TAI Introduction

EDA132: Applied Artificial Intelligence or TAI: Tillämpad Artificiell Intelligens

Jacek Malec Dept. of Computer Science, Lund University, Sweden January 21st, 2014

Plan for today

- Administrative stuff
- Brief intro (AIMA Chapter 1)
- Agents (AIMA Chapter2)

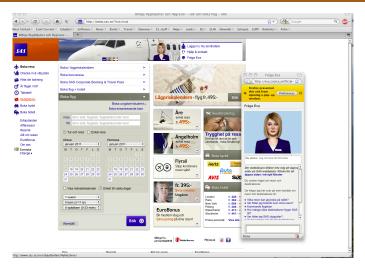
TAI Introduction

Automated agent traders account for over 50% of portfolio trades by value most weeks on the New York Stock Exchange and, in some weeks, as much as 70% of portfolio trades.

In 2011:

www.elbot.com

A big helio to my new visitor in Sweden!


 $\rangle\rangle$

Done

A couple of agents more ...

Movie time

- Watson;
- Geminoid;
- Google car.

"What is the only former Yugoslav republic in the European Union?" (2012)

2880 POWER7 cores, 16 Terabytes memory, 4 Terabytes clustered storage (IBM Watson) still can not answer this question!

About the course

- EDA132: Applied artificial intelligence
- http://cs.lth.se/EDA132
- Serves as an announcement board as well!
- Meaning I expect you to read it often!!!
- Teachers: Pierre Nugues, Elin Anna Topp, Jacek Malec
- Administrator: Lena Ohlsson

- 7,5 hp (ECTS)
- Lectures (14), normally Tuesdays, 15–17 (M:D) and Fridays, 13–15 (E:A)
- Programming assignments (4)
- Home reading (textbook)
- S. Russell, P. Norvig, Artificial Intelligence, a Modern Approach, 3rd ed., Prentice Hall

Evaluation

- Exam: worth 4,5p out of 7,5p. Material pointed to in the "reading advice" section.
- Programming assignments: worth 3p. Important: both correctness and presentation count.
- Complexity level of programming assignments may vary, although we strive for even division of labour;

but

- We need your feedback ...
- Kursombud (course representatives) need to be chosen

Programming assignments

- Search
- Peasoning
- Learning (tentative list)
 - Decision Trees
 - 2 Logistic Regression
 - Bayesian Learning
- O Natural Language Processing

TAI Introduction

Programming assignment submission

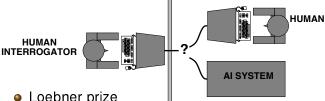
- The submission is to be sent to tai@cs.lth.se in the format described on the course web.
- This address works for assignment submissions. May or may not work for other things, so mail me (or any of the other teachers) directly for other purposes.
- All assignments are to be handed in electronically (as pdf documents), on time!

End of the admin stuff

Questions? Comments?

Please elect a course representative. Thank you.

TAI Introduction


Systems that think like humans	Systems that think rationally
Systems that act like humans	Systems that act rationally

Acting humanly: The Turing test

Turing (1950) "Computing machinery and intelligence":

- Can machines think? \rightarrow Can machines behave intelligently?
- Operational test for intelligent behavior: the Imitation Game

- Loebner prize
- Anticipated all major arguments against Al in last 50 years
- Suggested major components of Al: knowledge, reasoning, language understanding, learning

Problem: Turing test is not *reproducible*, *constructive*, or amenable to mathematical analysis

Thinking humanly: cognitive science

1960s "*cognitive revolution*": information-processing psychology replaced the then prevailing orthodoxy of *behaviorism* Requires scientific theories of internal activities of the brain

- What level of abstraction? "Knowledge" or "circuits"?
- How to validate? Requires
 - Predicting and testing behavior of human subjects (top-down),
 - or Direct identification from neurological data (bottom-up)

Both approaches (roughly, *Cognitive Science* and *Cognitive Neuroscience*) are now distinct from Al Both share with Al the following characteristic: *the available theories do not explain (or engender) anything resembling human-level general intelligence*

Hence, all three fields share one principal direction!

Thinking rationally: laws of thought

Aristotle: what are correct arguments/thought processes?

Several Greek schools developed various forms of **logic**: notation and rules of derivation for thoughts; may or may not have proceeded to the idea of mechanization Direct line through mathematics and philosophy to modern Al

Problems:

- Not all intelligent behavior is mediated by logical deliberation
- What is the purpose of thinking? What thoughts *should* | have out of all the thoughts (logical or otherwise) that | *could* have?

Acting rationally

Rational behavior: doing the right thing

The right thing: that which is expected to maximize goal achievement,

given the available information

Doesn't necessarily involve thinking—e.g., blinking reflex—but thinking should be in the service of rational action

Aristotle (Nicomachean Ethics):

Every art and every inquiry, and similarly every action and pursuit, is thought to aim at some good

Rational agents

An agent is an entity that perceives and acts

This course is about designing rational agents

Abstractly, an agent is a function from percept histories to actions:

$$f: \mathcal{P}^* \to \mathcal{A}$$

For any given class of environments and tasks, we seek the agent (or class of agents) with the best performance

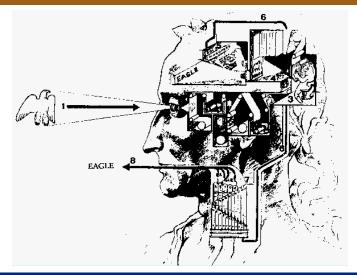
Caveat: computational limitations make perfect rationality unachievable

 \rightarrow design best program for given machine resources

Al prehistory

History of Al

1943 McCulloch & Pitts: Boolean circuit model of brain 1950 Turing's "Computing Machinery and Intelligence" Early Al programs, including Samuel's checkers program 1950s Newell & Simon's Logic Theorist, Gelernter's Geometry E 1956 Dartmouth meeting: "Artificial Intelligence" adopted Robinson's complete algorithm for logical reasoning 1965 1966-74 Al discovers computational complexity Early development of knowledge-based systems 1969-79 1980-88 Expert systems industry booms Expert systems industry busts: "Al Winter" 1988-93 1985-95 Neural networks return to popularity Resurgence of probability; general increase in technical 1988depth, "Nouvelle Al": ALife, GAs, soft computing Agents, agents, everywhere ... 1995 -



State of the art

- Human-level Al back on the agenda
- 1997: Deep Blue defeats Kasparov
- Robbins conjecture (mathematics) proven after decades of human attempts
- No hands accross America (98% of time driven autonomously)
- Logistics for Gulf, Iraq and Afghanistan
- Warfare for Iraq and Afghanistan
- 2011: Watson defeats humans in Jeopardy
- 2011: Siri

What's in the course

What's missing in the course

Ethics

- enhancements of our capacities (bodies, minds)
 - do we want that?
 - can we afford not having that?
- elderly care, rehabilitation, medicine vs. war-fighting, sex, socializing
- emotional artificial partners
- large finances come from military sources (e.g., DARPA)
 - defensive
 - preventive attacks
 - robots that kill

Do we have the **right** to create robot servants?