
Planning 1

Based on slides prepared by Tom Lenaerts
SWITCH, Vlaams Interuniversitair Instituut voor Biotechnologie

Modifications by Jacek.Malec@cs.lth.se
Original slides can be found at http://aima.cs.berkeley.edu

Page March 3,
2011

2
Planning 1

Planning

   The Planning problem
   Planning with State-space search
   Partial-order planning
   Planning graphs
   Planning with propositional logic
   Analysis of planning approaches

Page March 3,
2011

3
Planning 1

What is Planning

   Generate sequences of actions to perform tasks and
achieve objectives.
–  States, actions and goals

   Search for solution over abstract space of plans.
   Classical planning environment: fully observable,

deterministic, finite, static and discrete.
   Assists humans in practical applications

–  design and manufacturing
–  military operations
–  games
–  space exploration

Page

Why not standard search?

   Consider the task get milk, bananas and a cordless drill
   Standard search algorithms fail

March 3,
2011

4
AI 1

Page March 3,
2011

5
Planning 1

Difficulty of real world problems

   Assume a problem-solving agent
 using some search method …

– Which actions are relevant?
– Exhaustive search vs. backward search

– What is a good heuristic functions?
– Good estimate of the cost of the state?
– Problem-dependent vs, -independent

– How to decompose the problem?
– Most real-world problems are nearly decomposable.

Page March 3,
2011

6
Planning 1

Planning language

   What is a good language?
– Expressive enough to describe a wide variety

of problems.
– Restrictive enough to allow efficient

algorithms to operate on it.
– Planning algorithm should be able to take

advantage of the logical structure of the
problem.

   STRIPS and PDDL

Page March 3,
2011

7
Planning 1

General language features

   Representation of states
–  Decompose the world in logical conditions and represent a

state as a conjunction of positive literals.
–  Propositional literals: Poor ! Unknown
–  FO-literals (grounded and function-free): At(Plane1, Copenhagen) !
At(Plane2, Oslo)

–  Closed world assumption

   Representation of goals
–  Partially specified state and represented as a conjunction of

positive ground literals
–  A goal is satisfied if the state contains all literals in goal.

Page March 3,
2011

8
Planning 1

General language features

   Representations of actions
–  Action = PRECOND + EFFECT

Action(Fly(p,from, to),
 PRECOND: At(p,from) ! Plane(p) ! Airport(from) ! Airport(to)
 EFFECT: ¬AT(p,from) ! At(p,to))

= action schema (p, from, to need to be instantiated)
–  Action name and parameter list
–  Precondition (conj. of function-free literals)
–  Effect (conj of function-free literals and P is True and not P is

false)

–  Add-list vs delete-list in Effect

Page March 3,
2011

9
Planning 1

Language semantics?

   How do actions affect states?
– An action is applicable in any state that

satisfies the precondition.
– For FO action schema applicability involves a

substitution ! for the variables in the
PRECOND.

At(P1,JFK) ! At(P2,SFO) ! Plane(P1) ! Plane(P2) ! Airport(JFK) !
Airport(SFO)

Satisfies : At(p,from) ! Plane(p) ! Airport(from) ! Airport(to)

With ! ={p/P1,from/JFK,to/SFO}
Thus the action is applicable.

Page March 3,
2011

10
Planning 1

Language semantics?

   The result of executing action a in state
s is the state s’
–  s’ is same as s except

–  Any positive literal P in the effect of a is added to s’
–  Any negative literal ¬P is removed from s’
EFFECT: ¬AT(p,from) ! At(p,to):
At(P1,SFO) ! At(P2,SFO) ! Plane(P1) ! Plane(P2) ! Airport(JFK) ! Airport

(SFO)

–  STRIPS assumption: (avoids representational frame
problem)

every literal NOT in the effect remains unchanged

Page March 3,
2011

11
Planning 1

Expressiveness and extensions

   STRIPS is simplified
–  Important limit: function-free literals

–  Allows for propositional representation
–  Function symbols lead to infinitely many states and actions

   Expressiveness extension: Planning Domain
Description language (PDDL)

Action(Fly(p:Plane, from: Airport, to: Airport),
 PRECOND: At(p,from) ! (from " to)
 EFFECT: ¬At(p,from) ! At(p,to))

 Standardization : now (2008) in its 3.1 version

Page March 3,
2011

12
Planning 1

Example: air cargo transport

Init(At(C1, SFO) ! At(C2,JFK) ! At(P1,SFO) ! At(P2,JFK) ! Cargo(C1) ! Cargo(C2)
! Plane(P1) ! Plane(P2) ! Airport(JFK) ! Airport(SFO))

Goal(At(C1,JFK) ! At(C2,SFO))
Action(Load(c,p,a)

 PRECOND: At(c,a) !At(p,a) !Cargo(c) !Plane(p) !Airport(a)
 EFFECT: ¬At(c,a) !In(c,p))

Action(Unload(c,p,a)
 PRECOND: In(c,p) !At(p,a) !Cargo(c) !Plane(p) !Airport(a)
 EFFECT: At(c,a) ! ¬In(c,p))

Action(Fly(p,from,to)
 PRECOND: At(p,from) !Plane(p) !Airport(from) !Airport(to)
 EFFECT: ¬ At(p,from) ! At(p,to))

[Load(C1,P1,SFO), Fly(P1,SFO,JFK), Load(C2,P2,JFK), Fly(P2,JFK,SFO)]

Page March 3,
2011

13
Planning 1

Example: Spare tire problem

Init(At(Flat, Axle) ! At(Spare,trunk))
Goal(At(Spare,Axle))
Action(Remove(Spare,Trunk)

 PRECOND: At(Spare,Trunk)
 EFFECT: ¬At(Spare,Trunk) ! At(Spare,Ground))

Action(Remove(Flat,Axle)
 PRECOND: At(Flat,Axle)
 EFFECT: ¬At(Flat,Axle) ! At(Flat,Ground))

Action(PutOn(Spare,Axle)
 PRECOND: At(Spare,Groundp) !¬At(Flat,Axle)
 EFFECT: At(Spare,Axle) ! ¬At(Spare,Ground))

Action(LeaveOvernight
 PRECOND:
 EFFECT: ¬ At(Spare,Ground) ! ¬ At(Spare,Axle) ! ¬ At(Spare,trunk) ! ¬ At(Flat,Ground) ! ¬ At
(Flat,Axle))

This example goes beyond STRIPS: negative literal in pre-condition (PDDL description)

Page March 3,
2011

14
Planning 1

Example: Blocks world

Init(On(A, Table) ! On(B,Table) ! On(C,Table) ! Block(A) ! Block(B)
! Block(C) ! Clear(A) ! Clear(B) ! Clear(C))

Goal(On(A,B) ! On(B,C))
Action(Move(b,x,y)

 PRECOND: On(b,x) ! Clear(b) ! Clear(y) ! Block(b) ! (b" x) ! (b"
y) ! (x" y)
 EFFECT: On(b,y) ! Clear(x) ! ¬ On(b,x) ! ¬ Clear(y))

Action(MoveToTable(b,x)
 PRECOND: On(b,x) ! Clear(b) ! Block(b) ! (b" x)
 EFFECT: On(b,Table) ! Clear(x) ! ¬ On(b,x))

Spurious actions are possible: Move(B,C,C)

Page March 3,
2011

15
Planning 1

Planning with state-space search

   Both forward and backward search possible
   Progression planners

–  forward state-space search
–  Consider the effect of all possible actions in a given state

   Regression planners
–  backward state-space search
–  To achieve a goal, what must have been true in the previous

state.

Page March 3,
2011

16
Planning 1

Progression and regression

Page March 3,
2011

17
Planning 1

Progression algorithm

   Formulation as state-space search problem:
–  Initial state = initial state of the planning problem

–  Literals not appearing are false
–  Actions = those whose preconditions are satisfied

–  Add positive effects, delete negative
–  Goal test = does the state satisfy the goal
–  Step cost = each action costs 1

   No functions … any graph search that is complete is
a complete planning algorithm.
–  E.g. A*

   Inefficient:
–  (1) irrelevant action problem
–  (2) good heuristic required for efficient search

Page March 3,
2011

18
Planning 1

Regression algorithm

   How to determine predecessors?
–  What are the states from which applying a given action

leads to the goal?
Goal state = At(C1, B) ! At(C2, B) ! … ! At(C20, B)
Relevant action for first conjunct: Unload(C1,p,B)
Works only if pre-conditions are satisfied.
Previous state= In(C1, p) ! At(p, B) ! At(C2, B) ! … ! At(C20, B)
Subgoal At(C1,B) should not be present in this state.

   Actions must not undo desired literals
(consistent)

   Main advantage: only relevant actions are
considered.
–  Often much lower branching factor than forward search.

Page March 3,
2011

19
Planning 1

Regression algorithm

   General process for predecessor construction
–  Give a goal description G
–  Let A be an action that is relevant and consistent
–  The predecessors is as follows:

–  Any positive effects of A that appear in G are deleted.
–  Each precondition literal of A is added , unless it already appears.

   Any standard search algorithm can be added
to perform the search.

   Termination when predecessor satisfied by
initial state.
–  In FO case, satisfaction might require a substitution.

Page March 3,
2011

20
Planning 1

Heuristics for state-space search

   Neither progression or regression are very
efficient without a good heuristic.
–  How many actions are needed to achieve the goal?
–  Exact solution is NP hard, find a good estimate

   Two approaches to find admissible heuristic:
–  The optimal solution to the relaxed problem.

–  Remove all preconditions from actions

–  The subgoal independence assumption:
The cost of solving a conjunction of subgoals is approximated by the sum

of the costs of solving the subproblems independently.

Page March 3,
2011

21
Planning 1

Partial-order planning

   Progression and regression
planning are totally ordered plan
search forms.
– They cannot take advantage of problem

decomposition.
– Decisions must be made on how to sequence actions on

all the subproblems

   Least commitment strategy:
– Delay choice during search

Page March 3,
2011

22
Planning 1

Shoe example

Goal(RightShoeOn " LeftShoeOn)
Init()
Action(RightShoe, PRECOND: RightSockOn

 EFFECT: RightShoeOn)
Action(RightSock, PRECOND:

 EFFECT: RightSockOn)
Action(LeftShoe, PRECOND: LeftSockOn

 EFFECT: LeftShoeOn)
Action(LeftSock, PRECOND:

 EFFECT: LeftSockOn)

Planner: combine two action sequences (1)leftsock,
leftshoe (2)rightsock, rightshoe

Page March 3,
2011

23
Planning 1

Partial-order planning(POP)
   Any planning algorithm that can place two

actions into a plan without which comes first
is a PO plan.

Page March 3,
2011

24
Planning 1

POP as a search problem

   States are (mostly unfinished) plans.
–  The empty plan contains only start and finish actions.

   Each plan has 4 components:
–  A set of actions (steps of the plan)
–  A set of ordering constraints: A < B (A before B)

–  Cycles represent contradictions.

–  A set of causal links
–  The plan may not be extended by adding a new action C that conflicts

with the causal link. (if the effect of C is ¬p and if C could come after A
and before B)

–  A set of open preconditions.
–  If precondition is not achieved by action in the plan.

!

A p" # " B

Page March 3,
2011

25
Planning 1

Example of final plan

   Actions={Rightsock, Rightshoe, Leftsock,
Leftshoe, Start, Finish}

   Orderings={Rightsock < Rightshoe; Leftsock
< Leftshoe}

   Links={Rightsock->Rightsockon ->
Rightshoe, Leftsock->Leftsockon-> Leftshoe,
Rightshoe->Rightshoeon->Finish, …}

   Open preconditions={}

Page

Shopping list example

March 3,
2011

26
AI 1

Page

Shopping list example

March 3,
2011

27
AI 1

Page

Shopping list example

March 3,
2011

28
AI 1

Page March 3,
2011

29
Planning 1

POP as a search problem

   A plan is consistent iff there are no cycles in
the ordering constraints and no conflicts with
the causal links.

   A consistent plan with no open preconditions
is a solution.

   A partial order plan is executed by repeatedly
choosing any of the possible next actions.
–  This flexibility is a benefit in non-cooperative environments.

Page March 3,
2011

30
Planning 1

Solving POP

   Assume propositional planning
problems:
–  The initial plan contains Start and Finish, the ordering

constraint Start < Finish, no causal links, all the
preconditions in Finish are open.

–  Successor function :
–  picks one open precondition p on an action B and
–  generates a successor plan for every possible consistent way of

choosing action A that achieves p.

–  Test goal

Page March 3,
2011

31
Planning 1

Enforcing consistency

   When generating successor plan:
– The causal link A->p->B and the ordering

constraint A < B is added to the plan.
– If A is new also add start < A and A < B to the plan

– Resolve conflicts between new causal link and
all existing actions

– Resolve conflicts between action A (if new)
and all existing causal links.

Page March 3,
2011

32
Planning 1

Process summary

   Operators on partial plans
–  Add link from existing plan to open precondition.
–  Add a step to fulfill an open condition.
–  Order one step w.r.t another to remove possible conflicts

   Gradually move from incomplete/vague plans
to complete/correct plans

   Backtrack if an open condition is
unachievable or if a conflict is irresolvable.

Page March 3,
2011

33
Planning 1

Example: Spare tire problem

Init(At(Flat, Axle) ! At(Spare,trunk))
Goal(At(Spare,Axle))
Action(Remove(Spare,Trunk)

 PRECOND: At(Spare,Trunk)
 EFFECT: ¬At(Spare,Trunk) ! At(Spare,Ground))

Action(Remove(Flat,Axle)
 PRECOND: At(Flat,Axle)
 EFFECT: ¬At(Flat,Axle) ! At(Flat,Ground))

Action(PutOn(Spare,Axle)
 PRECOND: At(Spare,Groundp) !¬At(Flat,Axle)
 EFFECT: At(Spare,Axle) ! ¬At(Spare,Ground))

Action(LeaveOvernight
 PRECOND:
 EFFECT: ¬ At(Spare,Ground) ! ¬ At(Spare,Axle) ! ¬ At(Spare,trunk) ! ¬ At
(Flat,Ground) ! ¬ At(Flat,Axle))

Page March 3,
2011

34
Planning 1

Solving the problem

   Initial plan: Start with EFFECTS and Finish
with PRECOND.

Page March 3,
2011

35
Planning 1

Solving the problem

   Initial plan: Start with EFFECTS and Finish with PRECOND.
   Pick an open precondition: At(Spare, Axle)
   Only PutOn(Spare, Axle) is applicable
   Add causal link:
   Add constraint : PutOn(Spare, Axle) < Finish

!

PutOn(Spare,Axle) At(Spare,Axle)" # " " " " Finish

Page March 3,
2011

36
Planning 1

Solving the problem

   Pick an open precondition: At(Spare, Ground)
   Only Remove(Spare, Trunk) is applicable
   Add causal link:
   Add constraint : Remove(Spare, Trunk) < PutOn(Spare,Axle)

!

Remove(Spare,Trunk) At(Spare,Ground)" # " " " " PutOn(Spare,Axle)

Page March 3,
2011

37
Planning 1
!

Remove(Spare,Trunk) At(Spare,Ground)" # " " " " PutOn(Spare,Axle)

Solving the problem

   Pick an open precondition: ¬At(Flat, Axle)
   LeaveOverNight is applicable
   conflict: LeaveOverNight also has the effect ¬ At(Spare,Ground)

   To resolve, add constraint : LeaveOverNight < Remove(Spare, Trunk)

Page March 3,
2011

38
Planning 1

Solving the problem

   Pick an open precondition: At(Spare, Trunk)
   Only Start is applicable
   Add causal link:
   Conflict: of causal link with effect At(Spare,Trunk) in LeaveOverNight

–  No re-ordering solution possible.

   backtrack
!

Start At(Spare,Trunk)" # " " " " Remove(Spare,Trunk)

Page March 3,
2011

39
Planning 1

Solving the problem

   Remove LeaveOverNight, Remove(Spare, Trunk)
and causal links

   Repeat step with Remove(Spare,Trunk)
   Add also RemoveFlatAxle and finish

Page March 3,
2011

40
Planning 1

Some details …

   What happens when a first-order
representation that includes variables is
used?
–  Complicates the process of detecting and resolving conflicts.
–  Can be resolved by introducing inequality constraint.

   CSP’s most-constrained-variable constraint
can be used for planning algorithms to select
a PRECOND.

Page March 3,
2011

41
Planning 1

Planning graphs

   Used to achieve better heuristic estimates.
–  A solution can also directly extracted using GRAPHPLAN.

   Consists of a sequence of levels that
correspond to time steps in the plan.
–  Level 0 is the initial state.
–  Each level consists of a set of literals and a set of actions.

–  Literals = all those that could be true at that time step, depending upon
the actions executed at the preceding time step.

–  Actions = all those actions that could have their preconditions satisfied
at that time step, depending on which of the literals actually hold.

Page March 3,
2011

42
Planning 1

Planning graphs

   “Could”?
–  Records only a restricted subset of possible negative

interactions among actions.

   They work only for propositional problems.
   Example:

Init(Have(Cake))
Goal(Have(Cake) " Eaten(Cake))
Action(Eat(Cake), PRECOND: Have(Cake)

 EFFECT: ¬Have(Cake) " Eaten(Cake))
Action(Bake(Cake), PRECOND: ¬ Have(Cake)

 EFFECT: Have(Cake))

Page March 3,
2011

43
Planning 1

Cake example

   Start at level S0 and determine action level A0 and next level S1.
–  A0 >> all actions whose preconditions are satisfied in the previous level.
–  Connect precond and effect of actions S0 --> S1
–  Inaction is represented by persistence actions.

   Level A0 contains the actions that could occur
–  Conflicts between actions are represented by mutex links

Page March 3,
2011

44
Planning 1

Cake example

   Level S1 contains all literals that could result from picking any
subset of actions in A0
–  Conflicts between literals that can not occur together (as a consequence of the

selection action) are represented by mutex links.
–  S1 defines multiple states and the mutex links are the constraints that define this set

of states.

   Continue until two consecutive levels are identical: leveled off
–  Or contain the same amount of literals (explanation follows later)

Page March 3,
2011

45
Planning 1

Cake example

   A mutex relation holds between two actions when:
–  Inconsistent effects: one action negates the effect of another.
–  Interference: one of the effects of one action is the negation of a precondition of the other.
–  Competing needs: one of the preconditions of one action is mutually exclusive with the precondition

of the other.

   A mutex relation holds between two literals when (inconsistent
support):
–  If one is the negation of the other OR
–  if each possible action pair that could achieve the literals is mutex.

Page March 3,
2011

46
Planning 1

PG and heuristic estimation

   PG’s provide information about the problem
–  A literal that does not appear in the final level of the graph

cannot be achieved by any plan.
–  Useful for backward search (cost = inf).

–  Level of appearance can be used as cost estimate of
achieving any goal literals = level cost.

–  Small problem: several actions can occur
–  Restrict to one action using serial PG (add mutex links between every

pair of actions, except persistence actions).
–  Cost of a conjunction of goals? Max-level, sum-level and

set-level heuristics.

PG is a relaxed problem.

Page March 3,
2011

47
Planning 1

The GRAPHPLAN Algorithm

   How to extract a solution directly from the PG

function GRAPHPLAN(problem) return solution or failure
 graph # INITIAL-PLANNING-GRAPH(problem)
 goals # GOALS[problem]
 loop do
 if goals all non-mutex in last level of graph then do
 solution # EXTRACT-SOLUTION(graph, goals, LENGTH(graph))
 if solution $ failure then return solution
 else if NO-SOLUTION-POSSIBLE(graph) then return failure
 graph # EXPAND-GRAPH(graph, problem)

Page March 3,
2011

48
Planning 1

Example: Spare tire problem

Init(At(Flat, Axle) ! At(Spare,trunk))
Goal(At(Spare,Axle))
Action(Remove(Spare,Trunk)

 PRECOND: At(Spare,Trunk)
 EFFECT: ¬At(Spare,Trunk) ! At(Spare,Ground))

Action(Remove(Flat,Axle)
 PRECOND: At(Flat,Axle)
 EFFECT: ¬At(Flat,Axle) ! At(Flat,Ground))

Action(PutOn(Spare,Axle)
 PRECOND: At(Spare,Groundp) !¬At(Flat,Axle)
 EFFECT: At(Spare,Axle) ! ¬At(Spare,Ground))

Action(LeaveOvernight
 PRECOND:
 EFFECT: ¬ At(Spare,Ground) ! ¬ At(Spare,Axle) ! ¬ At(Spare,trunk) ! ¬ At(Flat,Ground) ! ¬ At
(Flat,Axle))

This example goes beyond STRIPS: negative literal in pre-condition (ADL description)

Page March 3,
2011

49
Planning 1

GRAPHPLAN example

   Initially the plan consist of 5 literals from the initial state and the CWA
literals (S0).

   Add actions whose preconditions are satisfied by EXPAND-GRAPH (A0)
   Also add persistence actions and mutex relations.
   Add the effects at level S1
   Repeat until goal is in level Si

Page March 3,
2011

50
Planning 1

GRAPHPLAN example

   EXPAND-GRAPH also looks for mutex relations
–  Inconsistent effects

–  E.g. Remove(Spare, Trunk) and LeaveOverNight due to At(Spare,Ground) and not At(Spare, Ground)

–  Interference
–  E.g. Remove(Flat, Axle) and LeaveOverNight At(Flat, Axle) as PRECOND and not At(Flat,Axle) as EFFECT

–  Competing needs
–  E.g. PutOn(Spare,Axle) and Remove(Flat, Axle) due to At(Flat.Axle) and not At(Flat, Axle)

–  Inconsistent support
–  E.g. in S2, At(Spare,Axle) and At(Flat,Axle)

Page March 3,
2011

51
Planning 1

GRAPHPLAN example

   In S2, the goal literals exist and are not mutex with any other
–  Solution might exist and EXTRACT-SOLUTION will try to find it

   EXTRACT-SOLUTION can use Boolean CSP to solve the problem or a
search process:
–  Initial state = last level of PG and goal goals of planning problem
–  Actions = select any set of non-conflicting actions that cover the goals in the state
–  Goal = reach level S0 such that all goals are satisfied
–  Cost = 1 for each action.

Page March 3,
2011

52
Planning 1

GRAPHPLAN example

   Termination? YES
   PG are monotonically increasing or decreasing:

–  Literals increase monotonically
–  Actions increase monotonically
–  Mutexes decrease monotonically

   Because of these properties and because there is a finite number
of actions and literals, every PG will eventually level off !

Page March 3,
2011

53
Planning 1

Planning with propositional logic

   Planning can be done by proving theorem in situation calculus.
   Here: test the satisfiability of a logical sentence:

   Sentence contains propositions for every action occurrence.
–  A model will assign true to the actions that are part of the correct plan and

false to the others
–  An assignment that corresponds to an incorrect plan will not be a model

because of inconsistency with the assertion that the goal is true.
–  If the planning is unsolvable the sentence will be unsatisfiable.

!

initial state"all possible action descriptions" goal

Page March 3,
2011

54
Planning 1

SATPLAN algorithm

function SATPLAN(problem, Tmax) return solution or failure
 inputs: problem, a planning problem
 Tmax, an upper limit to the plan length
 for T= 0 to Tmax do
 cnf, mapping # TRANSLATE-TO_SAT(problem, T)
 assignment # SAT-SOLVER(cnf)
 if assignment is not null then
 return EXTRACT-SOLUTION(assignment, mapping)

 return failure

Page March 3,
2011

55
Planning 1

cnf, mapping # TRANSLATE-TO_SAT
(problem, T)

   Distinct propositions for assertions about
each time step.
–  Superscripts denote the time step

At(P1,SFO)0 ! At(P2,JFK)0

–  No CWA thus specify which propositions are not true
¬At(P1,SFO)0 ! ¬At(P2,JFK)0

–  Unknown propositions are left unspecified.

   The goal is associated with a particular time-
step
–  But which one?

Page March 3,
2011

56
Planning 1

cnf, mapping # TRANSLATE-TO_SAT
(problem, T)

   How to determine the time step where
the goal will be reached?
–  Start at T=0

–  Assert At(P1,SFO)0 ! At(P2,JFK)0

–  Failure .. Try T=1
–  Assert At(P1,SFO)1 ! At(P2,JFK)1

–  …

–  Repeat this until some minimal path length is reached.
–  Termination is ensured by Tmax

Page March 3,
2011

57
Planning 1

cnf, mapping # TRANSLATE-TO_SAT
(problem, T)

   How to encode actions into PL?
–  Propositional versions of successor-state axioms

At(P1,JFK)1 #
 (At(P1,JFK)0 ! ¬(Fly(P1,JFK,SFO)0 ! At(P1,JFK)0))$ (Fly
(P1,SFO,JFK)0 ! At(P1,SFO)0)

–  Such an axiom is required for each plane, airport and time
step

–  If more airports add another way to travel than additional
disjuncts are required

   Once all these axioms are in place, the
satisfiability algorithm can start to find a plan.

Page March 3,
2011

58
Planning 1

assignment # SAT-SOLVER(cnf)

   Multiple models can be found
   They are NOT satisfactory: (for T=1)

Fly(P1,SFO,JFK)0 ! Fly(P1,JFK,SFO)0 ! Fly(P2,JFK.SFO)0
The second action is infeasible
Yet the plan IS a model of the sentence

   Avoiding illegal actions: pre-condition axioms
 Fly(P1,SFO,JFK)0 % At(P1,JFK)

   Exactly one model now satisfies all the
axioms where the goal is achieved at T=1.

!

initial state"all possible action descriptions" goal1

Page March 3,
2011

59
Planning 1

assignment # SAT-SOLVER(cnf)

   A plane can fly to two destinations at once
   They are NOT satisfactory: (for T=1)

Fly(P1,SFO,JFK)0 ! Fly(P2,JFK,SFO)0 ! Fly(P2,JFK.LAX)0
The second action is infeasible
Yet the plan allows spurious relations

   Avoid spurious solutions: action-exclusion axioms
 ¬(Fly(P2,JFK,SFO)0 ! Fly(P2,JFK,LAX) 0)

Prevents simultaneous actions

   Lost of flexibility since plan becomes totally
ordered : no actions are allowed to occur at the
same time.
–  Restrict exclusion to preconditions

Page March 3,
2011

60
Planning 1

Analysis of planning approach

   Planning is an area of great interest
within AI
– Search for solution
– Constructively prove a existence of solution

   Biggest problem is the combinatorial
explosion in states.

   Efficient methods are under research
– E.g. divide-and-conquer

