
Probabilistic reasoning over time -
Hidden Markov Models

(recap BNs)

Applied artificial intelligence (EDA132)
Lecture 10
2016-02-17
Elin A. Topp

Material based on course book, chapter 15

1

A robot’s view of the world...

2

−5000 −4000 −3000 −2000 −1000 0 1000 2000 3000
−1000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Distance in mm relative to robot position

D
is

ta
nc

e
in

 m
m

 re
la

tiv
e

to
 ro

bo
t p

os
iti

on
Scan data
Robot

. . .

Bayes’ Rule and conditional independence
ℙ(PersonLeg | #pointsInRange ∧ curvatureCorrect)
= α ℙ(#pointsInRange ∧ curvatureCorrect | PersonLeg) ℙ(PersonLeg)
= α ℙ(#pointsInRange | PersonLeg) ℙ(curvatureCorrect | PersonLeg) ℙ(PersonLeg)

An example of a naive Bayes model:

ℙ(Cause, Effect1,, Effectn) = ℙ(Cause) ∏i ℙ(Effecti | Cause)

The total number of parameters is linear in n

3

Cause

Effect 1 Effect n

Person leg

#Points Curvature

Bayesian networks
A simple, graphical notation for conditional independence assertions and hence for
compact specification of full joint distributions

Syntax:
a set of nodes, one per random variable
a directed, acyclic graph (link ≈ “directly influences”)
a conditional distribution for each node given its parents:

P(Xi | Parents(Xi))

In the simplest case, conditional distribution represented as a

conditional probability table (CPT)

giving the distribution over Xi for each combination of parent values

4

Tracking and associating... while moving ...

5

−1000 0 1000 2000 3000 4000 5000
−1000

0

1000

2000

3000

4000

5000

Distance in mm relative to robot start position

D
is

ta
nc

e
in

 m
m

 re
la

tiv
e

to
 ro

bo
t s

ta
rt

po
si

tio
n

Target 0
Target 1
Target 2
Robot
Robot (1)

−1000 0 1000 2000 3000 4000 5000
−1000

0

1000

2000

3000

4000

5000

Distance in mm relative to robot start position

D
is

ta
nc

e
in

 m
m

 re
la

tiv
e

to
 ro

bo
t s

ta
rt

po
si

tio
n

Target 3
Target 4
Robot (1)
Robot
Robot (2)

−1000 0 1000 2000 3000 4000 5000
−1000

0

1000

2000

3000

4000

5000

Distance in mm relative to robot start position

D
is

ta
nc

e
in

 m
m

 re
la

tiv
e

to
 ro

bo
t s

ta
rt

po
si

tio
n

Target 5
Target 6
Target 7
Target 8
Robot (1)
Robot

Probabilistic reasoning over time

6

... means to keep track of the current state of

- a process (temperature controller, other controllers)

- an agent with respect to the world (localisation of a robot in some “world”)

in order to make predictions or to simply understand what might have caused this
current state.

This involves both a transition model (how the state is assumed to change) and a
sensor model (how observations / percepts are related to the world state).

Previously:

the focus was on what was possible to happen (e.g., search), now it is on what is
likely / unlikely to happen

the focus was on static worlds (Bayesian networks), now we look at dynamic
processes where everything (state AND observations) depend on time.

Three classes of approaches

7

Hidden Markov models

(Particle filters)

Kalman filters

Dynamic Bayesian networks (cover actually the other two as special cases)

But first, some basics ...

Reasoning over time

X

With

Xt the current state description at time t

Et the evidence obtained at time t

we can describe a state transition model and a sensor model that we can use to model a
time step sequence - a chain of states and sensor readings according to discrete time
steps - so that we can understand the ongoing process.

We assume to start out in X0, but evidence will only arrive after the first state
transition is made: E1 is then the first piece of evidence to be plugged into the chain.

The “general” transition model would then specify

ℙ(Xt | X0:t-1)

... this would mean we need full joint distributions over all time steps... or not?

The Markov assumption

8

A process is Markov (i.e., complies with the Markov assumption), when any given

state Xt depends only on a finite and fixed number of previous states.

155

Xt–2 Xt–1 Xt(a)

(b)

Xt+1 Xt+2

Xt–2 Xt–1 Xt Xt+1 Xt+2

Figure 15.1 FILES: figures/markov-processes.eps (Tue Nov 3 16:23:08 2009). (a) Bayesian net-
work structure corresponding to a first-order Markov process with state defined by the variables Xt. (b)
A second-order Markov process.

A first-order Markov chain as Bayesian network

9

Raint-1 Raint Raint+1

Umbrellat-1 Umbrellat Umbrellat+1

Rt-1 P(Rt | Rt-1)

T 0.7

F 0.3

Rt P(Ut | Rt)

T 0.9

F 0.2

“cause” / state

“effect” / evidence

Inference for any t

X

ℙ(X0:t, E1:t) = ℙ(X0) ∏ ℙ(Xi | Xi-1) ℙ(Ei | Xi)
t

i=1

With

ℙ(X0) the prior probability distribution in t=0 (i.e., the initial state model),

ℙ(Xi | Xi-1) the state transition model and

ℙ(Ei | Xi) the sensor model

we have the complete joint distribution for all variables for any t.

The Markov assumption

X

First-order Markov chain:

 State variables (at t) contain ALL information needed for t+1.

Sometimes, that is too strong an assumption (or too weak in some sense).

Hence, increase either the order (second-order Markov chain)

or

add information into the state variable(s) (R could include also Season, Humidity,
Pressure, Location, instead of only “Rain”)

Note: It is possible to express an increase in order by increasing the number of state
variables, keeping the order fixed - for the umbrella world you could use

R = <RainYesterday, RainToday>

When things get too complex, rather add another sensor (e.g., observe coats).

Inference in temporal models
- what can we use all this for?

10

• Filtering: Finding the belief state, or doing state estimation, i.e., computing the
posterior distribution over the most recent state, using evidence up to this point:  
ℙ(Xt | e1:t)

• Predicting: Computing the posterior over a future state, using evidence up to this

point: ℙ(Xt+k | e1:t) for some k>0 (can be used to evaluate course of action based
on predicted outcome)

• Smoothing: Computing the posterior over a past state, i.e., understand the past,

given information up to this point: ℙ(Xk | e1:t) for some k with 0 ≤ k < t

• Explaining: Find the best explanation for a series of observations, i.e., computing  
argmaxx1:t P(x1:t | e1:t) - can be efficiently handled by Viterbi algorithm

• Learning: If sensor and / or transition model are not known, they can be learned
from observations (by-product of inference in Bayesian network - both static or
dynamic). Inference gives estimates, estimates are used to update the model,
updated models provide new estimates (by inference). Iterate until converging -
again, this is an instance of the EM-algorithm.

Filtering:
Prediction & update (FORWARD-step)

11

 ℙ(Xt+1 | e1:t+1) = f(ℙ(Xt | e1:t), et+1) = f1:t+1

= ℙ(Xt+1 | e1:t, et+1) (decompose)

= α ℙ(et+1 | Xt+1, e1:t)ℙ(Xt+1 | e1:t) (Bayes’ Rule)

= α ℙ(et+1 | Xt+1) ℙ(Xt+1 | e1:t) (1. Markov assumption (sensor model),  
 2. one-step prediction)

= α ℙ(et+1 | Xt+1) ∑ ℙ(Xt+1 | xt, e1:t) P(xt | e1:t) (sum over atomic events for X)  
 xt

= α ℙ(et+1 | Xt+1) ∑ ℙ(Xt+1 | xt) P(xt | e1:t) (Markov assumption)  
 xt

ℙ(Xt | e1:t) (“forward message”, propagated recursively  
 
f1:t+1 = α FORWARD(f1:t , et+1) through “forward step function”)

f1:0 = ℙ(X0)

 

Prediction -
filtering without the update

12

 ℙ(Xt+k+1 | e1:t) = ∑ ℙ(Xt+k+1 | xt) P(xt+k | e1:t) (k-step prediction)  
 xt+k

For large k the prediction gets quite blurry and will eventually converge into a stationary
distribution at the mixing point, i.e., the point in time when this convergence is reached - in some
sense this is when “everything is possible”.  

Smoothing:
“explaining” backward

13

 ℙ(Xk | e1:t) = fb(Xk, e1:k, ℙ(ek+1:t | Xk)) with 0 ≤ k < t (understand the past from the  
 recent past)

= ℙ(Xk | e1:k, ek+1:t) (decompose)

= α ℙ(Xk | e1:k) ℙ(ek+1:t | Xk, e1:k) (Bayes’ Rule)

= α ℙ(Xk | e1:k) ℙ(ek+1:t | Xk) (Markov assumption)

= α f1:k ⨯ bk+1:t (forward-message ⨯ backward-message)

 

Smoothing:
calculating backward message

14

bk+1:t = ℙ(ek+1:t | Xk)

= ∑ ℙ(ek+1:t | Xk, xk+1) ℙ(xk+1 | Xk) (conditioning on Xk+1, i.e., looking “backward”)  
 xk+1

= ∑ P(ek+1:t | xk+1) ℙ(xk+1 | Xk) (cond. indep. - Markov assumption)  
 xk+1

= ∑ P(ek+1, ek+2:t | xk+1) ℙ(xk+1 | Xk) (decompose)  
 xk+1

= ∑ P(ek+1| xk+1) P(ek+2:t | xk+1) ℙ(xk+1 | Xk) (1. sensor, 2. backward msg, 3. transition model)  
 xk+1

= BACKWARD(bk+2:t, ek+1)

ℙ(ek+1:t | Xk) (“backward message”, propagated recursively)  
 
bk+1:t = BACKWARD(bk+2:t , ek+1) (through “backward step function”)

bt+1:t = ℙ(et+1:t | Xt) = ℙ(| Xt) = 1

 

Smoothing “in a nutshell”:
Forward-Backward-algorithm

15

ℙ(Xk | e1:t) = fb(e1:k, ℙ(ek+1:t | Xk)) with 0 ≤ k < t understand the past from the  
 recent past

= α f1:k ⨯ bk+1:t by first filtering (forward) until step k, then  
 explaining backward from t to k+1

Obviously, it is a good idea to store the filtering (forward) results for later smoothing

Drawback of the algorithm: not really suitable for online use (t is growing, ...)

Consequently, try with fixed-lag-smoothing (keeping a fixed-length window, BUT: “simple”
Forward-Backward does not really do it efficiently - here we need HMMs)

“HMM”
Hidden Markov models

16

A specific class of models (sensor and transition) to be plugged into the previously discussed
algorithms - which makes the algorithms more specific as well!

Main idea:

The state is represented by a single discrete random variable, taking on values that represent the
(all) possible states of the world.

Complex states, e.g., the location and the heading of a robot in a grid world can be merged into
one variable; the possible values are then all possible tuples of the values for each original
“single” variable.

“HMM”
State transition and sensor model

17

We get the following notation:

Xt the state at time t, taking on values 1 ... S, with S the number of possible states / values.

Et the observation at time t

The transition model P(Xt | Xt-1) is then expressed as S x S matrix T:

 Tij = P(Xt = j | Xt-1 = i) in time step t

The sensor model for the corresponding observations depending on the current state, i.e.,  
P(et | Xt = i) is then expressed as S x S diagonal matrix O in time step t with

 Oe_t
ij = P(et | Xt = i) for i = j and

 
 Oe_t

ij = 0 for i ≠ j

Forward-backward equations
as matrix-vector operations

18

Forward-equation (recap)

P(Xt+1 | e1:t+1) = f(P(Xt | e1:t), et+1) = f1:t+1 = α P(et+1 | Xt+1) ∑ P(Xt+1 | xt) P(xt | e1:t)  
 xt

becomes f1:t+1 = α Ot+1 TT f1:t

Backward-equation (recap)

P(ek+1:t | Xk) = bk+1:t = ∑ P(ek+1| xk+1) P(ek+2:t | xk+1) P(xk+1 | Xk) 
 xk+1

becomes bk+1:t = TOk+1 bk+2:t

Forward-Backward-equation is then still α f1:k ⨯ bk+1:t

Smoothing in constant space

X

Idea

propagate both f and b in the same direction, hence avoiding to store the f1:k for a shifting /
growing time slice k:t

Propagate the forward-message f “backward” with

f1:t = α’ (TT)-1O-1
t+1 f1:t+1

Start with computing ft:t in a standard forward-run, forgetting all the intermediate messages, then
compute both f and b simultaneously “backward” to do smoothing for each step this should be
done for (NOTE: works obviously only if TT and O can be inverted, i.e., every sensor reading
must be possible in every state, though it can be very unlikely)

Fixed-lag smoothing (online)

X

Idea

if we can do smoothing with constant space requirements, we can also find an efficient recursive
algorithm for online smoothing (a shifting “window”), independent of the length d of the
investigated time slice t-d (with t growing).

We need to compute

α f1:t-d ⨯ bt-d+1:t for time slice t-d. In t+1, when a new observation arrives, we need

α f1:t-d+1 ⨯ bt-d+1:t+1 for time slice t-d+1.

We can get f1:t-d+1 from f1:t-d , applying standard filtering.

For the backward message, some more inspection has to be done (bt-d+1:t+1 depends on the new
evidence in t+1) but there is a way by looking at how bt-d+1:t relates to bt+1:t

Fixed-lag smoothing (online)

X

Backward recursion:
apply the recursive equation for bt-d+1:t d times:
 t  
bt-d+1:t = (∏ TOi)bt+1:t = Bt-d+1:t 1
 i=t-d+1

Then, after the next observation, this will be:
 t+1  
bt-d+2:t+1 = (∏ TOi)bt+2:t+1 = Bt-d+2:t+1 1
 i=t-d+2

Do some matrix “division” and get an incremental update for B (and ultimately bt-d+2:t+1):
  
Bt-d+2:t+1 = O-1

t-d+1 T-1Bt-d+1:t TOt+1

The full algorithm for
fixed-lag smoothing

X

37

function FIXED-LAG-SMOOTHING(et,hmm ,d) returns a distribution over Xt−d

inputs: et, the current evidence for time step t
hmm, a hidden Markov model with S× S transition matrix T
d , the length of the lag for smoothing

persistent: t , the current time, initially 1
f, the forward message P(Xt|e1:t), initially hmm.PRIOR
B, the d-step backward transformation matrix, initially the identity matrix
et−d:t, double-ended list of evidence from t− d to t, initially empty

local variables: Ot−d,Ot, diagonal matrices containing the sensor model information

add et to the end of et−d:t

Ot← diagonal matrix containing P(et|Xt)
if t > d then
f← FORWARD(f, et)
remove et−d−1 from the beginning of et−d:t

Ot−d← diagonal matrix containing P(et−d|Xt−d)
B←O−1

t−dT
−1BTOt

else B←BTOt

t← t + 1
if t > d then return NORMALIZE(f × B1) else return null

Figure 15.6 An algorithm for smoothing with a fixed time lag of d steps, implemented as an online
algorithm that outputs the new smoothed estimate given the observation for a new time step. Notice
that the final output NORMALIZE(f×B1) is just α f× b, by Equation (??).

function PARTICLE-FILTERING(e,N ,dbn) returns a set of samples for the next time step
inputs: e, the new incoming evidence

N , the number of samples to be maintained
dbn , a DBN with prior P(X0), transition model P(X1|X0), sensor model P(E1|X1)

persistent: S , a vector of samples of size N , initially generated from P(X0)
local variables: W , a vector of weights of size N

for i = 1 to N do
S [i]← sample from P(X1 | X0 = S [i]) /* step 1 */
W [i]←P(e | X1 = S[i]) /* step 2 */

S←WEIGHTED-SAMPLE-WITH-REPLACEMENT(N ,S ,W) /* step 3 */
return S

Figure 15.17 The particle filtering algorithm implemented as a recursive update operation with state
(the set of samples). Each of the sampling operations involves sampling the relevant slice variables
in topological order, much as in PRIOR-SAMPLE. The WEIGHTED-SAMPLE-WITH-REPLACEMENT
operation can be implemented to run in O(N) expected time. The step numbers refer to the description
in the text.

Summary

19

Inference in temporal models

- Filtering and prediction (FORWARD)

- Smoothing (FORWARD-BACKWARD)

Hidden Markov Models

- Simplified matrix representation for Forward-backward calculations

Assignment 3

20

?
(look on the course page...)

