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IBM Watson example

https://www.youtube.com/watch?v=DywO4zksfXw
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Knowrob: Why is knowledge so important?

if the robot does not know about the task, the environment, or
the robot, then the programmer has to hardcode everything

programming/instructing at an abstract/semantic level
put the bolt into the nut and fasten it
pour water into the glass
. . .
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Knowrob: Ontology (knowrob.owl)
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Knowrob: A task ontology
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Knowrob: A task ontology
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Knowrob: Knowledge types
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KnowRob Components
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Knowrob: Procedural attachments

Compute symbolic
knowledge on demand
from data structures that
already exist on the robot
by attaching procedures
to semantic classes and
properties
Re-use existing
information and make
sure abstract knowledge
is grounded
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Knowrob: Inferring storage location
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Knowrob: Summary

declarative knowledge: ontologies
procedural attachment
logical inference
multi-modal representation

Video (13 mins):
https://www.youtube.com/watch?v=4usoE981e7I
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Plan for today

1 Knowledge-based systems
Tacit knowledge
Inferred knowledge
Domain-specific stuff
Changing premises
Uncertainty
Semantic anchoring

2 Architectures
3 Self-awareness
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Tacit knowledge

Facts about:

objects
places
times
events
processes
behaviours
vehicle dynamics
rigid body interactions
traffic laws
. . .
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Knowledge Representation

Tacit knowledge

Background knowledge for all this includes:

ontologies
theories
physics
mereology
. . .

Not everything needs to be explicit, nor expressed in one
monolithic formalism
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Inferred knowledge

(or: turning implicit into explicit)

1 logics (language)
2 theorem proving (mechanics)
3 modes of reasoning
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Logics: modal

1 take a logical language, let ↵ be a wff
2 ⇤↵ is a wff
3 ⌃↵ is a wff
4 normally ⇤↵ $ ¬⌃¬↵

Intended meaning?

1 ⇤↵ means Necessarily ↵
2 ⇤↵ means Agent knows ↵
3 ⇤↵ means Agent believes ↵
4 ⇤↵ means Always in the future ↵
5 G↵ means Always in the future (or: Globally) ↵
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Logics: Kripke semantics

Actually, meaning of modal formulae is defined on graph structures

Nodes: possible worlds

Edges: reachability relation

p,q,r

~p,q,r

~p,q,~r

p,q,~r

p,q,r~p,~q,r

p,~q,r

p,q,~r
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Logics: temporal

1 Globally (always):
⇤�

2 Finally (eventually):
⌃�

3 Next:
��

4 Until:
 U�

Cf. Richard Murray’s verification of autonomous car controller:

(�e
init ^⇤�e

safe ^⇤⌃�e
prog) ! (�s

init ^⇤�s
safe ^⇤⌃�s

prog)
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Logics: description

Earlier known as semantic networks. Formal version of semantic
web languages (OIL, DAML, OWL).

Effective reasoning:
inheritance via SubsetOf (SubClass) and MemberOf (isA) links
intersection paths
special meaning of some links (e.g. cardinality constraints)
classification, consistency, subsumption

Jacek Malec, Computer Science, Lund University 19(39)
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Representation: ontologies

Lots of robot-related ontologies:
knowrob, IEEE CORA (Standard 1872-2015), intelligent systems
ontology (2005, NIST), ...

Jacek Malec, Computer Science, Lund University 20(39)
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Modes of reasoning: Deduction

RedLightAt(intersection1)
8(x)RedLightAt(x) ! �StopBefore(x)

thus

�StopBefore(intersection1)
General Pattern:

1 prior facts
2 domain knowledge
3 observations

4 conclusions
Sound. But note:
Birds fly. Tweety is a penguin. Penguins are birds.
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Modes of reasoning: Induction

OnDesk(monitor1) ^ Monitor(monitor1),
OnDesk(monitor2) ^ Monitor(monitor2),
OnDesk(monitor3) ^ Monitor(monitor3),
OnDesk(monitor4) ^ Monitor(monitor4),
OnDesk(monitor5) ^ Monitor(monitor5)
thus
8(x)Monitor(x) ! OnDesk(x)

General pattern:
1 Observe
2 Generalize

Fallible. Constructs hypotheses, not true facts. However, most of
our practical reasoning, in particular learning, is of this kind.

Jacek Malec, Computer Science, Lund University 22(39)
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Modes of reasoning: Abduction

General pattern:
1 prior facts
2 domain knowledge
3 observations

4 explain the observation
Given a theory T and observations O
E is an explanation of O given T if
E [ T |= O and E [ T is consistent.
Usually we are interested in most plausible E , sometimes minimal
E , most elegant E , ...

Probablilistic abduction: maybe Elin will mention it.
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What do we want to represent?

objects
places
times
events
processes
behaviours
vehicle dynamics
rigid body interactions
traffic laws
. . .
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Qualitative spatial reasoning
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Qualitative spatial reasoning

RCC8: region connection calculus
Given e.g.,
contains(A,B) ^ covers(B,C) we can conclude contains(A,C)

⇤(meet(A,B) ! �(meet(A,B) _ disjoint(A,B) _ overlap(A,B)))

Jacek Malec, Computer Science, Lund University 27(39)
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Juggling example (Apt)
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Interval calculus (Allen 1983)
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Invalidating conclusions

Tweety is a bird.
So it flies.

But Tweety is a penguin.
So it doesn’t fly.

Non-monotonic reasoning.

Truth-maintenance systems.

Default reasoning. Circumscription. Closed World Assumption.
Negation as failure. . . .
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Uncertainty

Every perception is associated with uncertainty. Account for that.
(Yesterday lectures. Perception module.)

Approaches:
probabilistic representations
fuzzy approaches
multi-valued logics

Transformations between representations as needed.
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Back to KnowRob
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KnowRob lessons

Beetz and Tenorth, AIJ, 2016:
1 No fixed levels of abstraction, no layers, no “black boxes”;
2 A knowledge base should reuse data structures of the robot’s

control program;
3 Symbolic knowledge bases are useful, but not sufficient;
4 Robots need multiple inference methods;
5 Evaluating a robot knowledge base is difficult.
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Architectures of knowledge-based systems

AIMA agents (cf. introductory lecture)
1 Logical agents - declarative, compositional
2 Rule-based systems - compositionality on the rule level
3 Layered systems (distribution of concerns)
4 Blackboards - compositionality of reasoners (knowledge

sources) (KnowRob, our SIARAS system)
5 Stream-oriented reasoning - Heintz@LiU
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KnowRob as a blackboard
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Self-awareness: Autoepistemic logic

1 Distribution axiom K:

(K↵ ^ K (↵ ! �)) ! K�

2 Knowledge axiom T:
K↵ ! ↵

3 Positive introspection 4:

K↵ ! KK↵

4 Negative introspection 5:

¬K↵ ! K¬K↵
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Self-awareness: motivation

1 true autonomy requires self-awareness
2 autoepistemic logic captures just one aspect: awareness of

own knowledge
3 resource limitations: anytime algorithms, active logic
4 interaction: distributed knowledge
5 interaction: shared knowledge
6 explanation of own behaviour (trust)

Jacek Malec, Computer Science, Lund University 37(39)
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