PLANNING AND ACTING

BY STUART RUSSELL

MODIFIED BY JACEK MALEC FOR LTH LECTURE

MARCH 14, 2012

CHAPTER 11

© Stuart Russell

Chapter 11

1

(Scheduling vs. planning

¢ Classical planning:
what to do
in what order

< but not:
how long
when
using what resources

{ Typical approach:
plan first
schedule later

Commonly used in real-world manufacturing and logistics

®© Stuart Russell

Chapter 11

3

l Outline

¢ Planning and scheduling
¢ Hierarchical planning

{ The real world

¢ Conditional planning

¢ Monitoring and replanning

© Stuart Russell

Chapter 11

(Representation

Job-shop scheduling problem

{ a set of jobs

{> each job is a collection of actions with some ordering constraints

{> each action has a duration and a set of resource constraints

resources may be consummable or reusable

¢ Solution:

start times for all actions, obeying all constraints

@© Stuart Russell

Chapter 11 4

| Example problem description (Fig. 11.1) |

Jobs((AddEnginel < AddWheelsl < Inspectl),
(AddEngine2 < AddWheels2 < Inspect?2))

Resources(EngineHoists(1), WheelStations(1), Inspectors(2), LugNuts(500))

Action(AddEnginel, DURATION: 30,
USE: EngineHoists(1))

Action(AddEngine2, DURATION: 60,
USE: EngineHoists(1))

Action(AddWheels1, DURATION: 30,
CONSUME: LugNuts(20), USE: WheelStations(1))

Action(AddWheels2, DURATION: 15,
CONSUME: LugNuts(20), USE: WheelStations(1))

Action(Inspect(i), DURATION: 10,
USE: Inspectors(1))

© Stuart Russell Chapter 11

(Hierarchical planning |

& The key concept: hierarchical decomposition
¢ Hierarchical task networks (HTN), hierarchical planning
¢ High-level actions (HLA) have refinements (might be recursive)

& HTN planning:

Plan < “Act”
repeat
pick an HLA
replace it with some refinement
check whether the Plan achieves the goal
if yes, return the Plan

© Stuart Russell Chapter 11

l Solution |

¢ may require optimisation of some complex utility/cost function
¢ simplest cases assume minimal-time criterion (makespan problem)

¢ method: identification of the critical path (CPM)
earliest times: forward sweep
latest times: backward sweep

¢ the pure temporal ordering may be solved in polynomial time (Fig. 11.2)

¢ a schedule involving resource constraints, i.e. disjunctive description, is
NP-hard to find (Fig. 11.3)

¢ for complex scheduling problems it may be better to reconsider actions
and constraints (thus interleaving planning with scheduling) — might lead
to simpler scheduling problems

© Stuart Russell Chapter 11 6

(HTN planning: issues |

¢ Finding good refinements
requires knowledge
usually domain-dependent knowledge is involved

¢ Learning successful refinements

¢ Approximating action descriptions
so that reachability needs not to be done
only on primitive action level

© Stuart Russell Chapter 11

l The real world |

On(x) ~Flat(x)

START FINISH
~Flat(Spare) Intact(Spare) Off(Spare)
On(Tire1) Flat(Tire1)
On(x) Off(x) ClearHub Intact(x) Flat(x)
Remove(x) Puton(x) Inflate(x)
Off(x) ClearHub On(x) ~ClearHub ~Flat(x)
© Stuart Russell Chapter 11 9
(Solutions |

Conformant or sensorless planning
Devise a plan that works regardless of state or outcome
Such plans may not exist

Conditional planning

Plan to obtain information (observation actions)

Subplan for each contingency, e.g.,

[Check(Tirel),

if Intact(Tirel) then Inflate(Tirel) else Call M otormaennens]
Expensive because it plans for many unlikely cases

Monitoring/Replanning

Assume normal states, outcomes

Check progress during execution, replan if necessary
Unanticipated outcomes may lead to failure (e.g., no M membership)

(Really need a combination; plan for likely/serious eventualities,
deal with others when they arise, as they must eventually)

© Stuart Russell Chapter 11 11

(Things go wrong

Incomplete information

Unknown preconditions, e.g., Intact(Spare)?
Disjunctive effects, e.g., Inflate(x) causes

Inflated(x) V SlowHiss(x) V Burst(z) V BrokenPump V . ..

Incorrect information

Current state incorrect, e.g., spare NOT intact
Missing/incorrect postconditions in operators

Qualification problem:

can never finish listing all the required preconditions and

possible conditional outcomes of actions

© Stuart Russell

Chapter 11

(Conformant planning

Search in space of belief states (sets of possible actual states)

i i H
=n| EO~"] 3
m =

=

Also called sensorless planning

@© Stuart Russell

Chapter 11

(Conditional planning |

If the world is nondeterministic or partially observable
then percepts usually provide information,
i.e., split up the belief state

ACTION PERCEPT

© Stuart Russell Chapter 11 13

(Example |

Double Murphy: sucking or arriving may dirty a clean square

© Stuart Russell Chapter 11 15

(Conditional planning contd.

Conditional plans check (any consequence of KB +) percept
[...,if C then Plany else Plang, ..]

Execution: check C' against current KB, execute “then” or “else”
Need some plan for every possible percept

(Cf. game playing: some response for every opponent move)
(Cf. backward chaining: some rule such that every premise satisfied

AND-OR tree search (very similar to backward chaining algorithm)

© Stuart Russell Chapter 11

(Example

Triple Murphy: also sometimes stays put instead of moving

[Ly: Left,if AtR then L, else [if CleanL then [] else Suck]|
or [while AtR do [Left],if CleanL then [] else Suck]

“Infinite loop” but will eventually work unless action always fails

© Stuart Russell Chapter 11

16

I Execution Monitoring |

“Failure” = preconditions of remaining plan not met

Preconditions of remaining plan

= all preconditions of remaining steps not achieved by remaining steps
= all causal links crossing current time point

On failure, resume POP to achieve open conditions from current state

IPEM (Integrated Planning, Execution, and Monitoring):
keep updating Start to match current state
links from actions replaced by links from Start when done

Types of monitoring:
action monitoring (is it executable?)
plan monitoring (will the remaining plan succeed?)
goal monitoring (can | achieve it in some better way?)

© Stuart Russell Chapter 11 17

(Example |

At(Home)

AHHWS)

AtHWS)
Sells(HWS, Drill)
Sells(SM,Ban.)
Sells(SM,Milk)

Sells(HWS, Drill)

[

At(SM) Sells(SM,Milk) | At(SM) Selis(SM,Ban.)

’ Buy(Milk) ‘
\

’ Buy(Ban.) ‘

/
At(SM) f

Have(Milk) At(Home) Have(Ban.) Have(Drill)

®© Stuart Russell Chapter 11 19

(Example

At(Home)

AWHWS) Sells(HWS, Dril])

>

At(SM) Sells(SM,Ban.)

At(SM) Sells(SM,Milk)

’ Buy(Milk) ‘
\

’ Buy(Ban.) ‘

/
At(SM) ’

Have(Milk) At(Home) Have(Ban.) Have(Drill)

© Stuart Russell

At(Home)
Sells(HWS, Drill)
Sells(SM,Ban.)
Sells(SM,Milk)

Chapter 11

18

(Example

At(Home)

AHHWS) ~ Sells(HWS, Drill)

At(HWS)

[

At(SM) Sells(SM,Ban.)

At(SM) Sells(SM,Milk)

’ Buy(Milk) ‘
\

’ Buy(Ban.) ‘

/
At(SM) }

Have(Milk) At(Home) Have(Ban.) Have(Drill)

@© Stuart Russell

A(HWS)

Have(Drill)
Sells(SM,Ban.)

Sells(SM, Milk)

Chapter 11

20

(Example

At(Home)
Go(HWS)

AWHWS) Sells(HWS, Drill)

AlHWS)

P

Af(SM) Sells(SM, Milk)

At(SM) Sells(SM,Ban.)

Buy(Milk) ‘ ’ Buy(Ban.) ‘

At(SM)

Have(Milk) At(Home) Have(Ban.) Have(Drill)

© Stuart Russell

At(SM)
Have(Drill)
Sells(SM,Ban.)
Sells(SM,Milk)

Chapter 11 21

(Example

At(Home)

AUHWS) Sells(HWS, Drill)

Buy(Drill)

Al(HWS)
[)

At(SM) Sells(SM,Milk) | At(SM) Sells(SM,Ban.)

l Buy(Milk) ‘ l Buy(Ban.) ‘

At(SM)

Have(Milk) At(Home) Have(Ban.) Have(Drill)

© Stuart Russell

At(Home)
Have(Dirill)
Have(Ban.)
Have(Milk)

Chapter 11 23

(Example |

At(Home)

AH(HWS) ~ Sells(HWS, Dril)

Buy(Drill)

At(HWS)
[A

AI(SM) Sells(SM,Milk) | At(SM) Sells(SM,Ban.)

Buy(MlIk) ‘ ’ Buy(Ban.) ‘

T "X«sMT" """"" AtSM)
Go(Home) Have(Drill)
Have(Ban.)
Have(Milk)

Have(Milk) Al(Home) Have(Ban.) Have(Drill)

© Stuart Russell Chapter 11

(Emergent behavior |

PRECONDITIONS FAILURE RESPONSE
Color(Chair,Blue) | ~Have(Red)
Get(Red)
____‘_______ ~ Have(Red) Fetch more red
Have(!?ed)

Paint(Red

Colori hair,Red)

© Stuart Russell Chapter 11 24

(Emergent behavior

PRECONDITIONS

Color(Chair,Blue) | ~Have(Red)

Get(Red)

Have(!?ed)
Paint(Red)

Color(Chair,Red)
Colori hair,Red)

© Stuart Russell

FAILURE RESPONSE

Extra coat of paint

Chapter 11

(Multi-agent planning

resource sharing — coordination

negotiation

S S OO

plan synchronisation

@© Stuart Russell

cooperative vs. competitive agents, communication

Chapter 11

(Emergent behavior |

PRECONDITIONS FAILURE RESPONSE
Color(Chair,Blue) |~Have(Red)
Get(Red)
\
Have(Red)
Paint(Red)
Color(Chair,Red) Extra coat of paint

Colori hair, Red)

“Loop until success” behavior emerges from interaction between monitor /replan
agent design and uncooperative environment

© Stuart Russell Chapter 11 26

(Assignment 2b |

¢ Planning: PDDL 2.1

{> test simple cases with existing descriptions
¢ apply PDDL to Wumpus world

¢ Have fun!

© Stuart Russell Chapter 11 28

