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Material based on course book, chapter 20, 
and on Tom M. Mitchell, “Machine Learning”, McGraw-Hill, 1997
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Bayes’ Rule

Bayes’ Rule P( a | b) = 

or in distribution form:

P(  Y | X) =                         =  α P( X | Y) P(  Y) 

Useful for assessing diagnostic probability from causal probability

P( Cause | Effect)  = 

2

P( X | Y) P( Y)
-----------------------------------------------------------------

      P( X)

P( Effect | Cause) P( Cause)
-------------------------------------------------------------------------------------------------------------------------------

             P( Effect)

P( b | a) P( a)
--------------------------------------------------------------

       P( b)
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.  .  .

Bayes’ Rule and conditional independence
P( Cavity | toothache ∧ catch)                                                                                  
=  α P( toothache ∧ catch | Cavity) P( Cavity)                                                
=  α P( toothache | Cavity) P( catch | Cavity) P( Cavity)                                      

An example of a naive Bayes model:

P( Cause, Effect1, ...., Effectn) =   P( Cause) ∏i P( Effecti | Cause) 

The total number of parameters is linear in n

3

Cause

Effect 1 Effect n

Cavity

Toothache Catch
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Predicting flavour
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?

Hypotheses for which type of bag is given, with their priors:

h1:100% Cherry                        P(h_1) = 0.1

h2: 75% Cherry, 25% Lime          P(h_2) = 0.2

h3: 50% Cherry, 50% Lime          P(h_3) = 0.4

h4: 25% Cherry, 75% Lime          P(h_4) = 0.2

h5: 100% Lime                           P(h_5) = 0.1
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Maximum Likelihood
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We can predict (probabilities) by maximizing the likelihood of having observed some 

particular data with the help of the Maximum Likelihood hypothesis:

       hML = argmax P( D | h)
      h

?
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Maximum A Posteriori
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?

Finding the Maximum A Posteriori hypothesis:

       hMAP = argmax P( h | D)
      h

Then predict by assuming the MAP-hypothesis (quite bold)

P( X | D) = P( X | hMAP) 
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Optimal Bayes learner
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?

Prediction for X, given some observations D = <d_0, d_1 .... d_n>

P( X | D) = ∑i P( X | h_i) P( h_i | D)       in first step, P( h_i | D) = P( h_i)...
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Learning from experience
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Prediction for the first piece picked, assuming e.g., h_3, and no observations are 
made:

P( d_0 = Cherry | h_3) = P( d_0 = Lime | h_3) = 0.5

First piece is Lime flavour, now we know:

P( h_1 | d_0) = 0                    (as P( d_0 | h_1) = 0), etc...

After 10 pieces that all turn out to be Lime, assuming that outcomes for d_i are i.i.d. 

(independent and identically distributed):

P( D | h_k) = ∏i P( d_i | h_k)

P( h_k | D) = P( D | h_k) P( h_k) / P( D) = α P( D | h_k) P( h_k)
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Posterior probabilities
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Prediction after sampling
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Optimal learning vs estimating

11

?

Predict by assuming the MAP-hypothesis: 

P( X | D) = P( X | hMAP) 

P_hMAP( d_4 = LIME | d_1 = d_2 = d_3 = Lime) = P( X | h_5) = 1

While the optimal classifier / learner predicts 

P( d_4 = Lime | d_1=d_2=d_3=Lime) = ... = 0.76875

However, they will grow closer! Consequently, the MAP-learner should not be 
considered for small sets of training data!
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The Gibbs Algorithm
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Optimal Bayes Learner is costly, MAP-learner might be as well.

Gibbs algorithm (surprisingly well working under certain conditions regarding the a 

posteriori distribution for H):

1. Choose a hypothesis h from H at random, according to the posterior probability 

distribution over H (i.e., rule out “impossible” hypotheses)

2. Use h to predict the classification of the next instance x.
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Naive Bayes classifier
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Each instance with a value vj from a fixed set V in a training set is described by several 

attributes <a1, ... , ai, ... , an>

Now we try to maximise:

       vMAP = argmax P( vj | a1, a2, .... an)
                      vj

              = argmax 
                      vj

              = argmax P( a1, a2, .... an | vj) P(vj)
                      vj

And (by assuming independence) end up with the Naive Bayes Classifier 

(corresponding in some sense to the MAP-hypothesis):

vNB = argmax P(vj) ∏i P( ai | vj )
                      vj

P(a1, a2, .... an | vj) P(vj)
---------------------------------------------------------------------------------------------------

     P(a1, a2, .... an)
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Classifying text
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Our approach to representing arbitrary text is disturbingly simple: Given a text document, 

such as this paragraph, we define an attribute for each word position in the document and 

define the value of that attribute to be the English word found in that position. Thus, the 

current paragraph would be described by 111 attribute values, corresponding to the 111 word 

positions. The value of the first attribute is the word “our”, the value of the second attribute is 

the word “approach”, and so on. Notice that long text documents will require a larger number 

of attributes than short documents. As we shall see, this will not cause us any trouble. (*)

vNB = argmax P(vj) ∏i
111

 P( ai | vj ) = P( vj) P( a1 = “our” | vj) * .... * P( a111 = “trouble” | vj)
               vj ∈ {like, dislike}

(*)[Tom M. Mitchell, “Machine Learning”, p 180]
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Naive Bayes Classifier for text
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Given a test person who classified 1000 text samples into the categories “like” and “dislike” (i.e., the target value 
set V) and those text samples (Examples), the text from the previous slide is to be classified with the help of the 
Naive Bayes Classifier. This algorithm (from Tom M. Mitchell, “Machine Learning”, p 183) assumes (and learns) the 
m-estimate for P( wk | vj), the term describing the probability that a randomly drawn word from a document in 
class vj  will be the word wk.

LEARN_NAIVE_BAYES_TEXT( Examples, V)
/* learn probability terms P( wk | vj) and the class prior probabilities P( vj ) */
1. Collect all words, punctuation, and other tokens that occur in Examples

•  Vocabulary ⟵	
  the set of	
  all distinct words and other tokens occurring in any text document from Examples
2. calculate the required P( vj ) and P( wk | vj) terms

• docsj ⟵	
  the subset of documents from Examples for which the target value is vj

• P( vj ) ⟵	
  | docsj | / | Examples |
• Textj  ⟵	
  a single document created by concatenating all members of docsj

• n  ⟵	
  total number of distinct word positions in Textj
• for each word wk  in Vocabulary

• nk ⟵	
  number of times word wk occurs in Textj
• P( wk | vj) ⟵	
  ( nk +1) / ( n + | Vocabulary |)                             /* m-estimate */

CLASSIFY_NAIVE_BAYES_TEXT( Doc)
/* Return the estimated target value for the document Doc. ai denotes the word found in ith position within Doc.

• positions ⟵	
  all word positions in Doc that contain tokens found in Vocabulary
• Return vNB, where                  

                                                 vNB = argmax    P(vj)    ∏       P( ai | vj ) 
                                                            vj ∈V            i ∈positions

Wednesday, 12 February 14



Bayesian Belief Networks (recap)

16

Alarm

JohnCalls MaryCalls

Burglary

Earthquake

P(B)

0.001
P(E)

0.002

A P(J|A)

T 0.90

F 0.05

A P(M|A)

T 0.70

F 0.01

B E P(A|B,E)

T T 0.95

T F 0.94

F T 0.29

F F 0.001
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Learning Bayesian Belief Networks
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Two issues:

Learning the CPTs given a suitable structure AND all variables are observable:

Estimate the CPTs as for a Naive Bayes Classifier / Learner (relatively easy)

Learning the CPTs given a network structure with only partially observable variables:

Corresponds to learning the weights of hidden units in a neural network (ascent 

gradient or EM)

Learning the network structure

Difficult. Bayesian scoring method for choosing among alternative networks. 
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Expectation maximization - EM algorithm
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A situation with some variables being sometimes unobservable, sometimes observable is 

quite common.

Use the observations that are available to predict in cases where there is none.

Step 1: Estimate value for the hidden variable given some parameters (observed, initial...)

Step 2: Maximize parameters assuming this estimate
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Learning useful stuff
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Video from http://lasa.epfl.ch/videos/control.php 
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Summary
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Maximum likelihood hypothesis and MAP-hypothesis / learning

Optimal Bayes learner / classifier

Gibbs algorithm

Naive Bayes classifier

Learning Bayesian Belief Networks 
         - EM algorithm

(Example: Mixtures of Gaussians -> Movie)
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