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Chocolates

Show time!
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Two boxes of chocolates, one luxury car.
Where is the car?

Philosopher: It does not matter whether I change my choice, I will 
either get chocolates or a car.

Mathematician: It is more likely to get the car when I change my 
choice - even though it is not certain!

Thursday, 6 February 14



A robot’s view of the world...
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Uncertainty
Situation: Get to the airport in time for the flight (by car)
Action At := “Leave for airport t minutes before flight departs”
Question: will At get me there on time?

Deal with:

1) partial observability (road states, other drivers, ...)

2) noisy sensors (traffic reports)

3) uncertainty in action outcomes (flat tire, car failure, ...)

4) complexity of modeling and predicting traffic

Use pure logic? Well... :

1) risks falsehood: “A25  will get me there on time”

or   2) leads to conclusions too weak for decision making:

“A25 will get me there on time if there is no accident and it does not rain 
and my tires hold, and ...”

(A1440 would probably hold, but the waiting time would be intolerable, given the 
quality of airport food...)
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Rational decision

A25, A90, A180, A1440, ... what is “the right thing to do?”

Obviously dependent on relative importance of goals (being in time vs minimizing 
waiting time) AND on their respective likelihood of being achieved.

Uncertain reasoning: diagnosing a patient, i.e., find the CAUSE for the symptoms 
displayed. 

“Diagnostic” rule:  Toothache ⇒ Cavity  

Complex rule:  Toothache ⇒ Cavity ⋁ GumProblem ⋁ Abscess ⋁ ... 

“Causal” rule:  Cavity ⇒ Toothache

No!

Too much!

???

???

??? Well... not always
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Using logic?

Fixing such “rules” would mean to make them logically exhaustive, but that is 
bound to fail due to:

Laziness (too much work to list all options)

Theoretical ignorance (there is simply no complete theory)

Practical ignorance (might be impossible to test exhaustively) 

⇒ better use probabilities to represent certain knowledge states

⇒ Rational decisions (decision theory) combine probability and utility theory

X
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Probability

Probabilistic assertions summarise effects of

laziness: failure to enumerate exceptions, qualifications, etc.

ignorance: lack of relevant facts, initial conditions, etc.

Subjective or Bayesian probability:

Probabilities relate propositions to one’s state of knowledge

e.g., P( A25 | no reported accidents) = 0.06

Not claims of a “probabilistic tendency” in the current situation, but maybe 
learned from past experience of similar situations.

Probabilities of propositions change with new evidence:

e.g., P( A25 | no reported accidents, it’s 5:00 in the morning) = 0.15
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Making decisions under uncertainty

Suppose the following believes (from past experience):

P( A25 gets me there on time | ...) = 0.04

P( A90 gets me there on time | ...) = 0.70

P( A120 gets me there on time | ...) = 0.95

P( A1440 gets me there on time | ...) = 0.9999

Which action to choose?

Depends on my preferences for “missing flight” vs. “waiting (with airport cuisine)”, etc. 

Utility theory is used to represent and infer preferences

Decision theory = utility theory + probability theory
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Probability basics

A set Ω - the sample space, e.g., the 6 possible rolls of a die.

ω ∈ Ω is a sample point / possible world / atomic event

A probability space of probability model is a sample space with an assignment P(ω) for 
every ω ∈ Ω so that:

0 ≤ P(ω) ≤ 1

∑ω P(ω) = 1

An event A is any subset of Ω 

P(A) = ∑{ω∈A} P(ω)

E.g., P( die roll < 4) = P(1) + P(2) + P(3) = 1/6 + 1/6 + 1/6 = 1/2
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Random variables

A random variable is a function from sample points to some range, e.g., the reals or 
Booleans, 

e.g., Odd( 1) = true.

P induces a probability distribution for any random variable X

P( X = xi) = ∑{ω:X(ω) = xi} 
P(ω)

e.g., P(Odd = true) = P(1) + P(3) + P(5) = 1/6 + 1/6 + 1/6 = 1/2

X
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Propositions

A proposition describes the event (set of sample points) where it (the proposition) 
holds, i.e., 

Given Boolean random variables A and B:

event a = set of sample points where A(ω) = true

event ¬a = set of sample points where A(ω) = false

event a⋀b = points where A(ω) = true and B(ω) = true

Often in AI applications, the sample points are defined by the values of a set of 
random variables, i.e., the sample space is the Cartesian product of the ranges of the 
variables.
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Prior probability
Prior or unconditional probabilities of propositions

e.g., P( Cavity = true) = 0.2 and 

P( Weather = sunny) = 0.72

correspond to belief prior to the arrival of any (new) evidence

Probability distribution gives values for all possible assignments (normalised):

P(Weather) = ⟨0.72, 0.1, 0.08, 0.1⟩

Joint probability distribution for a set of (independent) random variables gives the 
probability of every atomic event on those random variables (i.e., every sample point):

P(Weather, Cavity) = a 4 x 2 matrix of values:

Weather
Cavity

sunny rain cloudy snow

true

false

0.144 0.02 0.016 0.02

0.576 0.08 0.064 0.08
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Posterior probability
Most often, there is some information, i.e., evidence, that one can base their belief on:

e.g., P( cavity) = 0.2 (prior, no evidence for anything), but

P( cavity | toothache) = 0.6

corresponds to belief after the arrival of some evidence                                              
(also: posterior or conditional probability).                                                               

OBS: NOT “if toothache, then 60% chance of cavity”

THINK “given that toothache is all I know” instead!

10

Evidence remains valid after more evidence arrives, but it might become less useful

Evidence may be completely useless, i.e., irrelevant.

P( cavity | toothache, sunny) = P( cavity | toothache)

Domain knowledge lets us do this kind of inference.
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Posterior probability (2)
Definition of conditional / posterior probability:

P( a | b) =                   if P( b) ≠ 0

or as Product rule (for a and b being true, we need b true and then a true, given b):

P( a ∧ b)    =    P( a | b) P( b)    =    P( b | a) P( a)

and in general for whole distributions (e.g.):                                                               

P( Weather, Cavity)    =    P( Weather | Cavity) P( Cavity)
(gives a 4x2 set of equations)  

Chain rule (successive application of product rule):

P( X₁, ..., Xn)  = P( X₁, ..., Xn-1) P( Xn | X₁, ..., Xn-1)

= P( X₁, ..., Xn-2) P( Xn-1 | X₁, ..., Xn-1) P( Xn | X₁, ..., Xn-1)

= ... = ∏    P( Xi | X₁, ..., Xi-1) 

P( a ∧ b)
-----------------------------------------

   P( b)

n

i=1
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P( cavity ∨ toothache) = 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 = 0.28

Probabilistic inference: 

Computation of posterior probabilities given observed evidence 

starting out with the full joint distribution as “knowledge base”:

Inference by enumeration

P( toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2

Inference

For any proposition Φ, sum the atomic events where it is true:

P( Φ) = ∑ω:ω⊨ Φ P(ω)

toothachetoothache ¬ toothache¬ toothache

catch ¬ catch catch ¬ catch

cavity

¬ cavity

0.108 0.012 0.072 0.008

0.016 0.064 0.144 0.576

Can also compute posterior probabilities:

P( ¬cavity | toothache) =  

            =                                                 = 0.4

P( ¬cavity ∧ toothache)
----------------------------------------------------------------------------------------------------------

   P( toothache)

            0.016 + 0.064
--------------------------------------------------------------------------------------------------------------------------------------------------------

0.108 + 0.012 + 0.016 + 0.064
12
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toothachetoothache ¬ toothache¬ toothache

catch ¬ catch catch ¬ catch

cavity

¬ cavity

0.108 0.012 0.072 0.008

0.016 0.064 0.144 0.576

Normalisation

Denominator can be viewed as a normalisation constant:

P( Cavity | toothache) =  α P( Cavity, toothache)

= α[P( Cavity, toothache, catch) + P( Cavity, toothache, ¬catch)]

= α[⟨0.108, 0.016⟩ + ⟨0.012, 0.064⟩]

= α ⟨0.12, 0.08⟩ = ⟨0.6, 0.4⟩

And the good news:

We can compute P( Cavity | toothache) without knowing the value of P( toothache)!

13
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The suicidal student

14

A young student kills herself. Her diary is found. In the diary she speculates about 
her childhood and the possibility of her father abusing her during childhood. She 
had reported headaches to her friends and therapist, and started the diary due to 
the therapist’s recommendation.

The father ends up in court, since 

“headaches are caused by PTSD, and PTSD is caused by abuse”

Would you agree? 

Psychologist knowing “the math” argues:

P( headache | PTSD) = high (statistics)

P( PTSD | abuse in childhood) = high (statistics)

ok, yes, sure, but:

You did not consider the relevant relations of

P( PTSD | headache) or

P( abuse in childhood | PTSD),  

i.e., you mixed up cause and effect in your argumentation!
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Bayes’ Rule
Recap product rule: P( a ∧ b) = P( a | b) P( b) = P( b | a) P(a)

⇒  Bayes’ Rule P( a | b) = 

or in distribution form:

P(  Y | X) =                         =  α P( X | Y) P(  Y) 

Useful for assessing diagnostic probability from causal probability

P( Cause | Effect)  = 

E.g., with M “meningitis”, S “stiff neck”:  

P( m | s) =                        =                      = 0.0008   (not too bad, really!)
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P( X | Y) P( Y)
-----------------------------------------------------------------

      P( X)

P( Effect | Cause) P( Cause)
-------------------------------------------------------------------------------------------------------------------------------

             P( Effect)

P( b | a) P( a)
--------------------------------------------------------------

       P( b)

P( s | m) P( m)
-------------------------------------------------------------------

       P( s)

0.8 * 0.0001
-----------------------------------------------------------

      0.1
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All is well that ends well ...

We can model cause-effect relationships, 

we can base our judgement on mathematically sound inference, 

we can even do this inference with only partial knowledge on the priors, ...
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... but

n Boolean variables give us an input table of size O(2n) ...

(and for non-Booleans it gets even more nasty...)
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Independence
A and B are independent iff

P( A | B) =  P( A)    or    P( B | A) = P( B)    or   P( A, B) = P( A) P( B)

                                                           

P( Toothache, Catch, Cavity, Weather)    =    P( Toothache, Catch, Cavity) P( Weather)

32 entries reduced to 8 + 4. This absolute independence is powerful but rare!

Some fields (like dentistry) have still a lot, maybe hundreds, of variables, none of them 
being independent. 

What can be done to overcome this mess...? 

18

CavityCavity

Weather

Toothache            Catch

decomposes into

Toothache   Catch

Weather

Thursday, 6 February 14



Conditional independence
P( Toothache, Cavity, Catch) has 23 - 1 = 7 independent entries (must sum up to 1)

But: If there is a cavity, the probability for “catch” does not depend on whether there 
is a toothache:

(1) P( catch | toothache, cavity) = P( catch | cavity)

The same holds when there is no cavity:

(2) P( catch | toothache, ¬cavity) = P( catch | ¬cavity)

Catch is conditionally independent of Toothache given Cavity:

P( Catch | Toothache, Cavity) = P( Catch | Cavity)

Writing out full joint distribution using chain rule:

P( Toothache, Catch, Cavity)                                                                                  
=  P( Toothache | Catch, Cavity) P( Catch, Cavity)                                             
=  P( Toothache | Catch, Cavity) P( Catch | Cavity) P( Cavity)                                      
=  P( Toothache | Cavity) P( Catch | Cavity) P( Cavity)

gives thus 2 + 2 + 1 = 5 independent entries

19
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Conditional independence (2)

In most cases, the use of conditional independence reduces the size of the 
representation of the joint distribution from exponential in n to linear in n.

Hence: 

Conditional independence is our most basic and robust form of knowledge about 
uncertain environments
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.  .  .

Bayes’ Rule and conditional independence
P( Cavity | toothache ∧ catch)                                                                                  
=  α P( toothache ∧ catch | Cavity) P( Cavity)                                                
=  α P( toothache | Cavity) P( catch | Cavity) P( Cavity)                                      

An example of a naive Bayes model:

P( Cause, Effect1, ...., Effectn) =   P( Cause) ∏i P( Effecti | Cause) 

The total number of parameters is linear in n

21

Cause

Effect 1 Effect n

Cavity

Toothache Catch
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Summary
Probability is a way to formalise and represent uncertain knowledge

The joint probability distribution specifies probability over every atomic event

Queries can be answered by summing over atomic events

Bayes’ rule can be applied to compute posterior probabilities so that              
diagnostic probabilities can be assessed from causal ones

For nontrivial domains, we must find a way to reduce the joint size

Independence and conditional independence provide the tools
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Bayesian networks
A simple, graphical notation for conditional independence assertions and hence for 
compact specification of full joint distributions

Syntax:
a set of nodes, one per random variable
a directed, acyclic graph (link ≈ “directly influences”)
a conditional distribution for each node given its parents:

P( Xi | Parents( Xi))

In the simplest case, conditional distribution represented as a 

conditional probability table ( CPT) 

giving the distribution over Xi  for each combination of parent values

25
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Example
Topology of network encodes conditional independence assertions:

Weather is independent of the other variables

Toothache and Catch are conditionally independent given Cavity

26

Cavity

Toothache Catch

Weather
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Example 2
I am at work, my neighbour John calls to say my alarm is ringing, but neighbour 
Mary does not call. 

Sometimes the alarm is set off by minor earthquakes. 

Is there a burglar?

Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls

Network topology reflects “causal” knowledge:

A burglar can set the alarm off

An earthquake can set the alarm off

The alarm can cause John to call

The alarm can cause Mary to call

27
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Example 2 (2)

28

Alarm

JohnCalls MaryCalls

Burglary

Earthquake

P(B)

0.001
P(E)

0.002

A P(J|A)

T 0.90

F 0.05

A P(M|A)

T 0.70

F 0.01

B E P(A|B,E)

T T 0.95

T F 0.94

F T 0.29

F F 0.001
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Example 2
A CPT for Boolean Xi with k Boolean parents has                        
2k rows for the combinations of parent values 

Each row requires one number p for Xi  = true                          
(the number for Xi  = false is just 1-p)

If each variable has no more than k parents,                             
the complete network requires O( n 2k) numbers

I.e., grows linearly with n, vs. O( 2n) for the full joint distribution

For burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs. 25 - 1 = 31)

29

A

J M

B
E
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Global semantics
Global semantics defines the full joint distribution as 
the product of the local conditional distributions:

P( x1, ..., xn)  =  ∏     P(  xi | parents( Xi ))

E.g., P( j ∧ m ∧ a ∧ ¬b ∧ ¬e)

= 

31

A

J M

B
E

n

i=1

    P( j | a) P( m | a) P( a | ¬b, ¬e) P( ¬b) P( ¬e)

=  0.9 * 0.7 * 0.001 * 0.999 * 0.998

≈ 0.000628
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Constructing Bayesian networks
We need a method such that a series of locally testable assertions of conditional 
independence guarantees the required global semantics.

1. Choose an ordering of variables X1,..., Xn

2. For i = 1 to n

add Xi  to the network

select parents from X1,..., Xi-1  such that 

P( Xi | Parents( Xi)) = P( Xi | X1,..., Xi-1 )

This choice of parents guarantees the global semantics:

P( X1,..., Xn )  =  ∏    P( Xi | X1,..., Xi-1 )      (chain rule)

   = ∏     P( Xi | Parents( Xi))    (by construction)

32

n

i=1

n

i=1
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Suppose we choose the ordering M, J, A, B, E

P( J | M) = P( J) ?  

Construction example
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JohnCalls

MaryCalls

No

P( A | J, M) = P( A | J) ? P( A | J, M) = P( A) ?

Alarm

Burglary

No

P( B | A, J, M) = P( B | A) ?

P( B | A, J, M) = P( B) ?

Earthquake

Yes

No

P( E | B, A, J, M) = P( E | A) ?

P( E | B, A, J, M) = P( E | A, B) ?

No

Yes
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Deciding conditional independence is hard in noncausal directions

(Causal models and conditional independence seem hardwired for humans!)

Assessing conditional probabilities is hard in noncausal directions

Network is less compact: 1 + 2 + 4 +2 +4 = 13 numbers

Hence: Choose preferably an order corresponding to the cause → effect “chain”

Construction example

34

JohnCalls

MaryCalls

Alarm

Burglary

Earthquake
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Initial evidence:  The *** car won’t start!

Testable variables (green), “broken, so fix it” variables (yellow)

Hidden variables (blue) ensure sparse structure / reduce parameters

Locally structured (sparse): Car diagnosis 

X

battery age
alternator 

broken
fanbelt
broken

battery dead no charging

battery meter battery flat no oil no gas
fuel line
blocked

starter
broken

lights oil light gas gauge
car won’t

start!
dipstick
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Local semantics: each node is conditionally independent of its non-descendants given its 
parents

Local semantics

35

U1 Um

Znj

X
Z1j

Y1 Yn...

...
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Each node is conditionally independent of all others given its 

Markov blanket: parents + children + children’s parents

Markov blanket

X

U1 Um

Znj

X
Z1j

Y1 Yn...

...
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Compact conditional distributions
CPT grows exponentially with numbers of parents (i.e., causes to the effect)

CPT becomes infinite with continuous-valued parent or child

Solution: canonical distributions that are defined compactly

Deterministic nodes are the simplest case:

X = f( Parents( X)) for some function f 

E.g., Boolean functions

NorthAmerican  ⇔  Canadian ∨ US ∨ Mexican

E.g., numerical relationships among continuous variables 

  =  inflow + precipitation - outflow - evaporation

X

δLevel
------------------------------

   δt
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Compact conditional distributions (2)
Noisy-OR distributions model multiple noninteracting causes

1) Parents U1 ... Uk include all causes ( add leak node for “miscellaneous” ones)

2) Independent failure probability qi for each cause alone

⇒ P(X | U1, ... , Uj, ¬Uj+1, ... , ¬Uk) = 1 - ∏    qi

Number of parameters linear in number of parents

X

j

i=1

Cold Flu Malaria P( Fever) P( ¬Fever)

F F F 0.0 1.0

F F T 0.9 0.1

F T F 0.8 0.2

F T T 0.98 0.02 = 0.2 * 0.1

T F F 0.4 0.6

T F T 0.94 0.06 = 0.6 * 0.1

T T F 0.88 0.12 = 0.6 * 0.2

T T T 0.988 0.012 = 0.6 * 0.2 * 0.1
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Summary
Bayesian networks provide a natural representation for (causally induced) conditional
independence

Topology + CPTs = compact representation of joint distribution

Generally easy for (non)experts to construct

Canonical distributions (e.g., noisy-OR) = compact representation of CPTs

Continuous variables  ⇒  parameterised distributions (e.g., linear Gaussians)
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