 
–  A0 >> all actions whose preconditions are satisfied in the previous level. 
–  Connect precond and effect of actions S0 --> S1 
–  Inaction is represented by persistence actions. 

   Level A0 contains the actions that could occur 
–  Conflicts between actions are represented by mutex links 
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Cake example 

   Level S1 contains all literals that could result from picking any 
subset of actions in A0 
–  Conflicts between literals that can not occur together (as a consequence of the 

selection action) are represented by mutex links. 
–  S1 defines multiple states and the mutex links are the constraints that define this set 

of states. 

   Continue until two consecutive levels are identical: leveled off 
–  Or contain the same amount of literals (explanation follows later) 
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Cake example 

   A mutex relation holds between two actions when: 
–  Inconsistent effects: one action negates the effect of another. 
–  Interference: one of the effects of one action is the negation of a precondition of the other. 
–  Competing needs: one of the preconditions of one action is mutually exclusive with the precondition 

of the other. 

   A mutex relation holds between two literals when (inconsistent 
support): 
–  If one is the negation of the other OR  
–  if each possible action pair that could achieve the literals is mutex.  
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PG and heuristic estimation 

   PG’s provide information about the problem 
–  A literal that does not appear in the final level of the graph 

cannot be achieved by any plan. 
–  Useful for backward search (cost = inf). 

–  Level of appearance can be used as cost estimate of 
achieving any goal literals = level cost. 

–  Small problem: several actions can occur 
–  Restrict to one action using serial PG (add mutex links between every 

pair of actions, except persistence actions). 
–  Cost of a conjunction of goals? Max-level, sum-level and 

set-level heuristics. 

PG is a relaxed problem. 
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The GRAPHPLAN Algorithm 

   How to extract a solution directly from the PG 

function GRAPHPLAN(problem) return solution or failure 
 graph # INITIAL-PLANNING-GRAPH(problem) 
 goals # GOALS[problem] 
 loop do 
  if goals all non-mutex in last level of graph then do 
       solution # EXTRACT-SOLUTION(graph, goals, LENGTH(graph)) 
       if solution $ failure then return solution 
       else if NO-SOLUTION-POSSIBLE(graph) then return failure 
            graph # EXPAND-GRAPH(graph, problem) 
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Example: Spare tire problem 

Init(At(Flat, Axle) ! At(Spare,trunk)) 
Goal(At(Spare,Axle)) 
Action(Remove(Spare,Trunk) 

 PRECOND: At(Spare,Trunk)   
 EFFECT: ¬At(Spare,Trunk) ! At(Spare,Ground))  

Action(Remove(Flat,Axle) 
 PRECOND: At(Flat,Axle)   
 EFFECT: ¬At(Flat,Axle) ! At(Flat,Ground))  

Action(PutOn(Spare,Axle) 
 PRECOND: At(Spare,Groundp) !¬At(Flat,Axle) 
 EFFECT: At(Spare,Axle) ! ¬At(Spare,Ground)) 

Action(LeaveOvernight 
 PRECOND: 
 EFFECT: ¬ At(Spare,Ground) ! ¬ At(Spare,Axle) ! ¬ At(Spare,trunk) ! ¬ At(Flat,Ground) ! ¬ At
(Flat,Axle) ) 

This example goes beyond STRIPS: negative literal in pre-condition (ADL description) 
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GRAPHPLAN example 

   Initially the plan consist of 5 literals from the initial state and the CWA 
literals (S0). 

   Add actions whose preconditions are satisfied by EXPAND-GRAPH (A0) 
   Also add persistence actions and mutex relations. 
   Add the effects at level S1 
   Repeat until goal is in level Si 
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GRAPHPLAN example 

   EXPAND-GRAPH also looks for mutex relations 
–  Inconsistent effects 

–  E.g. Remove(Spare, Trunk) and LeaveOverNight due to At(Spare,Ground) and not At(Spare, Ground) 

–  Interference  
–  E.g. Remove(Flat, Axle) and LeaveOverNight At(Flat, Axle) as PRECOND and not At(Flat,Axle) as EFFECT 

–  Competing needs 
–  E.g. PutOn(Spare,Axle) and Remove(Flat, Axle) due to At(Flat.Axle) and not At(Flat, Axle) 

–  Inconsistent support 
–  E.g. in S2, At(Spare,Axle) and At(Flat,Axle) 
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GRAPHPLAN example 

   In S2, the goal literals exist and are not mutex with any other 
–  Solution might exist and EXTRACT-SOLUTION will try to find it 

   EXTRACT-SOLUTION can use Boolean CSP to solve the problem or a 
search process: 
–  Initial state = last level of PG and goal goals of planning problem 
–  Actions = select any set of non-conflicting actions that cover the goals in the state 
–  Goal = reach level S0 such that all goals are satisfied 
–  Cost = 1 for each action. 
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GRAPHPLAN example 

   Termination? YES 
   PG are monotonically increasing or decreasing: 

–  Literals increase monotonically 
–  Actions increase monotonically 
–  Mutexes decrease monotonically 

   Because of these properties and because there is a finite number 
of actions and literals, every PG will eventually level off ! 
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Planning with propositional logic 

   Planning can be done by proving theorem in situation calculus. 
   Here: test the satisfiability of a logical sentence: 

   Sentence contains propositions for every action occurrence. 
–  A model will assign true to the actions that are part of the correct plan and 

false to the others 
–  An assignment that corresponds to an incorrect plan will not be a model 

because of inconsistency with the assertion that the goal is true. 
–  If the planning is unsolvable the sentence will be unsatisfiable. 

! 

initial state"all possible action descriptions" goal
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SATPLAN algorithm 

function SATPLAN(problem, Tmax) return solution or failure 
 inputs: problem, a planning problem 
   Tmax, an upper limit to the plan length 
 for T= 0 to Tmax do 
           cnf, mapping # TRANSLATE-TO_SAT(problem, T) 
           assignment # SAT-SOLVER(cnf) 
  if assignment is not null then  
       return EXTRACT-SOLUTION(assignment, mapping) 

 return failure 
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cnf, mapping # TRANSLATE-TO_SAT
(problem, T) 

   Distinct propositions for assertions about 
each time step. 
–  Superscripts denote the time step 

At(P1,SFO)0 ! At(P2,JFK)0 

–  No CWA thus specify which propositions are not true 
¬At(P1,SFO)0 ! ¬At(P2,JFK)0 

–  Unknown propositions are left unspecified. 

   The goal is associated with a particular time-
step 
–  But which one? 
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cnf, mapping # TRANSLATE-TO_SAT
(problem, T) 

   How to determine the time step where 
the goal will be reached? 
–  Start at T=0 

–  Assert At(P1,SFO)0 ! At(P2,JFK)0 

–  Failure .. Try T=1 
–  Assert At(P1,SFO)1 ! At(P2,JFK)1 

–  … 

–  Repeat this until some minimal path length is reached.  
–  Termination is ensured by Tmax 
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cnf, mapping # TRANSLATE-TO_SAT
(problem, T) 

   How to encode actions into PL? 
–  Propositional versions of successor-state axioms 

At(P1,JFK)1 #  
 (At(P1,JFK)0 !  ¬(Fly(P1,JFK,SFO)0 ! At(P1,JFK)0))$ (Fly
(P1,SFO,JFK)0 ! At(P1,SFO)0) 

–  Such an axiom is required for each plane, airport and time 
step 

–  If more airports add another way to travel than additional 
disjuncts are required  

   Once all these axioms are in place, the 
satisfiability algorithm can start to find a plan. 

Page  March 3, 
2011 

58 
Planning 1 

assignment # SAT-SOLVER(cnf) 

   Multiple models can be found 
   They are NOT satisfactory: (for T=1) 

Fly(P1,SFO,JFK)0 ! Fly(P1,JFK,SFO)0 ! Fly(P2,JFK.SFO)0 
The second action is infeasible 
Yet the plan IS a model of the sentence 

   Avoiding illegal actions: pre-condition axioms 
 Fly(P1,SFO,JFK)0 % At(P1,JFK) 

   Exactly one model now satisfies all the 
axioms where the goal is achieved at T=1. 

! 

initial state"all possible action descriptions" goal1
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assignment # SAT-SOLVER(cnf) 

   A plane can fly to two destinations at once 
   They are NOT satisfactory: (for T=1) 

Fly(P1,SFO,JFK)0 ! Fly(P2,JFK,SFO)0 ! Fly(P2,JFK.LAX)0 
The second action is infeasible 
Yet the plan allows spurious relations 

   Avoid spurious solutions: action-exclusion axioms 
 ¬(Fly(P2,JFK,SFO)0 ! Fly(P2,JFK,LAX) 0) 

Prevents simultaneous actions 

   Lost of flexibility since plan becomes totally 
ordered : no actions are allowed to occur at the 
same time. 
–  Restrict exclusion to preconditions  
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Analysis of planning approach 

   Planning is an area of great interest 
within AI 
– Search for solution 
– Constructively prove a existence of solution 

   Biggest problem is the combinatorial 
explosion in states. 

   Efficient methods are under research 
– E.g. divide-and-conquer 


