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1



Bayesian networks
A simple, graphical notation for conditional independence assertions and hence for 
compact specification of full joint distributions

Syntax:
a set of nodes, one per random variable
a directed, acyclic graph (link ≈ “directly influences”)
a conditional distribution for each node given its parents:

P( Xi | Parents( Xi))

In the simplest case, conditional distribution represented as a 

conditional probability table ( CPT) 

giving the distribution over Xi  for each combination of parent values
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Example
Topology of network encodes conditional independence assertions:

Weather is (unconditionally, absolutely) independent of the other variables

Toothache and Catch are conditionally independent given Cavity
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Cavity

Toothache Catch
Weather

P(W=sunny) P(W=rainy) P(W=cloudy) P(W=snow)

0.72 0.1 0.08 0.1

P(Cav) P(¬Cav)

0.2 0.8

Cav P(T|Cav) P(¬T|Cav)

T 0.6 0.4

F 0.1 0.9

Cav P(C|Cav) P(¬C|Cav)

T 0.9 0.1

F 0.2 0.8

We can skip the dependent columns in the tables to reduce complexity!

P(W=sunny) P(W=rainy) P(W=cloudy)

0.72 0.1 0.08

P(Cav)

0.2

Cav P(T|Cav)

T 0.6

F 0.1

Cav P(C|Cav)

T 0.9

F 0.2



Example 2
I am at work, my neighbour John calls to say my alarm is ringing, but neighbour 
Mary does not call. 

Sometimes the alarm is set off by minor earthquakes. 

Is there a burglar?

Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls

Network topology reflects “causal” knowledge:

A burglar can set the alarm off

An earthquake can set the alarm off

The alarm can cause John to call

The alarm can cause Mary to call
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Example 2 (2)
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Alarm

JohnCalls MaryCalls

Burglary

Earthquake

P(B)

0,001 P(E)

0,002

A P(J|A)

T 0,9

F 0,05

A P(M|A)

T 0,7

F 0,01

B E P(A|B,E)

T T 0,95

T F 0,94

F T 0,29

F F 0,001



Global semantics
Global semantics defines the full joint distribution as 
the product of the local conditional distributions:

P( x1, ..., xn)  =  ∏     P(  xi | parents( Xi ))

E.g., P( j ∧ m ∧ a ∧ ¬b ∧ ¬e)

= 
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A

J M

B
E

n

i=1

    P( j | a) P( m | a) P( a | ¬b, ¬e) P( ¬b) P( ¬e)

=  0.9 * 0.7 * 0.001 * 0.999 * 0.998

≈ 0.000628



Constructing Bayesian networks
We need a method such that a series of locally testable assertions of conditional 
independence guarantees the required global semantics.

1. Choose an ordering of variables X1,..., Xn

2. For i = 1 to n

add Xi  to the network

select parents from X1,..., Xi-1  such that 

P( Xi | Parents( Xi)) = P( Xi | X1,..., Xi-1 )

This choice of parents guarantees the global semantics:

P( X1,..., Xn )  =  ∏    P( Xi | X1,..., Xi-1 )      (chain rule)

   = ∏     P( Xi | Parents( Xi))    (by construction)
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Deciding conditional independence is hard in noncausal directions

(Causal models and conditional independence seem hardwired for humans!)

Assessing conditional probabilities is hard in noncausal directions

Network is less compact: 1 + 2 + 4 +2 +4 = 13 numbers

Hence: Choose preferably an order corresponding to the cause → effect “chain”

Construction example
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JohnCalls

MaryCalls

Alarm

Burglary

Earthquake



Initial evidence:  The *** car won’t start!

Testable variables (green), “broken, so fix it” variables (yellow)

Hidden variables (blue) ensure sparse structure / reduce parameters

Locally structured (sparse) network 
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battery age
alternator 

broken
fanbelt
broken

battery dead no charging

battery meter battery flat no oil no gas
fuel line
blocked

starter
broken

lights oil light gas gauge
car won’t 

start!
dipstick



How do we get the numbers into the network???

How do we determine the network structure? 

More general: How can we predict and explain based on (limited) experience?

And now - learning.
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A robot’s view of the world...

11

−5000 −4000 −3000 −2000 −1000 0 1000 2000 3000
−1000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Distance in mm relative to robot position

D
is

ta
nc

e 
in

 m
m

 re
la

tiv
e 

to
 ro

bo
t p

os
iti

on
Scan data
Robot



Predicting the next pattern type
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?

Images preprocessed into categories / collections according to the type of situation and 
possible numbers of  “leg-like” patterns based on the knowledge of how many persons were in 
the room at a given time.
Labels for the image categories are lost, only numbers and pattern labels remain…

Hypotheses for types of pattern collection (i.e., images from a certain situation) are also 
available, with their priors:

h1: only furniture                                            P(h1) = 0.1

h2: mostly furniture (75%), few persons            P(h2) = 0.2

h3: half furniture (50%), half persons                 P(h3) = 0.4

h4: few furniture (25%), mostly persons            P(h4) = 0.2

h5: only persons                                             P(h5) = 0.1
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Maximum Likelihood
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We can predict (probabilities) by maximizing the likelihood of having observed some 

particular data with the help of the Maximum Likelihood hypothesis:

       hML = argmax P( D | h)
      h

… which is a strong simplification disregarding the priors…
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“Maximum A Posteriori” - MAP
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Finding the slightly more sophisticated Maximum A Posteriori hypothesis:

       hMAP = argmax P( h | D)
      h

Then predict by assuming the MAP-hypothesis (quite bold)

ℙ( X | D) = P( X | hMAP) 
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Optimal Bayes learner
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Prediction for X, given some observations D = <d0, d1 .... dn>

ℙ( X | D) = ∑i ℙ( X | hi) P( hi | D)       in first step, P( hi | D) = P( hi)...
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Learning from experience

X

Prediction for the first pattern picked, assuming e.g., h3, and no observations are made:

P( d0 = Furniture | h3) = P( d0 = Person | h3) = 0.5

First pattern is of type person, now we know:

P( h1 | d0) = 0                    (as P( d0 | h1) = 0), etc...

After 10 patterns that all turn out to be Person, assuming that outcomes for di are i.i.d. 

(independent and identically distributed):

P( D | hk) = ∏i P( di | hk)  

ℙ( hk | D) = ℙ( D | hk) P( hk) / ℙ( D) = α ℙ( D | hk) P( hk)
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Posterior probabilities
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Prediction after sampling
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Optimal learning vs MAP-estimating

X

Predict by assuming the MAP-hypothesis: 

ℙ( X | D) = P( X | hMAP)                with hMAP = argmax P( h | D)  
                                                                          h

i.e., P_hMAP( d4 = Person | d1 = d2 = d3 = Person) = P( X | h5) = 1

While the optimal classifier / learner predicts 

P( d4 = Person | d1 = d2 = d3 = Person) = ... = 0.7961 

However, they will grow closer! Consequently, the MAP-learner should not be 
considered for small sets of training data!
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The Gibbs Algorithm
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Optimal Bayes Learner is costly, MAP-learner might be as well.

Gibbs algorithm (surprisingly well working under certain conditions regarding the a 

posteriori distribution for H):

1. Choose a hypothesis h from H at random, according to the posterior probability 

distribution over H (i.e., rule out “impossible” hypotheses)

2. Use h to predict the classification of the next instance x.



Bayes’ Rule

Bayes’ Rule P( a | b) = 

or in distribution form:

ℙ(  Y | X) =                         =  α ℙ( X | Y) ℙ(  Y) 

Useful for assessing diagnostic probability from causal probability

P( Cause | Effect)  = 

And, if independence ( at least conditional such) can be assumed:

Naive Bayes model: ℙ( Cause, Effect1, ...., Effectn) =   ℙ( Cause) ∏i ℙ( Effecti | Cause)
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ℙ( X | Y) ℙ( Y)
-----------------------------------------------------------------

      ℙ( X)

P( Effect | Cause) P( Cause)
-------------------------------------------------------------------------------------------------------------------------------

             P( Effect)

P( b | a) P( a)
--------------------------------------------------------------

       P( b)



Naive Bayes classifier
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Each instance (pattern) with a value vj from a fixed set V (= {furniture, person}) in a 

training set (all patterns registered and annotated) is described by several attributes 

<a1, ... , ai, ... , an> (e.g., number of laser data points, curvature of the “arc”, distance 

from first to last point)

Now we try to maximise:

       vMAP = argmax P( vj | a1, a2, .... an)
                      vj

              = argmax 
                      vj

              = argmax P( a1, a2, .... an | vj) P(vj)
                      vj

And (by assuming independence) end up with the Naive Bayes Classifier 

(corresponding in some sense to the MAP-hypothesis):

vNB = argmax P(vj) ∏i P( ai | vj )
                      vj

P(a1, a2, .... an | vj) P(vj)
---------------------------------------------------------------------------------------------------

     P(a1, a2, .... an)



Or, finding the class for the pattern...  
(true model)
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CN D

Class P(Class)

0.5

Class P(N=n1|Class) = P(C = c1 | Class) = P(D = d1| Class)

Furniture 0.8

Person 0.3

N = No of points, 
n1 = “N<threshold”, n2 = “N >= threshold”

C = Curvature, 
c1 = “C=strong”, c2 = “weak”

D = Distance first to last point, 
d1 = “D<threshold”, d2 = “D >= threshold



Learning Bayesian Belief Networks
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Two issues:

Learning the CPTs given a suitable structure AND all variables are observable:

Estimate the CPTs as for a Naive Bayes Classifier / Learner (relatively easy)

Learning the CPTs given a network structure with only partially observable variables:

Corresponds to learning the weights of hidden units in a neural network (ascent 

gradient or EM)

Learning the network structure

Difficult. Bayesian scoring method for choosing among alternative networks. 



Expectation maximization - EM algorithm
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A situation with some variables being sometimes unobservable, sometimes observable is 

quite common.

Use the observations that are available to predict in cases where there is not any 

observation.

Step 1: Estimate value for the hidden variable given some parameters (observed, initial...)

Step 2: Maximize parameters assuming this estimate



Excourse: Classifying text
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Our approach to representing arbitrary text is disturbingly simple: Given a text document, 

such as this paragraph, we define an attribute for each word position in the document and 

define the value of that attribute to be the English word found in that position. Thus, the 

current paragraph would be described by 111 attribute values, corresponding to the 111 word 

positions. The value of the first attribute is the word “our”, the value of the second attribute is 

the word “approach”, and so on. Notice that long text documents will require a larger number 

of attributes than short documents. As we shall see, this will not cause us any trouble. (*)

vNB = argmax P(vj) ∏i
111

 P( ai | vj ) = P( vj) P( a1 = “our” | vj) * .... * P( a111 = “trouble” | vj)
               vj ∈ {like, dislike}

(*)[Tom M. Mitchell, “Machine Learning”, p 180]



Naive Bayes Classifier for text
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Given a test person who classified 1000 text samples into the categories “like” and “dislike” (i.e., the target value 
set V) and those text samples (Examples), the text from the previous slide is to be classified with the help of the 
Naive Bayes Classifier. This algorithm (from Tom M. Mitchell, “Machine Learning”, p 183) assumes (and learns) the 
m-estimate for P( wk | vj), the term describing the probability that a randomly drawn word from a document in 
class vj  will be the word wk.

LEARN_NAIVE_BAYES_TEXT( Examples, V)
/* learn probability terms P( wk | vj) and the class prior probabilities P( vj ) */
1. Collect all words, punctuation, and other tokens that occur in Examples

•  Vocabulary ⟵	
  the set of	
  all distinct words and other tokens occurring in any text document from Examples
2. calculate the required P( vj ) and P( wk | vj) terms

• docsj ⟵	
  the subset of documents from Examples for which the target value is vj

• P( vj ) ⟵	
  | docsj | / | Examples |
• Textj  ⟵	
  a single document created by concatenating all members of docsj

• n  ⟵	
  total number of distinct word positions in Textj
• for each word wk  in Vocabulary

• nk ⟵	
  number of times word wk occurs in Textj
• P( wk | vj) ⟵	
  ( nk +1) / ( n + | Vocabulary |)                             /* m-estimate */

CLASSIFY_NAIVE_BAYES_TEXT( Doc)
/* Return the estimated target value for the document Doc. ai denotes the word found in ith position within Doc.

• positions ⟵	
  all word positions in Doc that contain tokens found in Vocabulary
• Return vNB, where                  

                                                 vNB = argmax    P(vj)    ∏       P( ai | vj ) 
                                                            vj ∈V            i ∈positions



Summary
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Maximum likelihood hypothesis and MAP-hypothesis / learning

Optimal Bayes learner / classifier

Gibbs algorithm

Naive Bayes classifier

Learning Bayesian Belief Networks 
         - EM algorithm

(Example: The GeNIe network for interaction patterns)


