CONSTRAINT SATISFACTION PROBLEMS

CHAPTER 6

© Stuart Russell

Chapter 6

| Constraint satisfaction problems (CSPs)

Standard search problem:
state is a “black box"—any old data structure
that supports goal test, eval, successor

CSP:
state is defined by variables X; with values from domain D;

goal test is a set of constraints specifying
allowable combinations of values for subsets of variables

Simple example of a formal representation language

Allows useful general-purpose algorithms with more power
than standard search algorithms

© Stuart Russell

Chapter 6

3

Outline |

CSP definition
Backtracking search for CSPs
Constraint propagation

Problem structure and problem decomposition

Local search for CSPs

S SO S O

Assignment 2
Acknowledgements:
slides are based partly on Krzysztof Kuchcinski's lecture notes

original AIMA slides are modified by Jacek Malec for the EDA132 course

© Stuart Russell Chapter 6

(CSP definition |

A Constraint Satisfaction Problem consists of three components:
X, D and C:
X is a set of variables, {X1,..., X,,},
D is a set of domains, {Dy, ..., D,}, one for each variable,
C'is a set of constraints that specify allowable combinations of values.
Each constraint C; consists of a pair <scope, rel>.

A solution to a CSP is a consistent, complete assignment.

© Stuart Russell Chapter 6 1

Example: 4-Queens as a CSP

Assume one queen in each column. Which row does each one go in?

Variables ()1, ()5, (3, 4

Domains D; = {1,2,3,4}

Constraints
(); # (), (cannot be in same row) Ei>Ei>
|Q; — Q] # i — j| (or same diagonal)

Translate each constraint into set of allowable values for its variables

E.g., values for (Q1, Q) are (1,3) (1,4) (2,4) (3,1) (4,1) (4,2)

© Stuart Russell

Chapter 6

Example: Map-Coloring contd.

~N-

Tasm'ia

Solutions are assignments satisfying all constraints, e.g.,

{WA=red, NT =green,QQ=red, NSW = green,V =red, SA=blue, T = green}
© Stuart Russell

Chapter 6

Example: Map-Coloring

Northern
Territory

Western

Queensland
Australia

South
Australia

New South Wales

: . Tasmania
Variables WA, NT, Q, NSW,V, SA, T
Domains D; = {red, green, blue}
Constraints: adjacent regions must have different colors
e.g., WA # NT (if the language allows this), or

© Stuart Russell

Chapter 6

Constraint graph

Binary CSP: each constraint relates at most two variables

Constraint graph: nodes are variables, arcs show constraints

O—@
@@'ég@
®

General-purpose CSP algorithms use the graph structure
to speed up search. E.g., Tasmania is an independent subproblem!

© Stuart Russell

Chapter 6

(WA,NT) € {(red, green), (red, blue), (green, red), (green, blue), . . .}

l Varieties of CSPs |

Discrete variables
finite domains; size d = O(d") complete assignments
{ e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete)
infinite domains (integers, strings, etc.)
{ e.g., job scheduling, variables are start/end days for each job
{> need a constraint language, e.g., Start.Job, + 5 < Start.Jobs
{> linear constraints solvable, nonlinear undecidable

Continuous variables
{ e.g., start/end times for Hubble Telescope observations
{ linear constraints solvable in poly time by LP methods

© Stuart Russell Chapter 6 9

(Example: Cryptarithmetic |

m|+
ol +
Clz =
JO O

Variables: FF'T'U W R O X;| X, X3
Domains: {0,1,2,3,4,5,6,7,8,9}
Constraints
alldiff F,T,U, W, R,O)
O+0=R+10- Xy, etc.

© Stuart Russell Chapter 6 11

l Varieties of constraints

Unary constraints involve a single variable,
e.g., SA # green

Binary constraints involve pairs of variables,

eg, SA£WA

Higher-order constraints involve 3 or more variables,
e.g., cryptarithmetic column constraints,
sometimes called (misleadingly) global constraints

Preferences (soft constraints), e.g., red is better than green
often representable by a cost for each variable assignment
— constrained optimization problems

© Stuart Russell

Chapter 6

(Real-world CSPs

Assignment problems
e.g., who teaches what class

Timetabling problems
e.g., which class is offered when and where?

Hardware configuration
Spreadsheets
Transportation scheduling
Factory scheduling

Floor-planning

Notice that many real-world problems involve real-valued variables

@© Stuart Russell

Chapter 6

12

|| Standard search formulation (incremental)

Let's start with the straightforward, dumb approach, then fix it
States are defined by the values assigned so far
¢ Initial state: the empty assignment, { }

{» Successor function: assign a value to an unassigned variable
that does not conflict with current assignment.
= fail if no legal assignments (not fixable!)

& Goal test: the current assignment is complete

1) This is the same for all CSPs! ©)
2) Every solution appears at depth n with n variables
= use depth-first search
3) Path is irrelevant, so can also use complete-state formulation
4) b= (n — ()d at depth /, hence n!d" leaves!!!! @

© Stuart Russell Chapter 6

13

(Backtracking search

function BACKTRACKING-SEARCH(csp) returns solution/failure
return BACKTRACK({ }, csp)

function BACKTRACK(assignment, csp) returns solution/failure

if assignment is complete then return assignment

var < SELECT-UNASSIGNED- VARIABLE(VARIABLES|csp)], assignment, csp)

for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do

if value is consistent with assignment given CONSTRAINTS[csp| then

add {var = value} to assignment
result <~ BACKTRACK (assignment, csp)
if result # failure then return result
remove {var = value} from assignment

return failure

© Stuart Russell Chapter 6

15

(Backtracking search |

Variable assignments are commutative, i.e.,
[WA=redthen NT = green] sameas [NT' = green then WA =red]

Only need to consider assignments to a single variable at each node
= b=d and there are d" leaves

Depth-first search for CSPs with single-variable assignments
is called backtracking search

Backtracking search is the basic uninformed algorithm for CSPs

Can solve n-queens for n ~ 25

© Stuart Russell Chapter 6 14

(Backtracking example |

S

© Stuart Russell Chapter 6 16

(Backtracking example

~D

A

¢ ¢ ¢

Backtracking example

R

m

¢ ¢ ¢

A/\

. *

© Stuart Russell

(Backtracking example

| (Improving backtracking efficiency

4/‘\~

¢ ¢ ¢

© Stuart Russell

General-purpose methods can give huge gains in speed:

1. Which variable should be assigned next?
2. In what order should its values be tried?
3. Can we detect inevitable failure early?

4. Can we take advantage of problem structure?

@© Stuart Russell

(Minimum remaining values |

Minimum remaining values (MRV):
choose the variable with the fewest legal values

Ho— -4 —das

© Stuart Russell Chapter 6 21

(Least constraining value |

Given a variable, choose the least constraining value:
the one that rules out the fewest values in the remaining variables

“QL% Allows 1 value for SA
‘_L’:‘ o “_L’: _»“QH: <“!L% Allows 0 values for SA

Combining these heuristics makes 1000 queens feasible

© Stuart Russell Chapter 6 23

(Degree heuristic |

Tie-breaker among MRV variables

Degree heuristic:
choose the variable with the most constraints on remaining variables

e

© Stuart Russell Chapter 6 22

|| Forward checking ||

Idea: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

S

WA NT Q NSW v SA T
(ErEErE(ErEErTE (B E R R[]

© Stuart Russell Chapter 6 24

I Forward checking |

Idea: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

~o D

WA NT Q NSW v SA T
I I IR TN ireni
(| "EECEENEENE| PE(EE |

© Stuart Russell Chapter 6

|| Forward checking ||

Idea: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

S SSh Seh S

WA NT Q NSW v SA T

CEICE TR I IrEIrEeireni
(| "EECEENEENE| PE(EE |
[— | Hjmowl EENE] EENE|
[— | 1 | I— | T

© Stuart Russell Chapter 6 27

I Forward checking |

Idea: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

S Sl o

WA NT Q NSW v SA T

CE I TN IR ITET I Iren]
(| "EECEENEENE] PE(EE |
[— | Hjmae|l EENE] EEEE|

© Stuart Russell Chapter 6 26

(Constraint propagation |

Forward checking propagates information from assigned to unassigned vari-
ables, but doesn’t provide early detection for all failures:

SSE SSia S

WA NT Q NSW v SA T

T I I T IrIren Irer i
(]| FEErEErE[EEE] FE[EEN|
—1 1IN 1] E[EEN]|

NT and S A cannot both be blue!

Constraint propagation repeatedly enforces constraints locally

© Stuart Russell Chapter 6 28

(Node consistency

Simplest form of propagation: makes each node node-consistent

Node X is node-consistent iff

for every value = of X all the unary constraints of X are satisfied

Needs to be run only once.

© Stuart Russell

29

(Arc consistency

This form of propagation makes each arc consistent

X — Y is consistent iff
for every value = of X there is some allowed 7

S SSEN S

WA NT Q NSW v SA T
—1 (I (B 1 EEEN]|

\}/

®© Stuart Russell

31

(Arc consistency

This form of propagation makes each arc consistent

X — Y is consistent iff
for every value = of X there is some allowed y

S Sl S

WA NT Q NSW \' SA T
1 e mEnE| E[EEH]|
@© Stuart Russell 30
(Arc consistency |
This form of propagation makes each arc consistent
X — Y is consistent iff
for every value = of X there is some allowed y
Ho—4-o—4-%
WA NT Q NSW v sA T
1 (1S o ¢l E[EEH]|

\«

If X loses a value, neighbors of X need to be rechecked

@© Stuart Russell

32

[Arc consistency |

This form of propagation makes each arc consistent

X — Y is consistent iff
for every value 2 of X there is some allowed 7

SR Seia o=

WA NT Q NSW v SA T

—1 (1T o_aEl 1l) (IR 1

S — —

If X loses a value, neighbors of X need to be rechecked

Arc consistency detects failure earlier than forward checking

Can be run as a preprocessor or after each assignment

© Stuart Russell Chapter 6 33

|| Path consistency ||

Imagine coloring Australia, but only with two colors.

Arc consistency is not helpful in detecting problems, as every variable already
is arc consistent.

A two-variable set {X;, X} is path-consistent with a third variable X, if,
for every assignment { X, = a, X; = b}
consistent with the constraints on {X;, X},
there is an assignment to X,
that satisfies the constraints on {X;, X,,} and {X,,, X,}.

Example: consider {I1VA, SA} path consistent wrt N'7" (in 2-coloring).
Path consistency checking algorithm PA-2, by Mackworth, resembles AC-3.

k-consistency is a generalization of arc and path consistency.

© Stuart Russell Chapter 6 33

(Arc consistency algorithm

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables {X;, X5, ..., X,}
local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
(Xi, X;) < REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUES(X;, X;) then
for each X;. in NEIGHBORS[X;] do
add (X, X)) to queue

function REMOVE-INCONSISTENT-VALUES(X;, X;) returns true iff succeeds
removed < false
for each z in DOMAIN[X,] do
if no value y in DOMAIN[X]] allows (z,9) to satisfy the constraint X; < X;
then delete © from DOMAIN[X]; removed 4 true
return removed

O(n*d?), can be reduced to O(n’d?) (but detecting all is NP-hard)

© Stuart Russell Chapter 6

34

l Global constraints

Involve an arbitrary number of variables, but not necessarily all.

¢ alldiff
& atmost, e.g. atmost(10, X1, Xo, X3, X4)
O diff2, e.g. diff2([[x1, y1, dzy, dyi), [, Yo, dg, dys)], - .)

¢ cumulative (scheduling),

¢ bounds propagation and bounds consistency
Instead of {vy, v, ,...,v,} we deal with [v;..0,].

© Stuart Russell Chapter 6

36

(Backtracking search with inference

function BACKTRACKING-SEARCH(csp) returns solution/failure
return BACKTRACK({ }, csp)

function BACKTRACK(assignment, csp) returns solution/failure
if assignment is complete then return assignment
var < SELECT-UNASSIGNED- VARIABLE(VARIABLES[csp], assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if walue is consistent with assignment given CONSTRAINTS[csp] then
add {var = value} to assignment
inferences < INFERENCE(csp, var,value)
if inferences # failure then
add inferences to assignment
result < BACKTRACK (assignment, csp)
if result # failure then return result
remove {var = value} from assignment
return failure

© Stuart Russell Chapter 6

(Sudoku

Variables: v[i,j] :: {1..9} 4 1]6

®© Stuart Russell Chapter 6

39

l Sudoku

Constraints programming has finally 4
reached the masses, 5 o
thousands of newspaper readers are 7

solving their daily constraint problem
(Helmut Simonis, Imperial College)

© Stuart Russell

Chapter 6 38

(Sudoku

Variables: v[i,j] :: {1..9} 6 5

Constraints:
// Rows

vi1,1] 1= v[1,21,... 4

// Columns 5 9

v[1,1] !'= v[2,1], ... 7

// Squares

v[1,1] !'= v[2,2],...

@© Stuart Russell

Chapter 6 40

Sudoku

First row, simple consistency check:
2

6
{1, 8..9}

3

{4..5, 7..9}
{5, 7, 9}
{1, 5, 8..9}
{5, 8..9}
{5, 8..9}

Note rows 3, 7, 8, 9!

© Stuart Russell

Sudoku

In MiniZinc:

include "globals.mzn";
array [1..9,1..9] of var 1..9: v;

predicate row_diff (int: r) =

all_different ([v[r,c] | c in 1..91);
predicate col diff (int: c) =

all_different ([v[r,c] | r in 1..91);
predicate subgrid diff(int: r, int: ¢) =

all_different ([v[r+i,c+j] | i,j in 0..21);

constraint forall (r in 1..9) (row_diff(r));
constraint forall (c in 1..9) (col_diff(c));
constraint forall (r,c in {1,4,7}) (subgrid diff(r,c));

© Stuart Russell

l Sudoku |

First row, more advanced consistency
check:

2

6

{1, 8..9}

3

4

7

{1, 5, 8..9}
{5, 8..9%}
{5, 8..9%}
alldistinct

© Stuart Russell

N[
]

l Problem structure |

e

%

EE—®

)
©

Tasmania and mainland are independent subproblems

Identifiable as connected components of constraint graph

Stuart Russell

l Problem structure contd. |

Suppose each subproblem has ¢ variables out of 7 total
Worst-case solution cost is 72/c - d°, linear in n

E.g., n=80,d=2,c=20
2% = 4 billion years at 10 million nodes/sec
|- 2?0 = 0.4 seconds at 10 million nodes/sec

© Stuart Russell Chapter 6 45

(Algorithm for tree-structured CSPs |

1. Choose a variable as root, order variables from root to leaves
such that every node’s parent precedes it in the ordering

(&) ()
(B—0]__ AHBKOAEE)
© ®

2. For j from n down to 2, apply REMOVEINCONSISTENT(Parent(X;), X;)

3. For j from 1 to n, assign X; consistently with Parent(X;)

© Stuart Russell Chapter 6 47

l Tree-structured CSPs |

Theorem: if the constraint graph has no loops, the CSP can be solved in
O(nd?) time

Compare to general CSPs, where worst-case time is O(d")

This property also applies to logical and probabilistic reasoning:
an important example of the relation between syntactic restrictions
and the complexity of reasoning.

© Stuart Russell Chapter 6 46

(Nearly tree-structured CSPs |

Conditioning: instantiate a variable, prune its neighbors’ domains
D —m O—@
el e
O O

Cutset conditioning: instantiate (in all ways) a set of variables
such that the remaining constraint graph is a tree

Cutset size ¢ = runtime O(d" - (n — ¢)d?), very fast for small ¢

© Stuart Russell Chapter 6 48

| Local Search, or Iterative algorithms for CSPs |

Hill-climbing, simulated annealing typically work with
“complete” states, i.e., all variables assigned

To apply to CSPs:
allow states with unsatisfied constraints
operators reassign variable values

Variable selection: randomly select any conflicted variable

Value selection by min-conflicts heuristic:
choose value that violates the fewest constraints

i.e., hillclimb with /(n) = total number of violated constraints

© Stuart Russell

Chapter 6

19

l Performance of min-conflicts

Given random initial state, can solve n-queens in almost constant time for

arbitrary 7 with high probability (e.g., » = 10,000,000)

The same appears to be true for any randomly-generated CSP

except in a narrow range of the ratio

number of constraints

number of variables

CPU
time

T
critical
ratio

© Stuart Russell

Chapter 6

51

(Example: 4-Queens

States: 4 queens in 4 columns (4% = 256 states)
Operators: move queen in column
Goal test: no attacks

Evaluation: /A(n) = number of attacks

g

h=2 h=0

© Stuart Russell

Chapter 6

(Summary

CSPs are a special kind of problem:
states defined by values of a fixed set of variables
goal test defined by constraints on variable values

Backtracking = depth-first search with one variable assigned per node

Variable ordering and value selection heuristics help significantly

Constraint propagation (e.g., arc consistency) does additional work

to constrain values and detect inconsistencies

The CSP representation allows analysis of problem structure

Tree-structured CSPs can be solved in linear time

Iterative min-conflicts is usually effective in practice

But: in the worst case search will be exponentially complex anyway!

© Stuart Russell

Chapter 6

52

(Programming Assignment la |

¢ Learn how to use MINIZINC (and maybe JACOP).
MINIZINC — FLATZINC
FrarZinc — JACOP.

¢ Practice with sudoku and “send more money”.
¢ Maybe wait two weeks for the logic lecture.

¢ Solve a couple of slightly more interesting problems. Note that focus is
actually on modelling, not on just getting the solutions.

¢ Attempt to try to solve a complex problem.
http://www. jacop.eu, http://jacop.cs.lth.se
http://www.gl2.csse.unimelb.edu.au/minizinc/

/usr/local/cs/EDANO1/ on login.student.lth.se

© Jacek Malec Chapter 6 53

Thank you

Questions?

© Stuart Russell

Chapter 6

