
Reinforcement learning
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Material based on course book, chapter 21 (17), 
and on lecture “Belöningsbaserad inlärning / Reinforcement learning” 
by Örjan Ekeberg, CSC/Nada, KTH, autumn term 2006 (in Swedish)
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Outline
• Reinforcement learning (chapter 21, with some references to 17)
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• Learning situation
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• Simplified assumptions

• Central concepts and terms

• Known environment
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• Q-Learning

• Sarsa-Learning
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Reinforcement learning

Learning of a behaviour (a strategy, a skill) without access to a right / wrong 
measure for actions and decisions taken.
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Reinforcement learning

Learning of a behaviour (a strategy, a skill) without access to a right / wrong 
measure for actions and decisions taken.

With the help of a reward, a measure is given, of how well things are going

Note: The reward is not given in direct connection with a good choice of action 
(temporal credit assignment)

Note: The reward does not tell what exactly it was, that made the “good” action
(structural credit assignment)
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Real life examples
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Real life examples
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Riding a bicycle

Powder skiing
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Learning situation: A model
An agent interacts with its environment

The agent performs actions

Actions have influence on the environment’s state

The agent observes the environment’s state and                                                  
receives a reward from the environment

6

Agent Environment
Action a

State s

Reward r
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Learning situation: The agent’s task
The task: 

Find a behaviour (action sequence) that maximises the overall reward

How long into the future should we spy? 

Finite time horizon:

max E[ ∑    rt]

Infinite time horizon:

max E[ ∑    γt rt] 

with γ being a discount factor for future rewards (0 < γ < 1)
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The reward function’s roll

The reward function depends on the type of task
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• Game (Chess, Backgammon): Reward is given only in the end of the game, +1 for 
“win”, -1 for “loose”
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The reward function’s roll

The reward function depends on the type of task

• Game (Chess, Backgammon): Reward is given only in the end of the game, +1 for 
“win”, -1 for “loose”

• Avoid mistakes (Riding a bike, Learning to fly according to hitchhiker’s guide): 
Reward -1 when failing (falling)

• Find the shortest / cheapest / fastest path to a goal: Reward -1 for each step
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A classic example: Grid World

Simplified “Wumpus world” with just two gold pieces
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A classic example: Grid World

Simplified “Wumpus world” with just two gold pieces

• Every state sj is represented by a field in the grid

• Action a the agent can choose consists of moving one step to a neighbouring field

• Reward: -1 in every step until one of the goals (G) is reached.

9

G

G

Friday, 27 April 2012



Simplifying assumptions 
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Simplifying assumptions 

We assume for now:

• Discrete time (steps over time)

• Finite number of possible actions ai

ai ∈ a1, a2, a3, ... , an

• Finite number of states sj

sj ∈ s1, s2, s3, ... , sm

• The context is a constant MDP (Markov Decision Process), where reward and new 
state s’ only depend on s, a, and (random) noise

• Environment is observable
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The agent’s internal representation
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The agent’s internal representation

• An agent’s policy π is the “rule” after which the agent chooses its action a in a 
given state s

π(s) ⟼ a
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The agent’s internal representation

• An agent’s policy π is the “rule” after which the agent chooses its action a in a 
given state s

π(s) ⟼ a

• An agent’s utility function U describes the expected future reward given s, when 
following policy π

Uπ(s) ⟼ ℜ
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Grid World: A state’s value

A state’s value depends on the chosen policy
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Grid World: A state’s value

A state’s value depends on the chosen policy
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A state’s value depends on the chosen policy
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A 4x3 world

• Fixed policy - passive learning. 
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A 4x3 world

• Fixed policy - passive learning. 

• Always start in state (1,1).

• Do trials, observe, until terminal state is reached, update utilities

• Eventually, agent learns how good the policy is - it can evaluate the policy and test 
different ones

• Policy as described in the left grid is optimal with rewards of -0.04 for all 
reachable, nonterminal states, and without discounting.
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Outline
• Reinforcement learning (chapter 21, with some references to 17)

• Problem definition

• Learning situation

• Roll of the reward

• Simplified assumptions

• Central concepts and terms

• Known (observable) environment

• Bellman’s equation

• Approaches to solutions

• Unknown environment

• Monte-Carlo method

• Temporal-Difference learning

• Q-Learning

• Sarsa-Learning

• Improvements 

• The usefulness of making mistakes
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Environment model
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Environment model

•Where do we get in each step?

δ(s, a) ⟼ s’
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•Where do we get in each step?

δ(s, a) ⟼ s’

•What will the reward be?

r( s, a) ⟼ ℜ
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Environment model

•Where do we get in each step?

δ(s, a) ⟼ s’

•What will the reward be?

r( s, a) ⟼ ℜ

The utility values of different states obey Bellman’s equation, given a fixed policy π:

Uπ(s) = r( s, π(s)) +  γ·Uπ( δ( s, π(s)))
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Solving the equation
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Solving the equation

There are two ways of solving Bellman’s equation

Uπ(s) = r( s, π(s)) +  γ·Uπ( δ( s, π(s))) 
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Solving the equation

There are two ways of solving Bellman’s equation

Uπ(s) = r( s, π(s)) +  γ·Uπ( δ( s, π(s))) 

• Directly:  Uπ(s) = r( s, π(s)) +  γ·∑s’  P( s’ | s, π(s)) Uπ(s’)
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Recap: Random policy
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Solving the equation

There are two ways of solving (this “optimal” version of) Bellman’s equation

Uπ(s) = r( s, π(s)) +  γ·Uπ( δ( s, π(s))) 

• Directly:  Uπ(s) = r( s, π(s)) +  γ·∑s’  P( s’ | s, π(s)) Uπ(s’)

• Iteratively (Value / utility iteration), stop when equilibrium is reached, i.e., “nothing 
happens”

U       (s) ⟵ r( s, π(s)) +  γ·U    ( δ( s, π(s)))

18
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Bayesian reinforcement learning
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Bayesian reinforcement learning

A remark:

One form of reinforcement learning integrates Bayesian learning into the process to 
obtain the transition model, i.e., P( s’ | s, π(s))

This means to assume a prior probability for each hypothesis on how the model 
might look like and then applying Bayes’ rule to obtain the posterior.
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Bayesian reinforcement learning

A remark:

One form of reinforcement learning integrates Bayesian learning into the process to 
obtain the transition model, i.e., P( s’ | s, π(s))

This means to assume a prior probability for each hypothesis on how the model 
might look like and then applying Bayes’ rule to obtain the posterior.

We are not going into details here!

19
Friday, 27 April 2012



Finding optimal policy and value function
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Finding optimal policy and value function

How can we find an optimal policy π*?
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Finding optimal policy and value function

How can we find an optimal policy π*?

That would be easy if we had the optimal value / utility function U*:

π*(s) = argmax( r( s, a) +  γ·U*( δ( s, a))) 
   a
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Finding optimal policy and value function

How can we find an optimal policy π*?

That would be easy if we had the optimal value / utility function U*:

π*(s) = argmax( r( s, a) +  γ·U*( δ( s, a))) 
   a

Apply to the “optimal version” of Bellman’s equation

U*(s) = max( r( s, a) +  γ·U*( δ( s, a))) 
      a
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Finding optimal policy and value function

How can we find an optimal policy π*?

That would be easy if we had the optimal value / utility function U*:

π*(s) = argmax( r( s, a) +  γ·U*( δ( s, a))) 
   a

Apply to the “optimal version” of Bellman’s equation

U*(s) = max( r( s, a) +  γ·U*( δ( s, a))) 
      a

Tricky to solve ... but possible:

Combine policy and value iteration by switching in each iteration step
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Policy iteration
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Policy iteration

Policy iteration provides exactly this switch.
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Policy iteration

Policy iteration provides exactly this switch.

For each iteration step k:

πk(s) = argmax( r( s, a) +  γ·Uk( δ( s, a))) 
   a

Uk+1(s) = r( s, πk(s)) +  γ·Uk( δ( s, πk(s)))    
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Monte Carlo approach
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Monte Carlo approach
Usually the reward r( s, a) and the state transition function δ( s, a) are unknown to 
the learning agent. 
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Monte Carlo approach
Usually the reward r( s, a) and the state transition function δ( s, a) are unknown to 
the learning agent. 

(What does that mean for learning to ride a bike?                                    ) 

Still, we can estimate U* from experience, as a Monte Carlo approach will do: 

• Start with a randomly chosen s

• Follow a policy π, store rewards and st for the step at time t

•When the goal is reached, update the Uπ(s) estimate for all visited states 
st with the future reward that was given when reaching the goal

• Start over with a randomly chosen s ...
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Monte Carlo approach
Usually the reward r( s, a) and the state transition function δ( s, a) are unknown to 
the learning agent. 

(What does that mean for learning to ride a bike?                                    ) 

Still, we can estimate U* from experience, as a Monte Carlo approach will do: 

• Start with a randomly chosen s

• Follow a policy π, store rewards and st for the step at time t

•When the goal is reached, update the Uπ(s) estimate for all visited states 
st with the future reward that was given when reaching the goal

• Start over with a randomly chosen s ...

Converges slowly... 
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Temporal Difference learning
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Or: What the agent believes before acting

Uπ( st)
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Temporal Difference learning

Temporal Difference learning ...

... uses the fact that there are two estimates for the value of a state:                                             

before and after visiting the state

Or: What the agent believes before acting

Uπ( st)

and after acting

rt+1  +  γ · Uπ( st+1)
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Applying the estimates
The second estimate in the Temporal Difference learning approach is obviously 
“better”, ...
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The second estimate in the Temporal Difference learning approach is obviously 
“better”, ...

... hence, we update the overall approximation of a state’s value towards the more 
accurate estimate

Uπ( st) ⟵ Uπ( st) + α[ rt+1 +  γ·Uπ ( st+1) - Uπ( st)]
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Applying the estimates
The second estimate in the Temporal Difference learning approach is obviously 
“better”, ...

... hence, we update the overall approximation of a state’s value towards the more 
accurate estimate

Uπ( st) ⟵ Uπ( st) + α[ rt+1 +  γ·Uπ ( st+1) - Uπ( st)]

Which gives us a measure of the “surprise” or “disappointment” for the outcome of 
an action.
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Applying the estimates
The second estimate in the Temporal Difference learning approach is obviously 
“better”, ...

... hence, we update the overall approximation of a state’s value towards the more 
accurate estimate

Uπ( st) ⟵ Uπ( st) + α[ rt+1 +  γ·Uπ ( st+1) - Uπ( st)]

Which gives us a measure of the “surprise” or “disappointment” for the outcome of 
an action.

Converges significantly faster than the pure Monte Carlo approach. 
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Q-learning
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Q-learning
Problem: 
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Q-learning
Problem: 

even if  U is appropriately estimated, it is not possible to compute π, as the agent 
has no knowledge about δ and r, i.e., it needs to learn also that. 
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even if  U is appropriately estimated, it is not possible to compute π, as the agent 
has no knowledge about δ and r, i.e., it needs to learn also that. 

Solution (trick): Estimate Q( s, a) instead of U(s):

Q( s, a): Expected total reward when choosing a in s

π(s) = argmax Q( s, a)
a
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Q-learning
Problem: 

even if  U is appropriately estimated, it is not possible to compute π, as the agent 
has no knowledge about δ and r, i.e., it needs to learn also that. 

Solution (trick): Estimate Q( s, a) instead of U(s):

Q( s, a): Expected total reward when choosing a in s

π(s) = argmax Q( s, a)
a

U*( s) = max Q*( s, a)
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Learning Q
How can we learn Q?

Also the Q-function can be learned using the Temporal Difference approach:

Q( s, a) ⟵ Q( s, a) + α[ r  +  γ max Q( s’, a’) - Q( s, a)]
                   a’
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Learning Q
How can we learn Q?

Also the Q-function can be learned using the Temporal Difference approach:

Q( s, a) ⟵ Q( s, a) + α[ r  +  γ max Q( s’, a’) - Q( s, a)]
                   a’

With s’ being the next state that is reached when choosing action a’
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Learning Q
How can we learn Q?

Also the Q-function can be learned using the Temporal Difference approach:

Q( s, a) ⟵ Q( s, a) + α[ r  +  γ max Q( s’, a’) - Q( s, a)]
                   a’

With s’ being the next state that is reached when choosing action a’

Again, a problem: the max operator requires obviously a search through all possible 
actions that can be taken in the next step...
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SARSA-learning

SARSA-learning works similar to Q-learning, but it is the currently active policy that 
controls the actually taken action a’:
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SARSA-learning works similar to Q-learning, but it is the currently active policy that 
controls the actually taken action a’:

Q( s, a) ⟵ Q( s, a) + α[ r  +  γ Q( s’, a’) - Q( s, a)]
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SARSA-learning works similar to Q-learning, but it is the currently active policy that 
controls the actually taken action a’:

Q( s, a) ⟵ Q( s, a) + α[ r  +  γ Q( s’, a’) - Q( s, a)]

                   

Got its name from the “experience tuples” having the form                                

State-Action-Reward-State-Action
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SARSA-learning

SARSA-learning works similar to Q-learning, but it is the currently active policy that 
controls the actually taken action a’:

Q( s, a) ⟵ Q( s, a) + α[ r  +  γ Q( s’, a’) - Q( s, a)]

                   

Got its name from the “experience tuples” having the form                                

State-Action-Reward-State-Action

< s, a, r, s’, a’ >

28
Friday, 27 April 2012



Outline
• Reinforcement learning (chapter 21, with some references to 17)

• Problem definition

• Learning situation

• Roll of the reward

• Simplified assumptions

• Central concepts and terms

• Known environment

• Bellman’s equation

• Approaches to solutions

• Unknown environment

• Monte-Carlo method

• Temporal-Difference learning

• Q-Learning

• Sarsa-Learning

• Improvements 

• The usefulness of making mistakes

• Eligibility Trace
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Improvements and adaptations

What can we do, when ...

• ... the environment is not fully observable?

• ... there are too many states?

• ... the states are not discrete?

• ... the agent is acting in continuous time?
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Allowing to be wrong sometimes
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Allowing to be wrong sometimes

Exploration - Exploitation dilemma: When following one policy based on the 
current estimate of Q, it is not guaranteed that Q actually converges to Q* (the 
optimal Q).
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Allowing to be wrong sometimes

Exploration - Exploitation dilemma: When following one policy based on the 
current estimate of Q, it is not guaranteed that Q actually converges to Q* (the 
optimal Q).

A simple solution: Use a policy that has a certain probability of “being wrong” once 
in a while, to explore better.
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Exploration - Exploitation dilemma: When following one policy based on the 
current estimate of Q, it is not guaranteed that Q actually converges to Q* (the 
optimal Q).

A simple solution: Use a policy that has a certain probability of “being wrong” once 
in a while, to explore better.

• ε-greedy:  Will sometimes (with probability ε) pick a random action instead of the 
one that looks best (greedy)
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Allowing to be wrong sometimes

Exploration - Exploitation dilemma: When following one policy based on the 
current estimate of Q, it is not guaranteed that Q actually converges to Q* (the 
optimal Q).

A simple solution: Use a policy that has a certain probability of “being wrong” once 
in a while, to explore better.

• ε-greedy:  Will sometimes (with probability ε) pick a random action instead of the 
one that looks best (greedy)

• Softmax:  Weighs the probability for choosing different actions according to how 
“good” they appear to be.
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ε-greedy Q-learning
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ε-greedy Q-learning

A suggested algorithm (ε-greedy implementation, given some “black box”, that 
produces r and s’, given s and a)
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ε-greedy Q-learning

A suggested algorithm (ε-greedy implementation, given some “black box”, that 
produces r and s’, given s and a)

• Initialise Q(s, a) arbitrarily ∀s, a, choose learning rate α and discount factor γ
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ε-greedy Q-learning

A suggested algorithm (ε-greedy implementation, given some “black box”, that 
produces r and s’, given s and a)

• Initialise Q(s, a) arbitrarily ∀s, a, choose learning rate α and discount factor γ

• Initialise s
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ε-greedy Q-learning

A suggested algorithm (ε-greedy implementation, given some “black box”, that 
produces r and s’, given s and a)

• Initialise Q(s, a) arbitrarily ∀s, a, choose learning rate α and discount factor γ

• Initialise s

• Repeat for each step:

• Choose a from s using ε-greedy policy based on Q(s, a)

• Take action a, observe reward r, and next state s'

• Update Q(s, a) ← Q(s, a) + α[r + γ max Q(s', a') - Q(s, a)]
                              a'

• replace s with s'
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ε-greedy Q-learning

A suggested algorithm (ε-greedy implementation, given some “black box”, that 
produces r and s’, given s and a)

• Initialise Q(s, a) arbitrarily ∀s, a, choose learning rate α and discount factor γ

• Initialise s

• Repeat for each step:

• Choose a from s using ε-greedy policy based on Q(s, a)

• Take action a, observe reward r, and next state s'

• Update Q(s, a) ← Q(s, a) + α[r + γ max Q(s', a') - Q(s, a)]
                              a'

• replace s with s'

until T steps.
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ε-greedy Q-learning

A suggested algorithm (ε-greedy implementation, given some “black box”, that 
produces r and s’, given s and a)

• Initialise Q(s, a) arbitrarily ∀s, a, choose learning rate α and discount factor γ

• Initialise s

• Repeat for each step:

• Choose a from s using ε-greedy policy based on Q(s, a)

• Take action a, observe reward r, and next state s'

• Update Q(s, a) ← Q(s, a) + α[r + γ max Q(s', a') - Q(s, a)]
                              a'

• replace s with s'

until T steps.
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Speeding up the process

Idea: the Time Difference (TD) updates can be used to improve the estimation also 
of states where the agent has already been earlier.

∀s, a  :  Q( s, a) ⟵ Q( s, a) + α[ rt+1  +  γ Q( st+1, at+1) - Q( st, at)] · e

With e the eligibility trace, telling how long ago the agent visited s and chose action a 

Often called TD( λ), with λ being the time constant that describes the “annealing 
rate” of the trace. 
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Application examples

• Game playing.

• A. Samuel’s checkers program (1959). Remarkable: did not use any 
rewards... but was managed to converge anyhow...

• G. Tesauro’s backgammon program from 1992, first introduced as 
Neurogammon, with a neural network representation of Q(s, a). 
Required an expert for tedious training ;-) The newer version TD-
gammon learned from self-play and rewards at the end of the game 
according to generalised TD-learning. Played quite well after two weeks 
of computing time ...

• Robotics

• Classic example: the inverse pendulum (cart-pole). Two actions: jerk right 
or jerk left (bang-bang control). First learning algorithm to this problem 
applied in 1968 (Michie and Chambers), using a real cart!

• More recently: Pancake flipping ;-) 
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Flipping ... a piece of (pan)cake?
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Homework for Machine Learning

• Homework 3 is related to machine learning, announced on the course page

• Choose between 3a, 3b, 3c (or do several), but only one (the best) will 
contribute in the end as homework 3

• 3c is in the area of today’s lecture (slides will be provided after the 
lecture ;-)

• The task: get a little two-legged agent (“robot”) to learn to “walk”

• Some programming effort is involved (instructions provided) 

• Main idea is to explore different reinforcement learning approaches and 
compare their effect on the agent’s success (or failure...) and report on the 
experience

• A series of images for “animation” of the agent is provided

• Support methods for the “animation” of the agent’s walk are provided in 
Matlab and Python (transferring to Java should also be easily possible, the 
Matlab code is less than 30 lines long) 
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Homework for Machine Learning cont’d

• Seemingly “simple” task - just doing it gives a grade 3 at maximum.

• BUT: the important part of this task is the INTERPRETATION and 
DISCUSSION of results, which should be done in a thoroughly prepared and 
written REPORT. Please make sure you have read the instructions carefully 
before starting the work!

• Deadline for handing in: May 10, 2012.
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