
Reinforcement learning

Applied artificial intelligence (EDA132)
Lecture 13
2012-04-26
Elin A. Topp

Material based on course book, chapter 21 (17),
and on lecture “Belöningsbaserad inlärning / Reinforcement learning”
by Örjan Ekeberg, CSC/Nada, KTH, autumn term 2006 (in Swedish)

1
Friday, 27 April 2012

Outline
• Reinforcement learning (chapter 21, with some references to 17)

• Problem definition

• Learning situation

• Roll of the reward

• Simplified assumptions

• Central concepts and terms

• Known environment

• Bellman’s equation

• Approaches to solutions

• Unknown environment

• Monte-Carlo method

• Temporal-Difference learning

• Q-Learning

• Sarsa-Learning

• Improvements

• The usefulness of making mistakes

• Eligibility Trace

2
Friday, 27 April 2012

Outline
• Reinforcement learning (chapter 21, with some references to 17)

• Problem definition

• Learning situation

• Roll of the reward

• Simplified assumptions

• Central concepts and terms

• Known environment

• Bellman’s equation

• Approaches to solutions

• Unknown environment

• Monte-Carlo method

• Temporal-Difference learning

• Q-Learning

• Sarsa-Learning

• Improvements

• The usefulness of making mistakes

• Eligibility Trace

3
Friday, 27 April 2012

Reinforcement learning

Learning of a behaviour (a strategy, a skill) without access to a right / wrong
measure for actions and decisions taken.

4
Friday, 27 April 2012

Reinforcement learning

Learning of a behaviour (a strategy, a skill) without access to a right / wrong
measure for actions and decisions taken.

With the help of a reward, a measure is given, of how well things are going

4
Friday, 27 April 2012

Reinforcement learning

Learning of a behaviour (a strategy, a skill) without access to a right / wrong
measure for actions and decisions taken.

With the help of a reward, a measure is given, of how well things are going

Note: The reward is not given in direct connection with a good choice of action
(temporal credit assignment)

4
Friday, 27 April 2012

Reinforcement learning

Learning of a behaviour (a strategy, a skill) without access to a right / wrong
measure for actions and decisions taken.

With the help of a reward, a measure is given, of how well things are going

Note: The reward is not given in direct connection with a good choice of action
(temporal credit assignment)

Note: The reward does not tell what exactly it was, that made the “good” action
(structural credit assignment)

4
Friday, 27 April 2012

Real life examples

5
Friday, 27 April 2012

Real life examples

5

Riding a bicycle

Powder skiing

Friday, 27 April 2012

Learning situation: A model
An agent interacts with its environment

The agent performs actions

Actions have influence on the environment’s state

The agent observes the environment’s state and
receives a reward from the environment

6

Agent Environment
Action a

State s

Reward r

Friday, 27 April 2012

Learning situation: The agent’s task
The task:

Find a behaviour (action sequence) that maximises the overall reward

How long into the future should we spy?

Finite time horizon:

max E[∑ rt]

Infinite time horizon:

max E[∑ γt rt]

with γ being a discount factor for future rewards (0 < γ < 1)

7

h

t=0

∞
t=0

Friday, 27 April 2012

The reward function’s roll

The reward function depends on the type of task

8
Friday, 27 April 2012

The reward function’s roll

The reward function depends on the type of task

• Game (Chess, Backgammon): Reward is given only in the end of the game, +1 for
“win”, -1 for “loose”

8
Friday, 27 April 2012

The reward function’s roll

The reward function depends on the type of task

• Game (Chess, Backgammon): Reward is given only in the end of the game, +1 for
“win”, -1 for “loose”

• Avoid mistakes (Riding a bike, Learning to fly according to hitchhiker’s guide):
Reward -1 when failing (falling)

8
Friday, 27 April 2012

The reward function’s roll

The reward function depends on the type of task

• Game (Chess, Backgammon): Reward is given only in the end of the game, +1 for
“win”, -1 for “loose”

• Avoid mistakes (Riding a bike, Learning to fly according to hitchhiker’s guide):
Reward -1 when failing (falling)

• Find the shortest / cheapest / fastest path to a goal: Reward -1 for each step

8
Friday, 27 April 2012

A classic example: Grid World

Simplified “Wumpus world” with just two gold pieces

9

G

G

Friday, 27 April 2012

A classic example: Grid World

Simplified “Wumpus world” with just two gold pieces

• Every state sj is represented by a field in the grid

9

G

G

Friday, 27 April 2012

A classic example: Grid World

Simplified “Wumpus world” with just two gold pieces

• Every state sj is represented by a field in the grid

• Action a the agent can choose consists of moving one step to a neighbouring field

9

G

G

Friday, 27 April 2012

A classic example: Grid World

Simplified “Wumpus world” with just two gold pieces

• Every state sj is represented by a field in the grid

• Action a the agent can choose consists of moving one step to a neighbouring field

• Reward: -1 in every step until one of the goals (G) is reached.

9

G

G

Friday, 27 April 2012

Simplifying assumptions

10
Friday, 27 April 2012

Simplifying assumptions

We assume for now:

10
Friday, 27 April 2012

Simplifying assumptions

We assume for now:

• Discrete time (steps over time)

10
Friday, 27 April 2012

Simplifying assumptions

We assume for now:

• Discrete time (steps over time)

• Finite number of possible actions ai

ai ∈ a1, a2, a3, ... , an

10
Friday, 27 April 2012

Simplifying assumptions

We assume for now:

• Discrete time (steps over time)

• Finite number of possible actions ai

ai ∈ a1, a2, a3, ... , an

• Finite number of states sj

sj ∈ s1, s2, s3, ... , sm

10
Friday, 27 April 2012

Simplifying assumptions

We assume for now:

• Discrete time (steps over time)

• Finite number of possible actions ai

ai ∈ a1, a2, a3, ... , an

• Finite number of states sj

sj ∈ s1, s2, s3, ... , sm

• The context is a constant MDP (Markov Decision Process), where reward and new
state s’ only depend on s, a, and (random) noise

10
Friday, 27 April 2012

Simplifying assumptions

We assume for now:

• Discrete time (steps over time)

• Finite number of possible actions ai

ai ∈ a1, a2, a3, ... , an

• Finite number of states sj

sj ∈ s1, s2, s3, ... , sm

• The context is a constant MDP (Markov Decision Process), where reward and new
state s’ only depend on s, a, and (random) noise

• Environment is observable

10
Friday, 27 April 2012

The agent’s internal representation

11
Friday, 27 April 2012

The agent’s internal representation

• An agent’s policy π is the “rule” after which the agent chooses its action a in a
given state s

π(s) ⟼ a

11
Friday, 27 April 2012

The agent’s internal representation

• An agent’s policy π is the “rule” after which the agent chooses its action a in a
given state s

π(s) ⟼ a

• An agent’s utility function U describes the expected future reward given s, when
following policy π

Uπ(s) ⟼ ℜ

11
Friday, 27 April 2012

Grid World: A state’s value

A state’s value depends on the chosen policy

12
Friday, 27 April 2012

Grid World: A state’s value

A state’s value depends on the chosen policy

12

0 -1 -2 -3

-1 -2 -3 -2

-2 -3 -2 -1

-3 -2 -1 0

U with optimal policy

Friday, 27 April 2012

Grid World: A state’s value

A state’s value depends on the chosen policy

12

0 -1 -2 -3

-1 -2 -3 -2

-2 -3 -2 -1

-3 -2 -1 0

U with optimal policy

0 -14 -20 -22

-14 -18 -22 -20

-20 -22 -18 -14

-22 -20 -14 0

U with random policy

Friday, 27 April 2012

A 4x3 world

• Fixed policy - passive learning.

13
Friday, 27 April 2012

A 4x3 world

• Fixed policy - passive learning.

• Always start in state (1,1).

13
Friday, 27 April 2012

A 4x3 world

• Fixed policy - passive learning.

• Always start in state (1,1).

• Do trials, observe, until terminal state is reached, update utilities

13
Friday, 27 April 2012

A 4x3 world

• Fixed policy - passive learning.

• Always start in state (1,1).

• Do trials, observe, until terminal state is reached, update utilities

• Eventually, agent learns how good the policy is - it can evaluate the policy and test
different ones

13
Friday, 27 April 2012

A 4x3 world

• Fixed policy - passive learning.

• Always start in state (1,1).

• Do trials, observe, until terminal state is reached, update utilities

• Eventually, agent learns how good the policy is - it can evaluate the policy and test
different ones

• Policy as described in the left grid is optimal with rewards of -0.04 for all
reachable, nonterminal states, and without discounting.

13
Friday, 27 April 2012

A 4x3 world

• Fixed policy - passive learning.

• Always start in state (1,1).

• Do trials, observe, until terminal state is reached, update utilities

• Eventually, agent learns how good the policy is - it can evaluate the policy and test
different ones

• Policy as described in the left grid is optimal with rewards of -0.04 for all
reachable, nonterminal states, and without discounting.

13

R R R +1

U U -1

U L L L

Friday, 27 April 2012

A 4x3 world

• Fixed policy - passive learning.

• Always start in state (1,1).

• Do trials, observe, until terminal state is reached, update utilities

• Eventually, agent learns how good the policy is - it can evaluate the policy and test
different ones

• Policy as described in the left grid is optimal with rewards of -0.04 for all
reachable, nonterminal states, and without discounting.

13

R R R +1

U U -1

U L L L

0.812 0.868 0.918 +1

0.762 0.660 -1

0.705 0.655 0.611 0.388

Friday, 27 April 2012

Outline
• Reinforcement learning (chapter 21, with some references to 17)

• Problem definition

• Learning situation

• Roll of the reward

• Simplified assumptions

• Central concepts and terms

• Known (observable) environment

• Bellman’s equation

• Approaches to solutions

• Unknown environment

• Monte-Carlo method

• Temporal-Difference learning

• Q-Learning

• Sarsa-Learning

• Improvements

• The usefulness of making mistakes

• Eligibility Trace

14
Friday, 27 April 2012

Environment model

15
Friday, 27 April 2012

Environment model

•Where do we get in each step?

δ(s, a) ⟼ s’

15
Friday, 27 April 2012

Environment model

•Where do we get in each step?

δ(s, a) ⟼ s’

•What will the reward be?

r(s, a) ⟼ ℜ

15
Friday, 27 April 2012

Environment model

•Where do we get in each step?

δ(s, a) ⟼ s’

•What will the reward be?

r(s, a) ⟼ ℜ

15
Friday, 27 April 2012

Environment model

•Where do we get in each step?

δ(s, a) ⟼ s’

•What will the reward be?

r(s, a) ⟼ ℜ

The utility values of different states obey Bellman’s equation, given a fixed policy π:

Uπ(s) = r(s, π(s)) + γ·Uπ(δ(s, π(s)))

15
Friday, 27 April 2012

Solving the equation

16
Friday, 27 April 2012

Solving the equation

There are two ways of solving Bellman’s equation

Uπ(s) = r(s, π(s)) + γ·Uπ(δ(s, π(s)))

16
Friday, 27 April 2012

Solving the equation

There are two ways of solving Bellman’s equation

Uπ(s) = r(s, π(s)) + γ·Uπ(δ(s, π(s)))

• Directly: Uπ(s) = r(s, π(s)) + γ·∑s’ P(s’ | s, π(s)) Uπ(s’)

16
Friday, 27 April 2012

Recap: Random policy

17

0 -14 -20 -22

-14 -18 -22 -20

-20 -22 -18 -14

-22 -20 -14 0

Uπ(s) = r(s, π(s)) + γ·∑s’ P(s’ | s, π(s)) Uπ(s’)

Friday, 27 April 2012

Solving the equation

There are two ways of solving (this “optimal” version of) Bellman’s equation

Uπ(s) = r(s, π(s)) + γ·Uπ(δ(s, π(s)))

• Directly: Uπ(s) = r(s, π(s)) + γ·∑s’ P(s’ | s, π(s)) Uπ(s’)

• Iteratively (Value / utility iteration), stop when equilibrium is reached, i.e., “nothing
happens”

U (s) ⟵ r(s, π(s)) + γ·U (δ(s, π(s)))

18

π
k+1

π
k

Friday, 27 April 2012

Bayesian reinforcement learning

19
Friday, 27 April 2012

Bayesian reinforcement learning

A remark:

19
Friday, 27 April 2012

Bayesian reinforcement learning

A remark:

One form of reinforcement learning integrates Bayesian learning into the process to
obtain the transition model, i.e., P(s’ | s, π(s))

19
Friday, 27 April 2012

Bayesian reinforcement learning

A remark:

One form of reinforcement learning integrates Bayesian learning into the process to
obtain the transition model, i.e., P(s’ | s, π(s))

This means to assume a prior probability for each hypothesis on how the model
might look like and then applying Bayes’ rule to obtain the posterior.

19
Friday, 27 April 2012

Bayesian reinforcement learning

A remark:

One form of reinforcement learning integrates Bayesian learning into the process to
obtain the transition model, i.e., P(s’ | s, π(s))

This means to assume a prior probability for each hypothesis on how the model
might look like and then applying Bayes’ rule to obtain the posterior.

We are not going into details here!

19
Friday, 27 April 2012

Finding optimal policy and value function

20
Friday, 27 April 2012

Finding optimal policy and value function

How can we find an optimal policy π*?

20
Friday, 27 April 2012

Finding optimal policy and value function

How can we find an optimal policy π*?

That would be easy if we had the optimal value / utility function U*:

π*(s) = argmax(r(s, a) + γ·U*(δ(s, a)))
 a

20
Friday, 27 April 2012

Finding optimal policy and value function

How can we find an optimal policy π*?

That would be easy if we had the optimal value / utility function U*:

π*(s) = argmax(r(s, a) + γ·U*(δ(s, a)))
 a

Apply to the “optimal version” of Bellman’s equation

U*(s) = max(r(s, a) + γ·U*(δ(s, a)))
 a

20
Friday, 27 April 2012

Finding optimal policy and value function

How can we find an optimal policy π*?

That would be easy if we had the optimal value / utility function U*:

π*(s) = argmax(r(s, a) + γ·U*(δ(s, a)))
 a

Apply to the “optimal version” of Bellman’s equation

U*(s) = max(r(s, a) + γ·U*(δ(s, a)))
 a

Tricky to solve ... but possible:

Combine policy and value iteration by switching in each iteration step

20
Friday, 27 April 2012

Policy iteration

21
Friday, 27 April 2012

Policy iteration

Policy iteration provides exactly this switch.

21
Friday, 27 April 2012

Policy iteration

Policy iteration provides exactly this switch.

For each iteration step k:

πk(s) = argmax(r(s, a) + γ·Uk(δ(s, a)))
 a

Uk+1(s) = r(s, πk(s)) + γ·Uk(δ(s, πk(s)))

21
Friday, 27 April 2012

Outline
• Reinforcement learning (chapter 21, with some references to 17)

• Problem definition

• Learning situation

• Roll of the reward

• Simplified assumptions

• Central concepts and terms

• Known environment

• Bellman’s equation

• Approaches to solutions

• Unknown environment

• Monte-Carlo method

• Temporal-Difference learning

• Q-Learning

• Sarsa-Learning

• Improvements

• The usefulness of making mistakes

• Eligibility Trace

22
Friday, 27 April 2012

Monte Carlo approach

23
Friday, 27 April 2012

Monte Carlo approach
Usually the reward r(s, a) and the state transition function δ(s, a) are unknown to
the learning agent.

23
Friday, 27 April 2012

Monte Carlo approach
Usually the reward r(s, a) and the state transition function δ(s, a) are unknown to
the learning agent.

(What does that mean for learning to ride a bike?)

23
Friday, 27 April 2012

Monte Carlo approach
Usually the reward r(s, a) and the state transition function δ(s, a) are unknown to
the learning agent.

(What does that mean for learning to ride a bike?)

23
Friday, 27 April 2012

Monte Carlo approach
Usually the reward r(s, a) and the state transition function δ(s, a) are unknown to
the learning agent.

(What does that mean for learning to ride a bike?)

Still, we can estimate U* from experience, as a Monte Carlo approach will do:

• Start with a randomly chosen s

• Follow a policy π, store rewards and st for the step at time t

•When the goal is reached, update the Uπ(s) estimate for all visited states
st with the future reward that was given when reaching the goal

• Start over with a randomly chosen s ...

23
Friday, 27 April 2012

Monte Carlo approach
Usually the reward r(s, a) and the state transition function δ(s, a) are unknown to
the learning agent.

(What does that mean for learning to ride a bike?)

Still, we can estimate U* from experience, as a Monte Carlo approach will do:

• Start with a randomly chosen s

• Follow a policy π, store rewards and st for the step at time t

•When the goal is reached, update the Uπ(s) estimate for all visited states
st with the future reward that was given when reaching the goal

• Start over with a randomly chosen s ...

Converges slowly...

23
Friday, 27 April 2012

Temporal Difference learning

24
Friday, 27 April 2012

Temporal Difference learning

Temporal Difference learning ...

24
Friday, 27 April 2012

Temporal Difference learning

Temporal Difference learning ...

... uses the fact that there are two estimates for the value of a state:

24
Friday, 27 April 2012

Temporal Difference learning

Temporal Difference learning ...

... uses the fact that there are two estimates for the value of a state:

before and after visiting the state

24
Friday, 27 April 2012

Temporal Difference learning

Temporal Difference learning ...

... uses the fact that there are two estimates for the value of a state:

before and after visiting the state

24
Friday, 27 April 2012

Temporal Difference learning

Temporal Difference learning ...

... uses the fact that there are two estimates for the value of a state:

before and after visiting the state

24
Friday, 27 April 2012

Temporal Difference learning

Temporal Difference learning ...

... uses the fact that there are two estimates for the value of a state:

before and after visiting the state

Or: What the agent believes before acting

Uπ(st)

24
Friday, 27 April 2012

Temporal Difference learning

Temporal Difference learning ...

... uses the fact that there are two estimates for the value of a state:

before and after visiting the state

Or: What the agent believes before acting

Uπ(st)

and after acting

rt+1 + γ · Uπ(st+1)

24
Friday, 27 April 2012

Applying the estimates

25
Friday, 27 April 2012

Applying the estimates
The second estimate in the Temporal Difference learning approach is obviously
“better”, ...

25
Friday, 27 April 2012

Applying the estimates
The second estimate in the Temporal Difference learning approach is obviously
“better”, ...

... hence, we update the overall approximation of a state’s value towards the more
accurate estimate

25
Friday, 27 April 2012

Applying the estimates
The second estimate in the Temporal Difference learning approach is obviously
“better”, ...

... hence, we update the overall approximation of a state’s value towards the more
accurate estimate

Uπ(st) ⟵ Uπ(st) + α[rt+1 + γ·Uπ (st+1) - Uπ(st)]

25
Friday, 27 April 2012

Applying the estimates
The second estimate in the Temporal Difference learning approach is obviously
“better”, ...

... hence, we update the overall approximation of a state’s value towards the more
accurate estimate

Uπ(st) ⟵ Uπ(st) + α[rt+1 + γ·Uπ (st+1) - Uπ(st)]

Which gives us a measure of the “surprise” or “disappointment” for the outcome of
an action.

25
Friday, 27 April 2012

Applying the estimates
The second estimate in the Temporal Difference learning approach is obviously
“better”, ...

... hence, we update the overall approximation of a state’s value towards the more
accurate estimate

Uπ(st) ⟵ Uπ(st) + α[rt+1 + γ·Uπ (st+1) - Uπ(st)]

Which gives us a measure of the “surprise” or “disappointment” for the outcome of
an action.

Converges significantly faster than the pure Monte Carlo approach.

25
Friday, 27 April 2012

Q-learning

26
Friday, 27 April 2012

Q-learning
Problem:

26
Friday, 27 April 2012

Q-learning
Problem:

even if U is appropriately estimated, it is not possible to compute π, as the agent
has no knowledge about δ and r, i.e., it needs to learn also that.

26
Friday, 27 April 2012

Q-learning
Problem:

even if U is appropriately estimated, it is not possible to compute π, as the agent
has no knowledge about δ and r, i.e., it needs to learn also that.

Solution (trick): Estimate Q(s, a) instead of U(s):

26
Friday, 27 April 2012

Q-learning
Problem:

even if U is appropriately estimated, it is not possible to compute π, as the agent
has no knowledge about δ and r, i.e., it needs to learn also that.

Solution (trick): Estimate Q(s, a) instead of U(s):

Q(s, a): Expected total reward when choosing a in s

26
Friday, 27 April 2012

Q-learning
Problem:

even if U is appropriately estimated, it is not possible to compute π, as the agent
has no knowledge about δ and r, i.e., it needs to learn also that.

Solution (trick): Estimate Q(s, a) instead of U(s):

Q(s, a): Expected total reward when choosing a in s

π(s) = argmax Q(s, a)

26
Friday, 27 April 2012

Q-learning
Problem:

even if U is appropriately estimated, it is not possible to compute π, as the agent
has no knowledge about δ and r, i.e., it needs to learn also that.

Solution (trick): Estimate Q(s, a) instead of U(s):

Q(s, a): Expected total reward when choosing a in s

π(s) = argmax Q(s, a)
a

26
Friday, 27 April 2012

Q-learning
Problem:

even if U is appropriately estimated, it is not possible to compute π, as the agent
has no knowledge about δ and r, i.e., it needs to learn also that.

Solution (trick): Estimate Q(s, a) instead of U(s):

Q(s, a): Expected total reward when choosing a in s

π(s) = argmax Q(s, a)
a

U*(s) = max Q*(s, a)

26
Friday, 27 April 2012

Q-learning
Problem:

even if U is appropriately estimated, it is not possible to compute π, as the agent
has no knowledge about δ and r, i.e., it needs to learn also that.

Solution (trick): Estimate Q(s, a) instead of U(s):

Q(s, a): Expected total reward when choosing a in s

π(s) = argmax Q(s, a)
a

U*(s) = max Q*(s, a)
 a

26
Friday, 27 April 2012

Q-learning
Problem:

even if U is appropriately estimated, it is not possible to compute π, as the agent
has no knowledge about δ and r, i.e., it needs to learn also that.

Solution (trick): Estimate Q(s, a) instead of U(s):

Q(s, a): Expected total reward when choosing a in s

π(s) = argmax Q(s, a)
a

U*(s) = max Q*(s, a)
 a

26
Friday, 27 April 2012

Learning Q

27
Friday, 27 April 2012

Learning Q
How can we learn Q?

27
Friday, 27 April 2012

Learning Q
How can we learn Q?

Also the Q-function can be learned using the Temporal Difference approach:

27
Friday, 27 April 2012

Learning Q
How can we learn Q?

Also the Q-function can be learned using the Temporal Difference approach:

Q(s, a) ⟵ Q(s, a) + α[r + γ max Q(s’, a’) - Q(s, a)]

27
Friday, 27 April 2012

Learning Q
How can we learn Q?

Also the Q-function can be learned using the Temporal Difference approach:

Q(s, a) ⟵ Q(s, a) + α[r + γ max Q(s’, a’) - Q(s, a)]
 a’

27
Friday, 27 April 2012

Learning Q
How can we learn Q?

Also the Q-function can be learned using the Temporal Difference approach:

Q(s, a) ⟵ Q(s, a) + α[r + γ max Q(s’, a’) - Q(s, a)]
 a’

With s’ being the next state that is reached when choosing action a’

27
Friday, 27 April 2012

Learning Q
How can we learn Q?

Also the Q-function can be learned using the Temporal Difference approach:

Q(s, a) ⟵ Q(s, a) + α[r + γ max Q(s’, a’) - Q(s, a)]
 a’

With s’ being the next state that is reached when choosing action a’

Again, a problem: the max operator requires obviously a search through all possible
actions that can be taken in the next step...

27
Friday, 27 April 2012

SARSA-learning

28
Friday, 27 April 2012

SARSA-learning

SARSA-learning works similar to Q-learning, but it is the currently active policy that
controls the actually taken action a’:

28
Friday, 27 April 2012

SARSA-learning

SARSA-learning works similar to Q-learning, but it is the currently active policy that
controls the actually taken action a’:

Q(s, a) ⟵ Q(s, a) + α[r + γ Q(s’, a’) - Q(s, a)]

28
Friday, 27 April 2012

SARSA-learning

SARSA-learning works similar to Q-learning, but it is the currently active policy that
controls the actually taken action a’:

Q(s, a) ⟵ Q(s, a) + α[r + γ Q(s’, a’) - Q(s, a)]

28
Friday, 27 April 2012

SARSA-learning

SARSA-learning works similar to Q-learning, but it is the currently active policy that
controls the actually taken action a’:

Q(s, a) ⟵ Q(s, a) + α[r + γ Q(s’, a’) - Q(s, a)]

Got its name from the “experience tuples” having the form

State-Action-Reward-State-Action

28
Friday, 27 April 2012

SARSA-learning

SARSA-learning works similar to Q-learning, but it is the currently active policy that
controls the actually taken action a’:

Q(s, a) ⟵ Q(s, a) + α[r + γ Q(s’, a’) - Q(s, a)]

Got its name from the “experience tuples” having the form

State-Action-Reward-State-Action

< s, a, r, s’, a’ >

28
Friday, 27 April 2012

Outline
• Reinforcement learning (chapter 21, with some references to 17)

• Problem definition

• Learning situation

• Roll of the reward

• Simplified assumptions

• Central concepts and terms

• Known environment

• Bellman’s equation

• Approaches to solutions

• Unknown environment

• Monte-Carlo method

• Temporal-Difference learning

• Q-Learning

• Sarsa-Learning

• Improvements

• The usefulness of making mistakes

• Eligibility Trace

29
Friday, 27 April 2012

Improvements and adaptations

What can we do, when ...

• ... the environment is not fully observable?

• ... there are too many states?

• ... the states are not discrete?

• ... the agent is acting in continuous time?

30
Friday, 27 April 2012

Allowing to be wrong sometimes

31
Friday, 27 April 2012

Allowing to be wrong sometimes

Exploration - Exploitation dilemma: When following one policy based on the
current estimate of Q, it is not guaranteed that Q actually converges to Q* (the
optimal Q).

31
Friday, 27 April 2012

Allowing to be wrong sometimes

Exploration - Exploitation dilemma: When following one policy based on the
current estimate of Q, it is not guaranteed that Q actually converges to Q* (the
optimal Q).

A simple solution: Use a policy that has a certain probability of “being wrong” once
in a while, to explore better.

31
Friday, 27 April 2012

Allowing to be wrong sometimes

Exploration - Exploitation dilemma: When following one policy based on the
current estimate of Q, it is not guaranteed that Q actually converges to Q* (the
optimal Q).

A simple solution: Use a policy that has a certain probability of “being wrong” once
in a while, to explore better.

• ε-greedy: Will sometimes (with probability ε) pick a random action instead of the
one that looks best (greedy)

31
Friday, 27 April 2012

Allowing to be wrong sometimes

Exploration - Exploitation dilemma: When following one policy based on the
current estimate of Q, it is not guaranteed that Q actually converges to Q* (the
optimal Q).

A simple solution: Use a policy that has a certain probability of “being wrong” once
in a while, to explore better.

• ε-greedy: Will sometimes (with probability ε) pick a random action instead of the
one that looks best (greedy)

• Softmax: Weighs the probability for choosing different actions according to how
“good” they appear to be.

31
Friday, 27 April 2012

ε-greedy Q-learning

32
Friday, 27 April 2012

ε-greedy Q-learning

A suggested algorithm (ε-greedy implementation, given some “black box”, that
produces r and s’, given s and a)

32
Friday, 27 April 2012

ε-greedy Q-learning

A suggested algorithm (ε-greedy implementation, given some “black box”, that
produces r and s’, given s and a)

• Initialise Q(s, a) arbitrarily ∀s, a, choose learning rate α and discount factor γ

32
Friday, 27 April 2012

ε-greedy Q-learning

A suggested algorithm (ε-greedy implementation, given some “black box”, that
produces r and s’, given s and a)

• Initialise Q(s, a) arbitrarily ∀s, a, choose learning rate α and discount factor γ

• Initialise s

32
Friday, 27 April 2012

ε-greedy Q-learning

A suggested algorithm (ε-greedy implementation, given some “black box”, that
produces r and s’, given s and a)

• Initialise Q(s, a) arbitrarily ∀s, a, choose learning rate α and discount factor γ

• Initialise s

• Repeat for each step:

• Choose a from s using ε-greedy policy based on Q(s, a)

• Take action a, observe reward r, and next state s'

• Update Q(s, a) ← Q(s, a) + α[r + γ max Q(s', a') - Q(s, a)]
 a'

• replace s with s'

32
Friday, 27 April 2012

ε-greedy Q-learning

A suggested algorithm (ε-greedy implementation, given some “black box”, that
produces r and s’, given s and a)

• Initialise Q(s, a) arbitrarily ∀s, a, choose learning rate α and discount factor γ

• Initialise s

• Repeat for each step:

• Choose a from s using ε-greedy policy based on Q(s, a)

• Take action a, observe reward r, and next state s'

• Update Q(s, a) ← Q(s, a) + α[r + γ max Q(s', a') - Q(s, a)]
 a'

• replace s with s'

until T steps.

32
Friday, 27 April 2012

ε-greedy Q-learning

A suggested algorithm (ε-greedy implementation, given some “black box”, that
produces r and s’, given s and a)

• Initialise Q(s, a) arbitrarily ∀s, a, choose learning rate α and discount factor γ

• Initialise s

• Repeat for each step:

• Choose a from s using ε-greedy policy based on Q(s, a)

• Take action a, observe reward r, and next state s'

• Update Q(s, a) ← Q(s, a) + α[r + γ max Q(s', a') - Q(s, a)]
 a'

• replace s with s'

until T steps.

32
Friday, 27 April 2012

Speeding up the process

Idea: the Time Difference (TD) updates can be used to improve the estimation also
of states where the agent has already been earlier.

∀s, a : Q(s, a) ⟵ Q(s, a) + α[rt+1 + γ Q(st+1, at+1) - Q(st, at)] · e

With e the eligibility trace, telling how long ago the agent visited s and chose action a

Often called TD(λ), with λ being the time constant that describes the “annealing
rate” of the trace.

33
Friday, 27 April 2012

Application examples

• Game playing.

• A. Samuel’s checkers program (1959). Remarkable: did not use any
rewards... but was managed to converge anyhow...

• G. Tesauro’s backgammon program from 1992, first introduced as
Neurogammon, with a neural network representation of Q(s, a).
Required an expert for tedious training ;-) The newer version TD-
gammon learned from self-play and rewards at the end of the game
according to generalised TD-learning. Played quite well after two weeks
of computing time ...

• Robotics

• Classic example: the inverse pendulum (cart-pole). Two actions: jerk right
or jerk left (bang-bang control). First learning algorithm to this problem
applied in 1968 (Michie and Chambers), using a real cart!

• More recently: Pancake flipping ;-)

34
Friday, 27 April 2012

Flipping ... a piece of (pan)cake?

35

Video from programming-by-demonstration.org
(Dr. Sylvain Calinon & Dr. Petar Kormushev)

Friday, 27 April 2012

Homework for Machine Learning

• Homework 3 is related to machine learning, announced on the course page

• Choose between 3a, 3b, 3c (or do several), but only one (the best) will
contribute in the end as homework 3

• 3c is in the area of today’s lecture (slides will be provided after the
lecture ;-)

• The task: get a little two-legged agent (“robot”) to learn to “walk”

• Some programming effort is involved (instructions provided)

• Main idea is to explore different reinforcement learning approaches and
compare their effect on the agent’s success (or failure...) and report on the
experience

• A series of images for “animation” of the agent is provided

• Support methods for the “animation” of the agent’s walk are provided in
Matlab and Python (transferring to Java should also be easily possible, the
Matlab code is less than 30 lines long)

36
Friday, 27 April 2012

Homework for Machine Learning cont’d

• Seemingly “simple” task - just doing it gives a grade 3 at maximum.

• BUT: the important part of this task is the INTERPRETATION and
DISCUSSION of results, which should be done in a thoroughly prepared and
written REPORT. Please make sure you have read the instructions carefully
before starting the work!

• Deadline for handing in: May 10, 2012.

37
Friday, 27 April 2012

