
Probabilistic reasoning over time -  
Hidden Markov Models

(recap BNs)

Applied artificial intelligence (EDA132)
Lecture 10
2016-02-17
Elin A. Topp

Material based on course book, chapter 15
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A robot’s view of the world...
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.  .  .

Bayes’ Rule and conditional independence
ℙ( PersonLeg | #pointsInRange ∧ curvatureCorrect)                                                                                  
=  α ℙ( #pointsInRange ∧ curvatureCorrect | PersonLeg) ℙ( PersonLeg)                                                
=  α ℙ( #pointsInRange | PersonLeg) ℙ( curvatureCorrect | PersonLeg) ℙ( PersonLeg)                                      

An example of a naive Bayes model:

ℙ( Cause, Effect1, ...., Effectn) =   ℙ( Cause) ∏i ℙ( Effecti | Cause) 

The total number of parameters is linear in n
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Bayesian networks
A simple, graphical notation for conditional independence assertions and hence for 
compact specification of full joint distributions

Syntax:
a set of nodes, one per random variable
a directed, acyclic graph (link ≈ “directly influences”)
a conditional distribution for each node given its parents:

P( Xi | Parents( Xi))

In the simplest case, conditional distribution represented as a 

conditional probability table ( CPT) 

giving the distribution over Xi  for each combination of parent values
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Tracking and associating... while moving ...
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Probabilistic reasoning over time
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... means to keep track of the current state of 

- a process (temperature controller, other controllers)

- an agent with respect to the world (localisation of a robot in some “world”)

in order to make predictions or to simply understand what might have caused this 
current state.

This involves both a transition model (how the state is assumed to change) and a 
sensor model (how observations / percepts are related to the world state).

Previously: 

the focus was on what was possible to happen (e.g., search), now it is on what is 
likely / unlikely to happen

the focus was on static worlds (Bayesian networks), now we look at dynamic 
processes where everything (state AND observations) depend on time.



Three classes of approaches
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Hidden Markov models 

(Particle filters)

Kalman filters

Dynamic Bayesian networks (cover actually the other two as special cases)

But first, some basics ...



Reasoning over time

X

With

Xt  the current state description at time t

Et  the evidence obtained at time t

we can describe a state transition model and a sensor model that we can use to model a 
time step sequence - a chain of states and sensor readings according to discrete time 
steps - so that we can understand the ongoing process.  

We assume to start out in X0, but evidence will only arrive after the first state 
transition is made: E1 is then the first piece of evidence to be plugged into the chain.

The “general” transition model would then specify

ℙ( Xt | X0:t-1) 

... this would mean we need full joint distributions over all time steps... or not?



The Markov assumption
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A process is Markov (i.e., complies with the Markov assumption), when any given 

state Xt depends only on a finite and fixed number of previous states. 

155

Xt–2 Xt–1 Xt(a)

(b)

Xt+1 Xt+2

Xt–2 Xt–1 Xt Xt+1 Xt+2

Figure 15.1 FILES: figures/markov-processes.eps (Tue Nov 3 16:23:08 2009). (a) Bayesian net-
work structure corresponding to a first-order Markov process with state defined by the variables Xt. (b)
A second-order Markov process.



A first-order Markov chain as Bayesian network
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Raint-1 Raint Raint+1

Umbrellat-1 Umbrellat Umbrellat+1

Rt-1 P(Rt | Rt-1)

T 0.7

F 0.3

Rt P(Ut | Rt)

T 0.9

F 0.2

“cause” / state

“effect” / evidence



Inference for any t

X

ℙ( X0:t, E1:t)  = ℙ( X0) ∏    ℙ( Xi | Xi-1) ℙ( Ei | Xi) 
t

i=1

With

ℙ( X0) the prior probability distribution in t=0 (i.e., the initial state model),

ℙ( Xi | Xi-1) the state transition model and

ℙ( Ei | Xi) the sensor model

we have the complete joint distribution for all variables for any t.



The Markov assumption

X

First-order Markov chain:

                  State variables (at t) contain ALL information needed for t+1.

Sometimes, that is too strong an assumption (or too weak in some sense).

Hence, increase either the order (second-order Markov chain)

or 

add information into the state variable(s) (R could include also Season, Humidity, 
Pressure, Location, instead of only “Rain”)

Note: It is possible to express an increase in order by increasing the number of state 
variables, keeping the order fixed - for the umbrella world you could use 

R = <RainYesterday, RainToday> 

When things get too complex, rather add another sensor (e.g., observe coats).



Inference in temporal models 
- what can we use all this for?
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• Filtering: Finding the belief state, or doing state estimation, i.e., computing the 
posterior distribution over the most recent state, using evidence up to this point:  
ℙ( Xt | e1:t)

• Predicting: Computing the posterior over a future state, using evidence up to this 

point: ℙ( Xt+k | e1:t) for some k>0 (can be used to evaluate course of action based 
on predicted outcome)

• Smoothing: Computing the posterior over a past state, i.e., understand the past, 

given information up to this point: ℙ( Xk | e1:t) for some k with 0 ≤ k < t

• Explaining: Find the best explanation for a series of observations, i.e., computing  
argmaxx1:t P( x1:t | e1:t) - can be efficiently handled by Viterbi algorithm

• Learning: If sensor and / or transition model are not known, they can be learned 
from observations (by-product of inference in Bayesian network - both static or 
dynamic). Inference gives estimates, estimates are used to update the model, 
updated models provide new estimates (by inference). Iterate until converging - 
again, this is an instance of the EM-algorithm.



Filtering: 
Prediction & update (FORWARD-step)
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   ℙ( Xt+1 | e1:t+1) = f( ℙ( Xt | e1:t), et+1)  = f1:t+1                         

= ℙ( Xt+1 | e1:t, et+1)                                                     (decompose)

= α ℙ( et+1 | Xt+1, e1:t)ℙ( Xt+1 | e1:t)                               (Bayes’ Rule)

= α ℙ( et+1 | Xt+1)  ℙ( Xt+1 | e1:t)                                   (1. Markov assumption (sensor model),      
                                                                                   2. one-step prediction)

= α ℙ( et+1 | Xt+1)  ∑ ℙ( Xt+1 | xt, e1:t) P( xt | e1:t)            (sum over atomic events for X)  
                             xt

= α ℙ( et+1 | Xt+1)  ∑ ℙ( Xt+1 | xt) P( xt | e1:t)                  (Markov assumption)   
                             xt

ℙ( Xt | e1:t)                                                 (“forward message”, propagated recursively   
 
f1:t+1 = α FORWARD( f1:t , et+1)                     through “forward step function”) 

f1:0    = ℙ( X0)

 



Prediction - 
filtering without the update
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 ℙ( Xt+k+1 | e1:t) = ∑ ℙ( Xt+k+1 | xt) P( xt+k | e1:t)            (k-step prediction)                       
                          xt+k

For large k the prediction gets quite blurry and will eventually converge into a stationary 
distribution at the mixing point, i.e., the point in time when this convergence is reached - in some 
sense this is when “everything is possible”.  



Smoothing: 
“explaining” backward
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   ℙ( Xk | e1:t) = fb( Xk, e1:k, ℙ( ek+1:t | Xk)) with 0 ≤ k < t     (understand the past from the  
                                                                                     recent past)                 

= ℙ( Xk | e1:k, ek+1:t)                                                   (decompose)

= α ℙ( Xk | e1:k) ℙ( ek+1:t | Xk, e1:k)                             (Bayes’ Rule)

= α ℙ( Xk | e1:k) ℙ( ek+1:t | Xk)                                   (Markov assumption)

= α f1:k  ⨯ bk+1:t                                                       (forward-message ⨯ backward-message)

 



Smoothing: 
calculating backward message
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bk+1:t  =  ℙ( ek+1:t | Xk)  

= ∑ ℙ( ek+1:t | Xk, xk+1) ℙ( xk+1 | Xk)            (conditioning on Xk+1, i.e., looking “backward”)  
   xk+1

= ∑ P( ek+1:t | xk+1) ℙ( xk+1 | Xk)                 (cond. indep. - Markov assumption)  
   xk+1

= ∑ P( ek+1, ek+2:t | xk+1) ℙ( xk+1 | Xk)                 (decompose)  
   xk+1

= ∑ P( ek+1| xk+1) P( ek+2:t | xk+1) ℙ( xk+1 | Xk)      (1. sensor, 2. backward msg, 3. transition model)  
   xk+1

= BACKWARD( bk+2:t, ek+1)

ℙ( ek+1:t | Xk)                             (“backward message”, propagated recursively)   
 
bk+1:t = BACKWARD( bk+2:t , ek+1)    (through “backward step function”) 

bt+1:t  = ℙ( et+1:t | Xt) = ℙ( | Xt) = 1

 



Smoothing “in a nutshell”: 
Forward-Backward-algorithm
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ℙ( Xk | e1:t) = fb( e1:k, ℙ( ek+1:t | Xk)) with 0 ≤ k < t     understand the past from the  
                                                                                  recent past                 

= α f1:k  ⨯ bk+1:t                                                     by first filtering (forward) until step k, then  
                                                                             explaining backward from t to k+1

Obviously, it is a good idea to store the filtering (forward) results for later smoothing

Drawback of the algorithm: not really suitable for online use (t is growing, ...)

Consequently, try with fixed-lag-smoothing (keeping a fixed-length window, BUT: “simple” 
Forward-Backward does not really do it efficiently - here we need HMMs)



“HMM” 
Hidden Markov models
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A specific class of models (sensor and transition) to be plugged into the previously discussed 
algorithms - which makes the algorithms more specific as well!

Main idea: 

The state is represented by a single discrete random variable, taking on values that represent the 
(all) possible states of the world. 

Complex states, e.g., the location and the heading of a robot in a grid world can be merged into 
one variable; the possible values are then all possible tuples of the values for each original 
“single” variable.



“HMM” 
State transition and sensor model
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We get the following notation:

Xt  the state at time t, taking on values 1 ... S, with S the number of possible states / values. 

Et  the observation at time t

The transition model P( Xt  | Xt-1 ) is then expressed as S x S matrix T:

                                         Tij  = P( Xt  = j | Xt-1 = i) in time step t

The sensor model for the corresponding observations depending on the current state, i.e.,  
P( et  | Xt = i) is then expressed as S x S diagonal matrix O in time step t with

                                         Oe_t
ij  = P( et | Xt = i)    for i  = j                              and 

 
                                         Oe_t

ij  = 0                    for i ≠ j 



Forward-backward equations 
as matrix-vector operations
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Forward-equation (recap) 

P( Xt+1 | e1:t+1) = f( P( Xt | e1:t), et+1)  = f1:t+1 = α P( et+1 | Xt+1)  ∑ P( Xt+1 | xt) P( xt | e1:t)                                                   
                                                                                             xt

becomes f1:t+1 = α Ot+1 TT f1:t

Backward-equation (recap) 

P( ek+1:t | Xk) = bk+1:t  = ∑ P( ek+1| xk+1) P( ek+2:t | xk+1) P( xk+1 | Xk) 
                                   xk+1

becomes bk+1:t = TOk+1 bk+2:t

Forward-Backward-equation is then still  α f1:k  ⨯ bk+1:t 



Smoothing in constant space

X

Idea 

propagate both f and b in the same direction, hence avoiding to store the f1:k for a shifting / 
growing time slice k:t

Propagate the forward-message f “backward” with

f1:t = α’ (TT )-1O-1
t+1 f1:t+1

Start with computing ft:t in a standard forward-run, forgetting all the intermediate messages, then 
compute both f and b simultaneously “backward” to do smoothing for each step this should be 
done for (NOTE: works obviously only if  TT and O can be inverted, i.e., every sensor reading 
must be possible in every state, though it can be very unlikely)



Fixed-lag smoothing (online)

X

Idea 

if we can do smoothing with constant space requirements, we can also find an efficient recursive 
algorithm for online smoothing (a shifting “window”), independent of the length d of the 
investigated time slice t-d (with t growing).

We need to compute

α f1:t-d  ⨯ bt-d+1:t  for time slice t-d. In t+1, when a new observation arrives, we need

α f1:t-d+1  ⨯ bt-d+1:t+1 for time slice t-d+1.

We can get f1:t-d+1 from f1:t-d , applying standard filtering.

For the backward message, some more inspection has to be done (bt-d+1:t+1 depends on the new 
evidence in t+1) but there is a way by looking at how bt-d+1:t  relates to bt+1:t



Fixed-lag smoothing (online)

X

Backward recursion:
apply the recursive equation for bt-d+1:t d times:
                t    
bt-d+1:t = ( ∏  TOi)bt+1:t = Bt-d+1:t 1
         i=t-d+1  

Then, after the next observation, this will be:
                 t+1    
bt-d+2:t+1 = ( ∏  TOi)bt+2:t+1 = Bt-d+2:t+1 1
          i=t-d+2  

Do some matrix “division” and get an incremental update for B (and ultimately bt-d+2:t+1):
                      
Bt-d+2:t+1 =  O-1

t-d+1 T-1Bt-d+1:t TOt+1



The full algorithm for 
fixed-lag smoothing

X
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function FIXED-LAG-SMOOTHING(et,hmm ,d ) returns a distribution over Xt−d

inputs: et, the current evidence for time step t
hmm, a hidden Markov model with S× S transition matrix T
d , the length of the lag for smoothing

persistent: t , the current time, initially 1
f, the forward message P(Xt|e1:t), initially hmm.PRIOR
B, the d-step backward transformation matrix, initially the identity matrix
et−d:t, double-ended list of evidence from t− d to t, initially empty

local variables: Ot−d,Ot, diagonal matrices containing the sensor model information

add et to the end of et−d:t

Ot← diagonal matrix containing P(et|Xt)
if t > d then
f← FORWARD(f, et)
remove et−d−1 from the beginning of et−d:t

Ot−d← diagonal matrix containing P(et−d|Xt−d)
B←O−1

t−dT
−1BTOt

else B←BTOt

t← t + 1
if t > d then return NORMALIZE(f × B1) else return null

Figure 15.6 An algorithm for smoothing with a fixed time lag of d steps, implemented as an online
algorithm that outputs the new smoothed estimate given the observation for a new time step. Notice
that the final output NORMALIZE(f×B1) is just α f× b, by Equation (??).

function PARTICLE-FILTERING(e,N ,dbn) returns a set of samples for the next time step
inputs: e, the new incoming evidence

N , the number of samples to be maintained
dbn , a DBN with prior P(X0), transition model P(X1|X0), sensor model P(E1|X1)

persistent: S , a vector of samples of size N , initially generated from P(X0)
local variables: W , a vector of weights of size N

for i = 1 to N do
S [i]← sample from P(X1 | X0 = S [i ]) /* step 1 */
W [i]←P(e | X1 = S[i]) /* step 2 */

S←WEIGHTED-SAMPLE-WITH-REPLACEMENT(N ,S ,W ) /* step 3 */
return S

Figure 15.17 The particle filtering algorithm implemented as a recursive update operation with state
(the set of samples). Each of the sampling operations involves sampling the relevant slice variables
in topological order, much as in PRIOR-SAMPLE. The WEIGHTED-SAMPLE-WITH-REPLACEMENT
operation can be implemented to run in O(N) expected time. The step numbers refer to the description
in the text.



Summary
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Inference in temporal models

- Filtering and prediction (FORWARD)

- Smoothing (FORWARD-BACKWARD)

Hidden Markov Models

- Simplified matrix representation for Forward-backward calculations



Assignment 3
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?
(look on the course page...)


