Planning 1

Based on slides prepared by Tom Lenaerts
SWITCH, Vlaams Interuniversitair Instituut voor Biotechnologie

Modifications by Jacek.Malec@cs.lth.se
Original slides can be found at http://aima.cs.berkeley.edu

¥ Vrije Universiteit Brussel

What is Planning

Generate sequences of actions to perform tasks and
achieve objectives.
- States, actions and goals

Search for solution over abstract space of plans.

Classical planning environment: fully observable,
deterministic, finite, static and discrete.

Assists humans in practical applications
- design and manufacturing

- military operations

- games

- space exploration

Planning 1
March 3, Page 3

2011

Planning

The Planning problem

Planning with State-space search
Partial-order planning

Planning graphs

Planning with propositional logic

Analysis of planning approaches

Planning 1
March 3,
2011

Page 2

Why not standard search?

Consider the task get milk, bananas and a cordless drill
Standard search algorithms fail

Talk to Parrot l:l
Go To Pet Store Buy a Dog
Y L]
Go To School u Go To Class
I]
Go To Supermarket — Buy Tuna Fish :I

Go To Sleep D Buy Arugula :I
Read A Book Buy Milk
Sitin Chair Sit Some More :I

Etc. Etc. ... e \| Read A Book :I

ALl
March 3, Page 4
2011

Difficulty of real world problems Planning language

Assume a problem-solving agent What is a good language?
using some search method - Expressive enough to describe a wide variety
of problems.

- Which actions are relevant?
- Exhaustive search vs. backward search

- What is a good heuristic functions?
- Good estimate of the cost of the state?

- Restrictive enough to allow efficient
algorithms to operate on it.

- Planning algorithm should be able to take

_ Problem-dependent vs, -independent advantage of the logical structure of the

- How to decompose the problem? problem.

- Most real-world problems are nearly decomposable. STRIPS a nd PDDL

Planning 1 Planning 1
March 3, Page 5 March 3,
2011 2011

Page ¢

General language features General language features

Representation of states Representations of actions
- Decompose the world in logical conditions and represent a — Action = PRECOND + EFFECT
state as a conjunction of positive literals.

Action(Fly(p,from, to),

- Propositional literals: Poor a Unknown PRECOND: At(p,from) a Plane(p) » Airport(from) a Airport(to)
- FO-literals (grounded and function-free): At(Planel, Copenhagen) EFFECT: -AT(p,from) A At(p,to))

At(Plane2, Oslo) ti h f t d to be instantiated
~ Closed world assumption = ac |0|j schema (p, from, o_ need to be instantiated)
- Action name and parameter list

Representation of goals - Precondition (conj. of function-free literals)
- Partially specified state and represented as a conjunction of - Effect (conj of function-free literals and P is True and not P is
positive ground literals false)

- A goal is satisfied if the state contains all literals in goal. - Add-list vs delete-list in Effect

Planning 1 Planning 1
March 3, Page 7 March 3, Page g
2011 2011

Language semantics?

Language semantics?

How do actions affect states?

- An action is applicable in any state that
satisfies the precondition.

- For FO action schema applicability involves a

substitution O for the variables in the

PRECOND.

At(P1,JFK) a At(P2,SFO) » Plane(P1) A Plane(P2) a Airport(JFK) a
Airport(SFO)

Satisfies : At(p,from) a Plane(p) » Airport(from) a Airport(to)
With 0 ={p/P1,from/JFK,to/SFO}
Thus the action is applicable.

Planning 1

March 3,
2011

Page 9

Expressiveness and extensions

The result of executing action a in state

S is the state s’

- s’ is same as s except
- Any positive literal P in the effect of a is added to s’
- Any negative literal =P is removed from s’
EFFECT: =AT(p,from) A At(p,to):

At(P1,SFO) r At(P2,SFO) A Plane(P1) » Plane(P2) a Airport(JFK) a Airport
(SFO)

- STRIPS assumption: (avoids representational frame
problem)
every literal NOT in the effect remains unchanged

Planning 1
March 3,
2011

Page 10

Example: air cargo transport

STRIPS is simplified

- Important limit: function-free literals
- Allows for propositional representation
- Function symbols lead to infinitely many states and actions

Expressiveness extension: Planning Domain
Description language (PDDL)

Action(Fly(p:Plane, from: Airport, to: Airport),
PRECOND: At(p,from) » (from = to)
EFFECT: -At(p,from) » At(p,to))

Standardization : now (2008) in its 3.1 version

Planning 1
March 3, Page 11
2011

Init(At(C1, SFO) A At(C2,JFK) » At(P1,SFO) a At(P2,JFK) » Cargo(C1) a Cargo(C2)
A Plane(P1) a Plane(P2) a Airport(JFK) a Airport(SFO))

Goal(At(C1,JFK) A At(C2,SF0))

Action(Load(c,p,a)
PRECOND: At(c,a) rAt(p,a) rnCargo(c) rPlane(p) rAirport(a)
EFFECT: -At(c,a) rIn(c,p))

Action(Unload(c,p,a)
PRECOND: In(c,p) 2At(p,a) rnCargo(c) rPlane(p) rAirport(a)
EFFECT: At(c,a) » =In(c,p))

Action(Fly(p,from,to)
PRECOND: At(p,from) aPlane(p) rAirport(from) aAirport(to)
EFFECT: = At(p,from) » At(p,to))

[Load(C1,P1,SFO), Fly(P1,SFO,JFK), Load(C2,P2,JFK), Fly(P2,JFK,SFO)]
Planning 1

March 3, Page 12
2011

Example: Spare tire problem

Init(At(Flat, Axle) r At(Spare,trunk))
Goal(At(Spare,Axle))
Action(Remove(Spare, Trunk)

PRECOND: At(Spare, Trunk)

EFFECT: -At(Spare, Trunk) » At(Spare,Ground))
Action(Remove(Flat,Axle)

PRECOND: At(Flat,Axle)

EFFECT: -At(Flat,Axle) » At(Flat,Ground))
Action(PutOn(Spare,Axle)

PRECOND: At(Spare,Groundp) a-At(Flat,Axle)

EFFECT: At(Spare,Axle) » =At(Spare,Ground))
Action(LeaveOvernight

PRECOND:

EFFECT: = At(Spare,Ground) » = At(Spare,Axle) » = At(Spare,trunk) a = At(Flat,Ground) » = At
(Flat,Axle))

This example goes beyond STRIPS: negative literal in pre-condition (PDDL description)

Planning 1
March 3,
2011

Page 13

Planning with state-space search

Example: Blocks world

Init(On(A, Table) » On(B,Table) » On(C,Table) a Block(A) » Block(B)
A Block(C) A Clear(A) a Clear(B) a Clear(C))
Goal(On(A,B) A~ On(B,C))
Action(Move(b,x,y)
PRECOND: On(b,x) A Clear(b) a Clear(y) A Block(b) » (b= x) A (b=
y) A (x=y)
EFFECT: On(b,y) » Clear(x) n = On(b,x) a = Clear(y))
Action(MoveToTable(b,x)
PRECOND: On(b,x) a Clear(b) a Block(b) » (b= x)
EFFECT: On(b,Table) a Clear(x) » = On(b,x))

Spurious actions are possible: Move(B,C,C)

Planning 1
March 3,
2011

Page 14

Progression and regression

Both forward and backward search possible

Progression planners
- forward state-space search
- Consider the effect of all possible actions in a given state

Regression planners
- backward state-space search

- To achieve a goal, what must have been true in the previous
state.

Planning 1
March 3, Page 15
2011

P ~
| AP, B) N
_ ~ S

Pl \\/Fly(P,AB) K Al(P,, A B /\

AtP,. A)
(a)

AtP,. A) o e
Re K Fiy(P, AB) \(P R

k Wl e

—_—

ey’ j._—,:lt(P‘,A} k|

N /__At(szB};_ /‘\iFMP!A.B) _\‘/ p— ”W
- At{P‘,B)_\ PESLT '\/"_Aﬂpz’s?_,
e At(P, . A) P

Planning 1
March 3, Page 16
2011

Progression algorithm

Formulation as state-space search problem:

— Initial state = initial state of the planning problem
- Literals not appearing are false
- Actions = those whose preconditions are satisfied
- Add positive effects, delete negative
- Goal test = does the state satisfy the goal
- Step cost = each action costs 1
No functions ... any graph search that is complete is
a complete planning algorithm.
- E.g. A*
Inefficient:

- (1) irrelevant action problem
- (2) good heuristic required for efficient search

Planning 1
March 3,
2011

Page 17

Regression algorithm

General process for predecessor construction
- Give a goal description G
- Let A be an action that is relevant and consistent

— The predecessors is as follows:
- Any positive effects of A that appear in G are deleted.
- Each precondition literal of A is added , unless it already appears.

Any standard search algorithm can be added
to perform the search.

Termination when predecessor satisfied by

initial state.

- In FO case, satisfaction might require a substitution.
Planning 1

March 3, Page 19
2011

Regression algorithm

How to determine predecessors?

- What are the states from which applying a given action

leads to the goal?
Goal state = At(C1, B) 2 At(C2, B) ... A At(C20, B)
Relevant action for first conjunct: Unload(C1,p,B)
Works only if pre-conditions are satisfied.
Previous state= In(C1, p) » At(p, B) » At(C2, B) a ... A At(C20, B)
Subgoal At(C1,B) should not be present in this state.

Actions must not undo desired literals
(consistent)

Main advantage: only relevant actions are
considered.
- Often much lower branching factor than forward search.

Planning 1
March 3,

Page 18

Heuristics for state-space search

Neither progression or regression are very

efficient without a good heuristic.
- How many actions are needed to achieve the goal?
- Exact solution is NP hard, find a good estimate

Two approaches to find admissible heuristic:
- The optimal solution to the relaxed problem.
- Remove all preconditions from actions

- The subgoal independence assumption:

The cost of solving a conjunction of subgoals is approximated by the sum
of the costs of solving the subproblems independently.

Planning 1
March 3, Page 20

Partial-order planning

Shoe example

Progression and regression
planning are totally ordered plan
search forms.

- They cannot take advantage of problem
decomposition.

- Decisions must be made on how to sequence actions on
all the subproblems

Least commitment strategy:
- Delay choice during search

Planning 1
March 3,
2011

Page 21

Partial-order planning(POP)

Any planning algorithm that can place two
actions into a plan without which comes first
|S a PO plan. Partial Order Plan: Total Order Plans:

iii'

Le#ShoeOn, RightShoeOn

Planning 1
March 3, Page 23
2011

Goal(RightShoeOn A LeftShoeOn)

Init()

Action(RightShoe, PRECOND: RightSockOn
EFFECT: RightShoeOn)

Action(RightSock, PRECOND:
EFFECT: RightSockOn)

Action(LeftShoe, PRECOND: LeftSockOn
EFFECT: LeftShoeOn)

Action(LeftSock, PRECOND:

EFFECT: LeftSockOn)

Planner: combine two action sequences (1)leftsock,
leftshoe (2)rightsock, rightshoe

March 3,
2011

Page 22

POP as a search problem

States are (mostly unfinished) plans.
- The empty plan contains only start and finish actions.

Each plan has 4 components:

- A set of actions (steps of the plan)

- A set of ordering constraints: A < B (A before B)
- Cycles represent contradictions.

- A set of causal links A —P2 5

- The plan may not be extended by adding a new action C that conflicts
with the causal link. (if the effect of C is =p and if C could come after A
and before B)

- A set of open preconditions.
- If precondition is not achieved by action in the plan.

Planning 1
March 3, Page 24
2011

Shopping list example

Example of final plan

Actions={Rightsock, Rightshoe, Leftsock, R -
Leftshoe, Start, Finish}

Orderings={Rightsock < Rightshoe; Leftsock

< Leftshoe}

Links={Rightsock->Rightsockon ->

Rightshoe, Leftsock->Leftsockon-> Leftshoe,

Rightshoe->Rightshoeon->Finish, ...}

Open preconditions={}

AI'l

Shopping list example

At(Home) ~ Sells(HWS,Drill) ~ Sells(SM,Milk) ~ Sells(SM,Ban.)

At(HWS) sbs, Dril)

Aty

AN(SM) Sells(SM,Milk)

Have(Mik) At(Home) Have(Ban.) Have(Drill)

Al'l ALl
March 3, Page 27 March 3, Page 28
2011 2011

POP as a search problem

A plan is consistent iff there are no cycles in
the ordering constraints and no conflicts with
the causal links.

A consistent plan with no open preconditions
is a solution.

A partial order plan is executed by repeatedly
choosing any of the possible next actions.
- This flexibility is a benefit in non-cooperative environments.

Planning 1
March 3,
2011

Page 29

Enforcing consistency

Solving POP

Assume propositional planning

problems:

- The initial plan contains Start and Finish, the ordering
constraint Start < Finish, no causal links, all the
preconditions in Finish are open.

- Successor function :

- picks one open precondition p on an action B and

- generates a successor plan for every possible consistent way of
choosing action A that achieves p.

- Test goal

Planning 1
March 3,
2011

Page 30

Process summary

When generating successor plan:

- The causal link A->p->B and the ordering
constraint A < B is added to the plan.
- If Ais new also add start < A and A < B to the plan
- Resolve conflicts between new causal link and
all existing actions
- Resolve conflicts between action A (if new)
and all existing causal links.

Planning 1
March 3, Page 31
2011

Operators on partial plans

- Add link from existing plan to open precondition.

- Add a step to fulfill an open condition.

- Order one step w.r.t another to remove possible conflicts
Gradually move from incomplete/vague plans
to complete/correct plans

Backtrack if an open condition is
unachievable or if a conflict is irresolvable.

Planning 1
March 3, Page 32
2011

Example: Spare tire problem

Init(At(Flat, Axle) r At(Spare,trunk))
Goal(At(Spare,Axle))
Action(Remove(Spare, Trunk)

PRECOND: At(Spare, Trunk)

EFFECT: —At(Spare, Trunk) » At(Spare,Ground))
Action(Remove(Flat,Axle)

PRECOND: At(Flat,Axle)

EFFECT: —At(Flat,Axle) » At(Flat,Ground))
Action(PutOn(Spare,Axle)

PRECOND: At(Spare,Groundp) r—-At(Flat,Axle)

EFFECT: At(Spare,Axle) r =At(Spare,Ground))
Action(LeaveOvernight

PRECOND:

EFFECT: = At(Spare,Ground) » - At(Spare,Axle) » = At(Spare,trunk) » = At
(Flat,Ground) A — At(Flat,Axle))

Planning 1
March 3,
2011

Page 33

Solving the problem

et amove Gpara T |

4 7 lnc
T i iz
‘At Flar, Axe) TAYRatA

Initial plan: Start with EFFECTS and Finish with PRECOND.
Pick an open precondition: At(Spare, Axle)

Only PutOn(Spare, Axle) is applicable

Add causal link: PutOn(Spare,Axle)—252we2) s Fipish

Add constraint : PutOn(Spare, Axle) < Finish

Planning 1
March 3, Page 35
2011

Solving the problem

t5ore T Ramove (Spare Trurk)

At{Spre.Trunk) AnSpare, Grouw
—AfRatAde)

“[Puton(Spare Ax) |- Atk Aol _Finish)

Initial plan: Start with EFFECTS and Finish
with PRECOND.

Planning 1
March 3,
2011

Page 34

Solving the problem

,

[T e I O Spare Axie) |- A5 Avel_Fimish |

—AfPatAde)

Pick an open precondition: At(Spare, Ground)

Only Remove(Spare, Trunk) is applicable

Add causal link: Remove(Spare,Trunk)—212eSromd) 5 pyrOn(Spare, Axle)
Add constraint : Remove(Spare, Trunk) < PutOn(Spare,Axle)

Planning 1
March 3, Page 36
2011

Solving the problem

Solving the problem

Remove (Spare.Trunk)
. 7 ound
I el D
LAr Pz, Axie) —AfRatAde)

A

AN
| LeaveOvernight [:

—AN Sz 3

AnSpare. Trurk)|

Afsre Ao Finish]

Pick an open precondition: —=At(Flat, Axle)

LeaveOverNight is applicable

conflict: LeaveOverNight also has the effect - At(Spare,Ground)
Remove(Spare,Trunk) —ASpare Ground) _, PutOn(Spare,Axle)

To resolve, add constraint : LeaveOverNight < Remove(Spare, Trunk)

Planning 1
March 3,
2011

Page 37

Solving the problem

| \Remove (Spare.Trunk)
D saney [PutOn(Spare Axie) -+
D rasnne [PutOn(Spare Axle) fSpare Ade)_Finish |

-
et

[CemeOvemani | siore 2
=7
Pick an open precondition: At(Spare, Trunk)

Only Start is applicable
Add causal link: Start Remove(Spare,Trunk)

Conflict: of causal link with effect At(Spare, Trunk) in LeaveOverNight

- No re-ordering solution possible.

backtrack

At(Spare Trunk)

Planning 1
March 3,
2011

Page 38

Some details ...

»«a-;;rw

oy o PG AT o e
:mm; ARzt Ade) PutOn(Spare Axle) iSeare Aie_Finish |
ARt Ade)|_Remove(Flat.Axle) |

Remove LeaveOverNight, Remove(Spare, Trunk)
and causal links

Repeat step with Remove(Spare,Trunk)
Add also RemoveFlatAxle and finish

Planning 1
March 3, Page 39
2011

What happens when a first-order
representation that includes variables is
used?

- Complicates the process of detecting and resolving conflicts.
- Can be resolved by introducing inequality constraint.
CSP’s most-constrained-variable constraint
can be used for planning algorithms to select
a PRECOND.

Planning 1
March 3, Page 40
2011

Planning graphs

Planning graphs

Used to achieve better heuristic estimates.
— A solution can also directly extracted using GRAPHPLAN.

Consists of a sequence of levels that

correspond to time steps in the plan.
- Level 0 is the initial state.

- Each level consists of a set of literals and a set of actions.
- Literals = all those that could be true at that time step, depending upon
the actions executed at the preceding time step.
- Actions = all those actions that could have their preconditions satisfied
at that time step, depending on which of the literals actually hold.

Planning 1
March 3,
2011

Page 41

Cake example

“Could™”?

- Records only a restricted subset of possible negative
interactions among actions.

They work only for propositional problems.

Example:
Init(Have(Cake))
Goal(Have(Cake) a Eaten(Cake))
Action(Eat(Cake), PRECOND: Have(Cake)
EFFECT: —Have(Cake) A Eaten(Cake))
Action(Bake(Cake), PRECOND: — Have(Cake)
EFFECT: Have(Cake))

Planning 1
March 3,
2011

Page 42

Cake example

S, A, s, A, S
Have(Cake) i . Have(Cake) < e Have(Cake) ..
) ' Have(Cake)". = — Have(Cake)’.
; "\ Eaten(Cake) — = Eaten(Cake)
— Eaten(Cake) 1= — Eaten(Cake) *- =1 —Eaten(Cake) ©

Start at level SO and determine action level A0 and next level S1.
- A0 >> all actions whose preconditions are satisfied in the previous level.
- Connect precond and effect of actions SO --> S1
- Inaction is represented by persistence actions.
Level AO contains the actions that could occur
- Conflicts between actions are represented by mutex links

Planning 1
March 3, Page 43
2011

S, A, S, A, S
Have(Cake) Ew, / Have(Cake) \ X ’/D‘J. v Have(Cake) \
) [/ —Have(Cake)"_ = —1Have(Cake)"
; " Eaten(Cake) - = Eaten(Cake) . |
— Eaten(Cake) £f — Eaten(Cake) *- = —Eaten(Cake) ©

Level S1 contains all literals that could result from picking any

subset of actions in AO
- Conflicts between literals that can not occur together (as a consequence of the
selection action) are represented by mutex links.
- S1 defines multiple states and the mutex links are the constraints that define this set
of states.
Continue until two consecutive levels are identical: leveled off
- Or contain the same amount of literals (explanation follows later)

Planning 1
March 3, Page 44
2011

Cake example

S, A, S, A S»>
Bake(Cake)
Have(Cake) a:‘ 7 Have(Cake) \ X /E.,/. - Havs{Caks}\"
[THave(Cake) " —B— —Have(Cake) .
Eat(Cake) ‘-‘\ \ Eat(Cake) \
) . Eaten(Cake) . — = Eaten(Cake) . |
— Eaten(Cake) I=a — Eaten(Cake) - = —Eaten(Cake) ©

A mutex relation holds between two actions when:

- Inconsistent effects: one action negates the effect of another.

- Interference: one of the effects of one action is the negation of a precondition of the other.

- Competing needs: one of the preconditions of one action is mutually exclusive with the precondition

of the other.

A mutex relation holds between two literals when (inconsistent
support):

- If one is the negation of the other OR

- if each possible action pair that could achieve the literals is mutex.

Planning 1
March 3,
2011

Page 45

The GRAPHPLAN Algorithm

PG and heuristic estimation

PG’s provide information about the problem
- A literal that does not appear in the final level of the graph
cannot be achieved by any plan.
- Useful for backward search (cost = inf).
- Level of appearance can be used as cost estimate of
achieving any goal literals = level cost.
- Small problem: several actions can occur
- Restrict to one action using serial PG (add mutex links between every
pair of actions, except persistence actions).
- Cost of a conjunction of goals? Max-level, sum-level and
set-level heuristics.

PG is a relaxed problem.

Planning 1
March 3,
2011

Page 46

Example: Spare tire problem

How to extract a solution directly from the PG

function GRAPHPLAN(problem) return solution or failure

graph < INITIAL-PLANNING-GRAPH(problem)

goals < GOALS[problem]

loop do

if goals all non-mutex in last level of graph then do

solution <— EXTRACT-SOLUTION(graph, goals, LENGTH(graph))
if solution = failure then return solution
else if NO-SOLUTION-POSSIBLE(graph) then return failure
graph < EXPAND-GRAPH(graph, problem)

Planning 1
March 3, Page 47
2011

Init(At(Flat, Axle) At(Spare,trunk))
Goal(At(Spare,Axle))
Action(Remove(Spare, Trunk)

PRECOND: At(Spare, Trunk)

EFFECT: —At(Spare, Trunk) » At(Spare,Ground))
Action(Remove(Flat,Axle)

PRECOND: At(Flat,Axle)

EFFECT: —At(Flat,Axle) » At(Flat,Ground))
Action(PutOn(Spare,Axle)

PRECOND: At(Spare,Groundp) a-At(Flat,Axle)

EFFECT: At(Spare,Axle) » —~At(Spare,Ground))
Action(LeaveOvernight

PRECOND:

EFFECT: = At(Spare,Ground) a = At(Spare,Axle) » = At(Spare,trunk) » = At(Flat,Ground) » = At
(Flat,Axle))

This example goes beyond STRIPS: negative literal in pre-condition (ADL description)

Planning 1
March 3, Page 48
2011

GRAPHPLAN example GRAPHPLAN example

s, Sz S, s, Sz
At(Spare,Trunk) At(Spare, Trark) At(Spare, Trunk) At(Spare,Trunk) At(Spare, Trark) At(Spare, Trunk)
—At(Spare, Trank) ' — At(Spare, Trunk) —At(Spare, Trunk) ' — At{Spare, Trunk)
At{Fiat Axe) AtlFiat Axle) ‘- » N At(Fiat Are) At(Fiat Axe) At(Fiat Axle) ‘- 3 At(Fiat Are)
—At(Flat Axle) —AtlFiat, Axle) —At(Flat Axle) —AtlFiat Axle)
—At(Spare. Axle) A Axie) —At(Spare, Axie) —At(Spare, Axie) Af Axle) —At(Spare, Axie)
\\ At(Spare Axie) At(Spare Axle)
At(Fiat, Ground) (Flat, At(Fiat, Ground) —AliFiat, Ground) (Flat, —AtlFiat,Grourd)
B ! \ At(Fiat,Ground) // o) \\\:rfn:acm i ' \\\ At(Fiat, Ground) // o) \\Q Arm:ammzﬂ
—At(Spare, Ground) \ 1. ,Grmnd)/ :) \ 1. , Ground) —At(Spare, Ground) \ 1 ,G!mnd)/ :) \ ; , Ground)
Initially the plan consist of 5 literals from the initial state and the CWA EXPAND-GRAPH also looks for mutex relations
literals (S0). - Inconsistent effects
) . o - E.g. Remove(Spare, Trunk) and LeaveOverNight due to At(Spare,Ground) and not At(Spare, Ground)
Add actions whose preconditions are satisfied by EXPAND-GRAPH (A0) - Interference
. . - - E.g. Remove(Flat, Axle) and LeaveOverNight At(Flat, Axle) as PRECOND and not At(Flat,Axle) as EFFECT
Also add persistence actions and mutex relations. - Competing needs
Add the effects at |eve| S1 - E.g. PutOn(Spare,Axle) and Remove(Flat, Axle) due to At(Flat.Axle) and not At(Flat, Axle)
. L. . - Inconsistent support
Repeat until goal is in level Si - E.g.in S2, At(Spare,Axle) and At(Flat,Axle)
Planning 1 Planning 1
March 3, Page 49 March 3, Page 50

2011 2011

GRAPHPLAN example GRAPHPLAN example

A, s, A Sz S, A, s, A Sz
At(Spare, Trurk) At(Spare, Trunk) At(Spare Trunk) At(Spare, Trurk) At(Spare, Trunk)

| —At(Spare, Trurk) [—a — AtiSpars, Trunk) —Al(Spare, Trrk) ——f—=——ip——\ —Al(Spars,Trunk)
‘Removthmxle " ‘Remc [Remove(Fiat.Axie) } "

Sﬂ
At(Spare Trunk)

Removu (Spare Ty

A(Flat. Axio) AtFiataxe) <Y o , N At(Fiat Axe) At(Fiat Axe) ‘-‘-A“ AtFiataxe) <) A(Fiat, Axle)
—At(Flat Axle) --v-“ —At{Fiat, Axle) [LeaveOvemight —At(Flat Axle) = At(Flat Axle)
A\

—At(Spare, Axle) — At(Spare Axle) = — N\ Ul —At(Spare,Axe) At(Spare Axle) X —At(Spare,Axle)
A Spare Axie) \\\\ AtiSpare Axle)

— At(Fiat, Ground) — At(Flat,Ground) —_\\ — At{Flat, Ground) — At(Flat, Ground) \—milFlaI,Gmumﬂ [N\ — At{Fiat, Ground)
At(Fiat Ground) U AtlFiat Ground) ! A o) —f————G————\)) At Grouna

—At(Spare, Ground) \— At{Spare, Ground) N\ At(Spare, Ground) —At(Spare, Ground) \At(Spare, Ground) N\ At(Spare, Ground)

In S2, the goal literals exist and are not mutex with any other Termination? YES
- Solution might exist and EXTRACT-SOLUTION will try to find it PG are monotonically increasing or decreasing:
EXTRACT-SOLUTION can use Boolean CSP to solve the problem or a - Literals increase monotonically
search process: - Actions increase monotonically
- Initial state = last level of PG and goal goals of planning problem - Mutexes decrease monotonically
- Actions = select any set of non-conflicting actions that cover the goals in the state Because of these properties and because there is a finite nhumber
- Goal = reach level SO such that all goals are satisfied of actions and literals, every PG will eventually level off !

- Cost = 1 for each action.

Planning 1 Planning 1
March 3, Page 51 March 3, Page 52
2011 2011

Planning with propositional logic

SATPLAN algorithm

Planning can be done by proving theorem in situation calculus.
Here: test the satisfiability of a logical sentence:

initial state A all possible action descriptions A goal

Sentence contains propositions for every action occurrence.

- A model will assign true to the actions that are part of the correct plan and
false to the others

- An assignment that corresponds to an incorrect plan will not be a model
because of inconsistency with the assertion that the goal is true.

- If the planning is unsolvable the sentence will be unsatisfiable.

Planning 1
March 3,
2011

Page 53

cnf, mapping < TRANSLATE-TO_SAT

(problem, T)

Distinct propositions for assertions about

each time step.

- Superscripts denote the time step
At(P1,SF0)° 1 At(P2,JFK)°

- No CWA thus specify which propositions are not true
—At(P1,SF0)° » =At(P2,JFK)°

- Unknown propositions are left unspecified.

The goal is associated with a particular time-
step

— But which one?

Planning 1
March 3, Page 55
2011

function SATPLAN(problem, T,,,,) return solution or failure
inputs: problem, a planning problem
Tmaxe @N upper limit to the plan length
forT=0to 7, do
cnf, mapping < TRANSLATE-TO_SAT(problem, T)
assignment < SAT-SOLVER(cnf)
if assignment is not null then
return EXTRACT-SOLUTION(assignment, mapping)

return failure

Planning 1
March 3,
2011

Page 54

cnf, mapping < TRANSLATE-TO_SAT

(problem, T)

How to determine the time step where

the goal will be reached?
- Start at T=0

- Assert At(P1,SF0)% At(P2,JFK)°
Failure .. Try T=1

- Assert At(P1,SFO)! r At(P2,JFK)!

Repeat this until some minimal path length is reached.
Termination is ensured by T,

Planning 1
March 3, Page 56
2011

cnf, mapping < TRANSLATE-TO_SAT
(problem, T)

assignment < SAT-SOLVER(cnf)

How to encode actions into PL?
— Propositional versions of successor-state axioms
At(P1,JFK)! =

(At(P1,JFK)? 2 —(Fly(P1,JFK,SFO) 1 At(P1,JFK)°))v (Fly
(P1,SFO,JFK)° A At(P1,SFO)%)

- Such an axiom is required for each plane, airport and time
step

- If more airports add another way to travel than additional
disjuncts are required

Once all these axioms are in place, the

satisfiability algorithm can start to find a plan.

Planning 1
March 3,
2011

Page 57

assignment < SAT-SOLVER(cnf)

A plane can fly to two destinations at once
They are NOT satisfactory: (for T=1)

Fly(P1,SFO,JFK)° a Fly(P2,JFK,SFO)° Fly(P2,JFK.LAX)?
The second action is infeasible
Yet the plan allows spurious relations

Avoid spurious solutions: action-exclusion axioms
=(Fly(P2,JFK,SF0O)° A Fly(P2,JFK,LAX)°)
Prevents simultaneous actions
Lost of flexibility since plan becomes totally
ordered : no actions are allowed to occur at the
same time.
- Restrict exclusion to preconditions

Planning 1
March 3, Page 59
2011

Multiple models can be found
They are NOT satisfactory: (for T=1)

Fly(P1,SFO,JFK)? A Fly(P1,JFK,SFO)° 1 Fly(P2,JFK.SFO)°
The second action is infeasible
Yet the plan IS a model of the sentence

initial state A all possible action descriptions A goal'
Avoiding illegal actions: pre-condition axioms
Fly(P1,SFO,JFK)? = At(P1,JFK)
Exactly one model now satisfies all the
axioms where the goal is achieved at T=1.
Planning 1

March 3,
2011

Page 58

Analysis of planning approach

Planning is an area of great interest
within Al

- Search for solution

- Constructively prove a existence of solution
Biggest problem is the combinatorial
explosion in states.

Efficient methods are under research
- E.g. divide-and-conquer

Planning 1
March 3, Page 60
2011

