NON-CLASSICAL SEARCH ALGORITHMS
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( Iterative improvement algorithms

In many optimization problems, path is irrelevant;
the goal state itself is the solution

Then state space = set of “complete” configurations;
find optimal configuration, e.g., TSP
or, find configuration satisfying constraints, e.g., timetable

In such cases, can use iterative improvement algorithms;
keep a single “current” state, try to improve it

Constant space, suitable for online as well as offline search
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( Example: n-queens

Put 7 queens on an 7 % n board with no two queens on the same
row, column, or diagonal

Move a queen to reduce number of conflicts

h=5 h=2

Almost always solves 7.-queens problems almost instantaneously
for very large 1, e.g., n= lmillion
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Hill-climbing

Simulated annealing (briefly)

Genetic algorithms (briefly)

Local search in continuous spaces (briefly)

(NEW!) Searching with nondeterministic actions (briefly)

(NEW!) Searching with partial observations (briefly)
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(NEW!) Online search and unknown environments (briefly)
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[ Example: Travelling Salesperson Problem |

Start with any complete tour, perform pairwise exchanges

Variants of this approach get within 1% of optimal very quickly with thou-
sands of cities
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[ Hill-climbing (or gradient ascent/descent) |

“Like climbing Everest in thick fog with amnesia”

function HiLL-CLIMBING( problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node
neighbor, a node

current < MAKE-NODE(INITIAL-STATE[problem])
loop do
ighbor <~ a highest-valued successor of current
if VALUE[neighbor] < VALUE[current] then return STATE[current]
current < neighbor
end
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( Hill-climbing contd. |

Useful to consider state space landscape

objective function lobal maximum

shoulder
local maximum
"flat" local maximum

current space

state
Random-restart hill climbing overcomes local maxima—trivially complete

Random sideways moves (©)escape from shoulders loop on flat maxima
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( Properties of simulated annealing I

At fixed “temperature” 7', state occupation probability reaches
Boltzman distribution

plr) = ae™

T decreased slowly enough == always reach best state z*
E(z*) , E E(z*)-E(
because ¢ 11 e 1 = ¢ 7 > 1 for small 7"

Is this necessarily an interesting guarantee??

Devised by Metropolis et al., 1953, for physical process modelling

Widely used in VLSI layout, airline scheduling, etc.
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( Genetic algorithms |

= stochastic local beam search + generate successors from pairs of states

[ 24748552 [32752411 [32748552 || 3274852 |

[ 32752411 [ 24748552 [ 24752411}~ 24752411]

[ 24415124 %' 32752411 [32752124] 32pk2124]

[32543213] 11 1% ~[ 24415124 [ 24415811 || 24415417
Fitness Selection  Pairs Cross-Over
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( Simulated annealing

Idea: escape local maxima by allowing some “bad” moves
but gradually decrease their size and frequency

function SIMULATED- ANNEALING( problem, schedule) returns a solution state
inputs: problem, a problem
schedule, a mapping from time to “temperature”
local variables: current, a node
net, a node
T, a “temperature” controlling prob. of downward steps
current < MAKE-NODE(INITIAL-STATE[problem])
for 1+ 1 to oc do
T« schedule[i]
if 7= 0 then return current
next < a randomly selected successor of current
AE ¢+ VALUE[nezl] - VALUE[current]
if AE > 0 then current < next
else current < next only with probability ¢*F/T
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I Local beam search

Idea: keep k states instead of 1; choose top k of all their successors

Not the same as k searches run in parallel!
Searches that find good states recruit other searches to join them

Problem: quite often, all k states end up on same local hill
Idea: choose k successors randomly, biased towards good ones

Observe the close analogy to natural selection!
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[ Genetic algorithms contd.

GAs require states encoded as strings (GPs use programs)

Crossover helps iff substrings are meaningful components

GAs = evolution: e.g., real genes encode replication machinery!
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( Continuous state spaces | [ Searching with nondeterministic actions |

R

Suppose we want to site three airports in Romania: L ‘,f w | | ‘ﬁ R
— 6-D state space defined by (1, v5), (22, y2), ([ - S

— objective function [(z1,ys, 70, Yo, 73, y3) = - :
sum of squared distances from each city to nearest airport L= A \r =B A \n
(Pl [T B0 (& [ =D
() s 5 (@)

Discretization methods turn continuous space into discrete space, s s

e.g., empirical gradient considers - change in each coordinate R
L= = )r

Gradient methods compute

Erratic vacuum world: modified Suck;

to increase/reduce [, e.g., by x < x +aV f(x)
Slippery vacuum world: modified Right and Left.

Sometimes can solve for V f(x) = () exactly (e.g., with one city).
Newton—Raphson (1664, 1690) iterates x < x — H ' (x)V f(x)
to solve V [(x) = 0, where H;; = 9°f /0z,0z;
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( Searching with nondeterministic actions | [ Searching with nondeterministic actions ||
And-or search trees And-or search trees
For the erratic case: For the slippery case:
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( Searching with nondeterministic actions | [ Searching with partial observations

. no-information case:
function AND-OR-GRAPH-SEARCH(problem) returns a cond. plan, or failure ¢

OR-SEARCH(problem.INITIAL-STATE, problem,[]) sensorless problem, or
function OR-SEARCH(state, problem, path) returns a conditional plan or failure conformant problem
if problem.GOAL-TEST(stale) then return the empty plan
if state is on path then return failure {) state-space search is made in belief space
for each action in problem.ACTIONS(state) do
plan < AND-SEARCH(RESULTS(state,action), problem,[state | path]) { Problem solving: and-or search!

if plan # failure then return [action | plan]
return failure

function AND-SEARCH(states,problem,path) returns a conditional plan or failure
for each s, in stafes do
plan; +— OR-SEARCH(s;, problem, path)
if plan; = failure then return failure
return [if s; then plan, else if s, then plans else if ... plan, 1 else plan,, |
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( Searching with partial observations |

Deterministic case:
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( Searching with partial observations I

Planning for the local sensing case:
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[ Searching with partial observations

Local sensing, deterministic and slippery cases:
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[ Online search and unknown environments

Interleaving computations and actions:

{ act

{ observe the results

{ find out (compute) next action

Useful in dynamic domains.

Online search usually exploits locality of depth-first-like methods.
{ random walk

& modified hill-climbing

{ Learning Real-Time A* (LRTA*)

optimism under uncertainty
(unexplored areas assumed to lead to goal with least possible cost)
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