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Chocolates

Show time!

2

Two boxes of chocolates, one luxury car.
Where is the car?

Philosopher: It does not matter whether I change my choice, I will either get chocolates or a car.

Mathematician: It is more likely to get the car when I alter my choice - even though it is not certain!



A robot’s view of the world...
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What category of “thing” is shown to me?

4



What category of “thing” is shown to me?
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Object? Workspace? Room? Link to room? 
Can we reason about behavioural features and what is causing them?



Outline

• Uncertainty & probability (chapter 13) 

• Uncertainty represented as probability

• Syntax and Semantics

• Inference

• Independence and Bayes’ Rule

• Bayesian Networks (chapter 14.1-3)

• Syntax

• Semantics
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Using logic in an uncertain world?

Can we find rules to describe every possible outcome, even when we cannot 
observe everything? (Chess, Go - and then there was Poker)

Fixing such “rules” would mean to make them logically exhaustive, but that is 
bound to fail due to:

Laziness (too much work to list all options)

Theoretical ignorance (there is simply no complete theory)

Practical ignorance (might be impossible to test exhaustively) 

⇒ better use probabilities to represent certain knowledge states

⇒ Rational decisions (decision theory) combine probability and utility theory
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Probability basics

Given a set Ω - the sample space, e.g., the 6 possible rolls of a die,

ω ∈ Ω a sample point / possible world / atomic event, e.g., the outcome “2”.

A probability space or probability model is a sample space Ω with an assignment P(ω) for 
every ω ∈ Ω so that:

0 ≤ P(ω) ≤ 1

∑ω P(ω) = 1

An event a is any subset of Ω 

P(a) = ∑{ω∈A} P(ω)

E.g., P( die roll < 4) = P(1) + P(2) + P(3) = 1/6 + 1/6 + 1/6 = 1/2
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Random variables
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Random variables
A random variable is a function from sample points to some range, e.g., the Reals or Booleans, 

e.g., when rolling a die and looking for odd numbers, 

Odd( n) = true, for n ∈ {1, 3, 5}
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i.e., the sample space is the Cartesian product of the ranges of the variables.

Probability P induces a probability distribution for any random variable X

P( X = xi) = ∑{ω:X(ω) = xi} 
P(ω)

e.g., P( Odd = true) = ∑{n:Odd(n) = true} P(n) = P(1) + P(3) + P(5) = 1/6 + 1/6 + 1/6 = 1/2
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Bayesian Probability

Probabilistic assertions summarise effects of

laziness: failure to enumerate exceptions, qualifications, etc.

ignorance: lack of relevant facts, initial conditions, etc.

Subjective or Bayesian probability:

Probabilities relate propositions to one’s state of knowledge (A25 = “leavíng for 
airport 25 min prior to departure is enough”)

e.g., P( A25) = 0.04

e.g., P( A25 | no reported accidents) = 0.06

Not claims of a “probabilistic tendency” in the current situation, but maybe 
learned from past experience of similar situations.

Probabilities of propositions change with new evidence:

e.g., P( A25 | no reported accidents, it’s 5:00 in the morning) = 0.15
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Prior probability
Prior or unconditional probabilities of propositions

e.g., P( Cavity = true) = 0.2 and 

P( Weather = sunny) = 0.72               (e.g., known from statistics)

correspond to belief prior to the arrival of any (new) evidence
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Prior probability
Prior or unconditional probabilities of propositions

e.g., P( Cavity = true) = 0.2 and 

P( Weather = sunny) = 0.72               (e.g., known from statistics)

correspond to belief prior to the arrival of any (new) evidence

Probability distribution gives values for all possible assignments (normalised):

ℙ(Weather) = ⟨0.72, 0.1, 0.08, 0.1⟩

Joint probability distribution for a set of (independent) random variables gives the 
probability of every atomic event on those random variables (i.e., every sample point):

ℙ(Weather, Cavity) = a 4 x 2 matrix of values:

Weather sunny rain cloudy snow
Cavity

true 0,144 0,02 0,016 0,02

false 0,576 0,08 0,064 0,08

11



Posterior probability
Most often, there is some information, i.e., evidence, that one can base their belief on:

e.g., P( cavity) = 0.2 (prior, no evidence for anything), but

P( cavity | toothache) = 0.6

corresponds to belief after the arrival of some evidence                                              
(also: posterior or conditional probability).                                                               

OBS: NOT “if toothache, then 60% chance of cavity”

THINK “given that toothache is all I know” instead!
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Evidence remains valid after more evidence arrives, but it might become less useful

Evidence may be completely useless, i.e., irrelevant.

P( cavity | toothache, sunny) = P( cavity | toothache)

Domain knowledge lets us do this kind of inference.



Posterior probability (2)

13



Posterior probability (2)
Definition of conditional / posterior probability:

P( a | b) =                   if P( b) ≠ 0
P( a ∧ b)
-----------------------------------------

   P( b)
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P( a | b) =                   if P( b) ≠ 0

or as Product rule (for a and b being true, we need b true and then a true, given b):

P( a ∧ b)    =    P( a | b) P( b)    =    P( b | a) P( a)

and in general for whole distributions (e.g.):                                                               

ℙ( Weather, Cavity)    =    ℙ( Weather | Cavity) ℙ( Cavity)
(gives a 4x2 set of equations)  

Chain rule (successive application of product rule):

ℙ( X₁, ..., Xn)  = ℙ( X₁, ..., Xn-1) ℙ( Xn | X₁, ..., Xn-1)

= ℙ( X₁, ..., Xn-2) ℙ( Xn-1 | X₁, ..., Xn-2) ℙ( Xn | X₁, ..., Xn-1)

= ... = ∏    ℙ( Xi | X₁, ..., Xi-1) 

P( a ∧ b)
-----------------------------------------

   P( b)

n

i=1
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Inference

For any proposition Φ, sum the atomic events where it is true:

P( Φ) = ∑ω:ω⊨ Φ P(ω)

toothache ¬ toothache

catch ¬ catch catch ¬ catch

cavity 0,108 0,012 0,072 0,008

¬ cavity 0,016 0,064 0,144 0,576

14

Probabilistic inference: 

Computation of posterior probabilities given observed evidence 

starting out with the full joint distribution as “knowledge base”:

Inference by enumeration
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P( cavity ∨ toothache) = 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 = 0.28

Inference

For any proposition Φ, sum the atomic events where it is true:

P( Φ) = ∑ω:ω⊨ Φ P(ω)
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Inference

toothache ¬ toothache

catch ¬ catch catch ¬ catch

cavity 0,108 0,012 0,072 0,008

¬ cavity 0,016 0,064 0,144 0,576

Can also compute posterior probabilities:

P( ¬cavity | toothache) =  

            =                                                 = 0.4

P( ¬cavity ∧ toothache)
----------------------------------------------------------------------------------------------------------

   P( toothache)

            0.016 + 0.064
--------------------------------------------------------------------------------------------------------------------------------------------------------

0.108 + 0.012 + 0.016 + 0.064
14

Probabilistic inference: 

Computation of posterior probabilities given observed evidence 

starting out with the full joint distribution as “knowledge base”:

Inference by enumeration



toothache ¬ toothache

catch ¬ catch catch ¬ catch

cavity 0,108 0,012 0,072 0,008

¬ cavity 0,016 0,064 0,144 0,576

Normalisation

Denominator can be viewed as a normalisation constant:

ℙ( Cavity | toothache) =  α ℙ( Cavity, toothache)

= α[ℙ( Cavity, toothache, catch) + ℙ( Cavity, toothache, ¬catch)]

= α[⟨0.108, 0.016⟩ + ⟨0.012, 0.064⟩]

= α ⟨0.12, 0.08⟩ = ⟨0.6, 0.4⟩
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toothache ¬ toothache

catch ¬ catch catch ¬ catch

cavity 0,108 0,012 0,072 0,008

¬ cavity 0,016 0,064 0,144 0,576

Normalisation

Denominator can be viewed as a normalisation constant:

ℙ( Cavity | toothache) =  α ℙ( Cavity, toothache)

= α[ℙ( Cavity, toothache, catch) + ℙ( Cavity, toothache, ¬catch)]

= α[⟨0.108, 0.016⟩ + ⟨0.012, 0.064⟩]

= α ⟨0.12, 0.08⟩ = ⟨0.6, 0.4⟩

And the good news:

We can compute ℙ( Cavity | toothache) without knowing the value of P( toothache)!
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Inference gone bad

16

A young student suffers from depression. In her diary she speculates about her 
childhood and the possibility of her father abusing her during childhood. She had 
reported headaches to her friends and therapist, and started writing the diary 
due to the therapist’s recommendation.

The father ends up in court, since 

“headaches are caused by PTSD, and PTSD is caused by abuse”

Would you agree? 



Inference gone bad

16

A young student suffers from depression. In her diary she speculates about her 
childhood and the possibility of her father abusing her during childhood. She had 
reported headaches to her friends and therapist, and started writing the diary 
due to the therapist’s recommendation.

The father ends up in court, since 

“headaches are caused by PTSD, and PTSD is caused by abuse”

Would you agree? 

Psychologist knowing “the math” argues:

P( headache | PTSD) = high (statistics)

P( PTSD | abuse in childhood) = high (statistics)

ok, yes, sure, but:

You did not consider the relevant relations of

P( PTSD | headache) or

P( abuse in childhood | PTSD),  

i.e., you mixed up cause and effect in your argumentation!



Bayes’ Rule
Recap product rule: P( a ∧ b) = P( a | b) P( b) = P( b | a) P(a)

⇒  Bayes’ Rule P( a | b) = 

or in distribution form:

ℙ(  Y | X) =                         =  α ℙ( X | Y) P(  Y) 

Useful for assessing diagnostic probability from causal probability

P( Cause | Effect)  = 

E.g., with M “meningitis”, S “stiff neck”:  

P( m | s) =                        =                        = 0.0014   (not too bad, really!)

17

ℙ( X | Y) P( Y)
-----------------------------------------------------------------

      P( X)

P( Effect | Cause) P( Cause)
-------------------------------------------------------------------------------------------------------------------------------

             P( Effect)

P( b | a) P( a)
--------------------------------------------------------------

       P( b)

P( s | m) P( m)
-------------------------------------------------------------------

       P( s)

0.7 * 0.00002
—————————————————————————————

      0.01



All is well that ends well ...

We can model cause-effect relationships, 

we can base our judgement on mathematically sound inference, 

we can even do this inference with only partial knowledge on the priors, ...
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... but

n Boolean variables give us an input table of size O(2n) ...

(and for non-Booleans it gets even more nasty...)
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Conditional independence
ℙ( Toothache, Cavity, Catch) has 23 - 1 = 7 independent entries (must sum up to 1)

But: If there is a cavity, the probability for “catch” does not depend on whether there 
is a toothache:

(1) P( catch | toothache, cavity) = P( catch | cavity)

The same holds when there is no cavity:

(2) P( catch | toothache, ¬cavity) = P( catch | ¬cavity)

Catch is conditionally independent of Toothache given Cavity:

ℙ( Catch | Toothache, Cavity) = ℙ( Catch | Cavity)

Writing out full joint distribution using chain rule:

ℙ( Toothache, Catch, Cavity)                                                                                  
=  ℙ( Toothache | Catch, Cavity) ℙ( Catch, Cavity)                                              
=  ℙ( Toothache | Catch, Cavity) ℙ( Catch | Cavity) ℙ( Cavity)                                      
=  ℙ( Toothache | Cavity) ℙ( Catch | Cavity) ℙ( Cavity)

gives thus 2 + 2 + 1 = 5 independent entries

21



Conditional independence (2)

In most cases, the use of conditional independence reduces the size of the 
representation of the joint distribution from exponential in n to linear in n.

Hence: 

Conditional independence is our most basic and robust form of knowledge about 
uncertain environments

22



Summary
Probability is a way to formalise and represent uncertain knowledge

The joint probability distribution specifies probability over every atomic event

Queries can be answered by summing over atomic events 

Bayes’ rule can be applied to compute posterior probabilities so that              
diagnostic probabilities can be assessed from causal ones

For nontrivial domains, we must find a way to reduce the joint size

Independence and conditional independence provide the tools

23



Outline

• Uncertainty & probability (chapter 13)

• Uncertainty

• Probability

• Syntax and Semantics

• Inference

• Independence and Bayes’ Rule

• Bayesian Networks (chapter 14.1-3)

• Syntax

• Semantics

• Efficient representation
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.  .  .

Bayes’ Rule and conditional independence
ℙ( Cavity | toothache ∧ catch)                                                                                  
=  α ℙ( toothache ∧ catch | Cavity) ℙ( Cavity)                                                
=  α ℙ( toothache | Cavity) ℙ( catch | Cavity) ℙ( Cavity)                                      

An example of a naive Bayes model:

ℙ( Cause, Effect1, ...., Effectn) =   ℙ( Cause) ∏i ℙ( Effecti | Cause) 

The total number of parameters is linear in n

25

Cause

Effect 1 Effect n

Cavity

Toothache Catch



Bayesian networks
A simple, graphical notation for conditional independence assertions and hence for 
compact specification of full joint distributions

Syntax:
a set of nodes, one per random variable
a directed, acyclic graph (link ≈ “directly influences”)
a conditional distribution for each node given its parents:

P( Xi | Parents( Xi))

In the simplest case, conditional distribution represented as a 

conditional probability table ( CPT) 

giving the distribution over Xi  for each combination of parent values

26



Example
Topology of network encodes conditional independence assertions:

Weather is (unconditionally, absolutely) independent of the other variables

Toothache and Catch are conditionally independent given Cavity

27

Cavity

Toothache Catch
Weather

P(W=sunny) P(W=rainy) P(W=cloudy) P(W=snow)

0.72 0.1 0.08 0.1

P(Cav) P(¬Cav)

0.2 0.8

Cav P(T|Cav) P(¬T|Cav)

T 0.6 0.4

F 0.1 0.9

Cav P(C|Cav) P(¬C|Cav)

T 0.9 0.1

F 0.2 0.8



Example
Topology of network encodes conditional independence assertions:

Weather is (unconditionally, absolutely) independent of the other variables

Toothache and Catch are conditionally independent given Cavity

27

Cavity

Toothache Catch
Weather

We can skip the dependent columns in the tables to reduce complexity!

P(W=sunny) P(W=rainy) P(W=cloudy)

0.72 0.1 0.08

P(Cav)

0.2

Cav P(T|Cav)

T 0.6

F 0.1

Cav P(C|Cav)

T 0.9

F 0.2



Example 2
I am at work, my neighbour John calls to say my alarm is ringing, but neighbour 
Mary does not call. 

Sometimes the alarm is set off by minor earthquakes. 

Is there a burglar?

Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls

Network topology reflects “causal” knowledge:

A burglar can set the alarm off

An earthquake can set the alarm off

The alarm can cause John to call

The alarm can cause Mary to call
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Example 2 (2)
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Alarm

JohnCalls MaryCalls

Burglary

Earthquake

P(B)

0,001 P(E)

0,002

A P(J|A)

T 0,9

F 0,05

A P(M|A)

T 0,7

F 0,01

B E P(A|B,E)

T T 0,95

T F 0,94

F T 0,29

F F 0,001



Global semantics
Global semantics defines the full joint distribution as 
the product of the local conditional distributions:

P( x1, ..., xn)  =  ∏     P(  xi | parents( Xi ))

E.g., P( j ∧ m ∧ a ∧ ¬b ∧ ¬e)

= 
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Global semantics
Global semantics defines the full joint distribution as 
the product of the local conditional distributions:

P( x1, ..., xn)  =  ∏     P(  xi | parents( Xi ))

E.g., P( j ∧ m ∧ a ∧ ¬b ∧ ¬e)

= 

30

A

J M

B
E

n

i=1

    P( j | a) P( m | a) P( a | ¬b, ¬e) P( ¬b) P( ¬e)

=  0.9 * 0.7 * 0.001 * 0.999 * 0.998

≈ 0.000628



Constructing Bayesian networks
We need a method such that a series of locally testable assertions of conditional 
independence guarantees the required global semantics.

1. Choose an ordering of variables X1,..., Xn

2. For i = 1 to n

add Xi  to the network

select parents from X1,..., Xi-1  such that 

P( Xi | Parents( Xi)) = P( Xi | X1,..., Xi-1 )

This choice of parents guarantees the global semantics:

P( X1,..., Xn )  =  ∏    P( Xi | X1,..., Xi-1 )      (chain rule)

   = ∏     P( Xi | Parents( Xi))    (by construction)
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Deciding conditional independence is hard in noncausal directions

(Causal models and conditional independence seem hardwired for humans!)

Assessing conditional probabilities is hard in noncausal directions

Network is less compact: 1 + 2 + 4 +2 +4 = 13 numbers

Hence: Choose preferably an order corresponding to the cause → effect “chain”

Construction example

32

JohnCalls

MaryCalls

Alarm

Burglary

Earthquake



Initial evidence:  The *** car won’t start!

Testable variables (green), “broken, so fix it” variables (yellow)

Hidden variables (blue) ensure sparse structure / reduce parameters

Locally structured (sparse) network 
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battery age
alternator 

broken
fanbelt
broken

battery dead no charging

battery meter battery flat no oil no gas
fuel line
blocked

starter
broken

lights oil light gas gauge
car won’t 

start!
dipstick



Summary
Bayesian networks provide a natural representation for (causally induced) conditional
independence

Topology + CPTs = compact representation of joint distribution

Generally easy for (non)experts to construct

And going further:
Continuous variables  ⇒  parameterised distributions (e.g., linear Gaussians)

Do BNs help for the questions in the beginning?  
YES (but that story will be told later …)
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