Al in
Robot(ic)s

Applied artificial intelligence (EDA132)
Lecture 12
2017-02-24
Elin A. Topp

Course book (chapter 25), images & movies from various sources, and original material
(Some images and all movies removed for the uploaded PDF)



What is a “Robot’’?




Robots, and what they can do...

How far have we come!?

ABB robots and their precision... 2009 (Youtube “ABB robots / Fanta cans”)

Frida “feels” when work’s done... 2013 (Youtube “Magnus Linderoth, sensorless force sensing”)

YuMi wraps gifts... 2015 (https://youtu.be/FHGCIMSGpKI)



https://youtu.be/FHGC9mSGpKI

Types of robots

Industrial robots vs. service robots vs. personal robots / robot toys
Static manipulators vs. mobile platforms (vs. mobile manipulators)

Mechanistic vs. humanoid / bio-inspired / creature-like

For all in common:
A robot is a physical agent in the physical world
(with all the consequences that might have... ;-)

(Darpa Urban Challenge 2007, (Darpa Rescue Challenge 2015,
Georgia Tech “Sting Racing” crash) Robots falling - MIT DRC, foot tremble)



Ethics detour

Robots as embodiment of artificially intelligent systems -
but even reasoning mechanisms can only build upon a given baseline.

So far, systems will take instructions literally, and only reason within given limits.

Al-systems must be capable of explaining themselves, and we should not expect
them to be more than they are!

Excerpt from Robot & Frank,“stealing”



Robot actuators - joints and wheels

P

6 DOF (6 “joint”) arm: Eg R

2x7 DOF (“humanoid” torso “YuMi” / Frida):

2 (3 effective) DOF synchro drive (car): @

2 (3 effective) DOF differential drive (Pioneer p3dx):

%,
3 DOF holonomic drive (“shopping cart”, DLR’s Justin): ﬁ




Kinematics - controlling the DOFs

Direct (forward) kinematics (relatively simple):

Where do | get with a certain configuration of parts / wheel movement!?

Inverse kinematics (less simple, but more interesting):

How do | have to control joints and wheels to reach a certain point?



Dynamics - controlling consequences of movement

Dynamics:

Make the robot move (and move stuff) without falling apart, or crashing into
things

How much payload is possible?
How fast can | move without tipping over?
What is my braking distance!?

How do | move smoothly? (ask the automatic control people ;-)

Weight: ca 1300 kg

Payload: ca 150 kg



Dynamics in practice

Dynamics also gets you into two problems: direct and inverse dynamics.
Direct dynamics:

Given masses, external forces, position, velocities and acceleration in the joints /
wheels, what forces / moments are put to the depending joints and the tool
centre point (TCP)? “Rather” simply solvable, at least more or less straight
forward.

Inverse dynamics (again, more interesting than direct dynamics):

While solving the inverse kinematics problem is nasty, but still “only” a bunch of
linear equations, solving the inverse dynamics problem leaves you with a bunch of
more or less complex differential equations.



Supporting parts: Sensors

In a predictable world, we do not need perception, but good planning and
programming

As the world is somewhat unpredictable, some perception is useful, i.e., robots /
robot installations need sensors.

Passive / active sensors.
Range / colour / intensity / force / direction ...

Optical / sound / radar / smell / touch ...

Most common for mobile robots: position (encoders / GPS), range (ultrasound or
laser range finder), image (colour/intensity), sound

Most common for manipulators: position (encoders), force / torque, images, (range
- infrared, laser RF)



Sensors on a2 mobile robot

Microphones (sound)

Ultrasound (24 emitters / receivers) (range)
Camera (image - colour / intensity)

Laser range finder (SICK LMS 200) (range)
Infrared (range / interruption)

Bumpers (touch)

Wheel encoders (position / pose)




System integration

Make sensors, actuators and algorithms work together

Architectures, “operating systems”, controllers, programming tools ...
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System integration - system is bigger than
the sum of its components

Research video from user study

“Flur / Tuer” - “Corridor / Door”



Outline

Al in Robotics - integrating the “brain” into the “body” (just SOME examples!)

Probabilistic methods for Mapping & Localisation

Deliberation & High level decision making and planning

SJPDAFs for person tracking

|dentifying interaction patterns in
Human Augmented Mapping with BNs

Knowledge representation, reasoning, and NLP to support HRI and high-level
robot programming



Mapping

Where have
| been?

— ]
Geometrical approaches e [

Topological approaches

Occupancy grid approaches (e.g., Sebastian Thrun)

(Hybrid approaches)




L ocalisation

Where am

| now? : :
HMM in a grid world

EEETE
e el B e

(b) Posterior distribution over robot location after E1= NSW,E>= NS




Where am
| now!?

L ocalisation

E.g., Monte Carlo Localisation (D. Fox, S. Thrun, et al.)




Data filters for state estimation

0. Represent state, identify system function
|. Estimate / predict state from model applying the function
2. Take a measurement

3. Update state according to model and observation (measurement)

Used for position tracking, detection of significant changes in a data stream,
localisation ...

E.g., particle filters (Monte Carlo), Kalman filters



Particle filter

|. Represent possible positions by samples (uniform distribution) x = (x, y, 0)

2. Estimate movement / update samples according to assumed robot movement +
noise

3.Take a measurement z
4.Assign weights to samples according to posterior probabilities (Bayes!) P( x; | z)

5. Resample (pick “good” samples, use those as new “seeds”, redistribute in position
space and add some noise), continue at 2.



Kalman filter

Represent posterior with a Gaussian.

Assume linear dynamical system
(F G, H system matrices, u measurement, v, w, gaussian noise)

x( k+1) =F( k) x(k) + G(k) u(k) + v(k) (state estimate)
y( k+1) =H( k) x( k) + w(k) (output)
|. Predict based on last estimate:

X(k+1 | k) = F(k) X'( k | k) + G(k) u(k) + v(k)

y(k+!l | k) =H(k) x’( k+I | k) + w(k)

2. Calculate correction based on prediction and current measurement:
Ax = f{ y( k* 1), X( k+1 | K)

3. Update prediction:

X(k+1 | k+1) = x(k+1 | k) + Ax

20



Mapping & Localisation: Chicken & Egg?

Simultaneous localisation and mapping (SLAM)
While building the map, stay localised!
Use filters to “sort” landmarks:

Known? Update your pose estimation!

Unknown? Extend the map!

21



Deliberation in, e.g., a navigation system

A robotic system might have several goals to pursue, e.g.,

* Explore the environment (i.e., visit as many areas as possible and gather data) and
build a map

e Use a certain strategy (e.g., follow the wall to the right)

* Do not bump into things or people on the way

e Go “home” for recharging in time
Behaviours (e.g., as used by Arkin) can take care of each of the goals separately
Particular perception results can be fed into a control unit for decision making

This decision making unit (deliberation process) can assign weights (priorities) to the
behaviours depending on the sensor data.

E.g., when battery level sensor reports a certain level, only the “going home” behaviour and
immediate obstacle avoidance are allowed to produce control output, exploring and wall
following are ignored.

22



More complex decisions / plans

If the system does not only involve one robot with several “competencies”, but several
robots with partly overlapping, partly complementary abilities, the decisions are to be
taken to another dimension:

e Given a task, what do | need to know to fulfill it?

e Do | know these things!?

e Given | know what to do, do | have the means (robot) to do it?

e If yes, which one!

» Given different steps and parts of a task, can things be done in parallel?
e By which robot!?

* What if something goes wrong with one part of the plan? Does this affect the whole
task execution, or only one of the robots?

23



HRI - going beyond pressing buttons

Human-Robot Interaction is quite new as a research field of its own

Like Al and Robotics themselves it is quite multidisciplinary

Computer
o @
Biology Human-
Robot
Interaction Psychology
Neuro-

Cognitive .
Sociology

24



Human augmented mapping -
an example for work in HRI

w — 1 '
not “Kitchen” |
—
Y 0
Integrate robotic and human [
environment representations “Kitchen”
3
> P el e

Home tour / guided tour as
initial scenario

25



Human augmented mapping -
overview

Environment | label
model

localisation / ambi guity

concept / label clarification request

Topological [ """~~~ Dialogue & (=------.
position information _| eraph transition det. Interaction |status
il Supervision

Tracking &

Metric Region

SLAM segmentation [gpecification Following BT Eion
Other Other
transition | ---------- interaction [ """ °° '
detectors modalities

Tracker “live” demo
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mean: the room behind

this door is my office

say: "This is my office"

O know: "office" is a "region"

T ——

understand: THIS "region" is

"the user's office"

27



Interaction patterns!

Can we repeatedly, with several subjects, in a clearly
designed set-up, observe any structure, frequent
strategies, “‘interaction patterns”, that correspond to the
spatial categories Region, Workspace, and Object when
people present an indoor environment to a mobile
robot!

37 Participants

Guide the robot

(three rooms/regions, at least
three small objects and

three locations/workspaces
according to suggestion list)

Video (one external camera and
one on the robot) and robot sensor
data were stored for later analysis.

28



Interaction patterns!

Disambiguati
samblguefion Explicit deviation

Assumed category

Annotation of videos with ELAN (tiers
according to results from previous studies)

Last C d
astL.omman Announcement

Manual summary of annotations into
potentially system observable features

Prediction | Region Region_link | Workspace
Definition
Region 62 0 4 0
Region_link | 16 3 5 0
Workspace | 5 0 197 40
Object 0 0 23 189

Elin A. Topp, “Interaction Patterns in Human Augmented Mapping”
Special Issue on Spatial Interaction and Reasoning for Real-World Robotics, RS] Advanced Robotics, vol 5, issue 31, March 2017

29



Automated detection and identification

JELAN_dist_adj

data_parser interaction_learner
/ELAN_category|

/data_parser

ELAN_heading_ ad
elan_translator interaction_recognition
/elan_translator »/ELAN_trigger

Y

interaction_monitor

\./ELAN_last_cmd

Matches

Mismatches 7

Similar between two and mismatch
Unknown category classified

Similar among three

Similar between two

(Felip Marti Carillo and Elin A. Topp,

“Interaction and Task Patterns in Symbiotic, Mixed-Initiative Human-Robot Interaction”,

AAAI-WVS on Symbiotic Cognitive Systems, February 2017, Phoenix,AZ, USA)

/BN_varsH finteraction_recognition Last Command Dlstance

Category by behaviour

Adjustment

Announcement Heading
Adjustment

71 clear mismatches:

40 objects -> workspace
(mostly chairs)

17 workspaces -> region

6 regions -> workspace

30



(Maj Stenmark, 2013)

NLP-based programming

31



The Al-bits behind...

Task Execution (Real-time Linux)

et S Ol-o foo
§Ob.ect @ Workpiece o o
g SItory Force™ J_C — kpi H D e - —
Computation - A¢ur B

LinearMotio
W

0

Proce (2D
)

D

|gyij_

Knowledge Integration
Framework (Server)

Engineering System (Windows PC)

Native Robot Controller (ABB)

(Maj Stenmark, 2014)



NLP-based programming

Create | a | small | Lego | piece

create.01

Predicate-argument structures

Create | a | small | Lego | piece

create.01

{}

Map to existing

commands or o)
programs Wo:uoo ﬂ
o ( f =

<root> Create a small Lego plece

small
l- [‘) [) T l\r\P r"\ ."\



Skills and knowledge

Devices Skill types
v @ PhysicalObject v @ skill
v @ Device » © AdditionalFunction
v @ Actuator » © DiagnosticFunction

© Motor v © MainFunction
» © Communication » © LightingFunction

© CommunicationPort v @ ManipulationAndHandlingFunction
© CompoundDevice

» © Computer > Sowe
" Controller ve S:c :t:e h
» © EnvironmentDevice ac
v © ManipulationAndHandlingDevice “ ChangeTool
» @ Displacement “ Clamp
» @ Fixture * Detach
» © Gripper » © Grasp
v ¢ Robot » © Release
" ArticulatedRobot © Unclamp
::a"te;;':‘mt » @ ManufacturingFunction
exa o : :
. " OpticFunction
: MobileRobot © AcquireImage
ParallelKinematicRobot ® Focalize

© ScaraRobot
© SimpleKinematicRobot
© SpecialKinematicRobot

© ToolChanger

© Processing
" ProcessImages
© SensorFunction
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However ...

Even though the robot has lead-through built in, and
even though we could use NLP and high-level instructions to
make use of our skill representation -

35



... we must get the skills into the system!

Action representation

AbsJoint, Linear

Points : :
_ M Circular, Joint
Free Motion ‘

Motion Trajectories DMP
— RobApp X
Programming instructions and reference coordinate systems Current robot program
. r r h Robot Left (Operator right) Robot Right (Operator left)
Con‘tact Motion Forcciucao(:]ter(cj)”seedarﬁotlon Move to Via point Open Close > ® > I #
= MasterSlave1 C K MasterSlave1 C K
’ MasterSlave2 G K ’ MasterSlave2 G K
——— S S Master-slave © I B
G . Open CHEE LS ync PG eNTES sync moves » MasterSlave3 2 @ > MasterSlave3 I () @
Arclzgir Close . » MasterSlave4 () @ > MasterSlave4 I ) @
Finger commands Locating * Vision Code P SncMovet S @ P SncMovet s @
SUCtion ON/OFF ACtIOn ’ SyncMove2 () g > SyncMove2 ) @
3| B
ret system

Write commands, e.g. save the skill ...

| ]

(Maj Stenmark, Mathias Haage, Elin A. Topp, and Jacek Malec,

“Supporting Semantic Capture during Kinesthetic Teaching of Collaborative Industrial Robots”,

ICSC-IW on Semantics in Engineering and Robotics, January 2017, San Diego, CA, USA)

(Maj Stenmark, Mathias Haage, Elin A.Topp, and Jacek Malec,

“Making Robotic Sense of Incomplete Human Instructions in High-Level Programming for Industrial Robotic Assembly”,
AAAI-WS on Human-Machine Collaborative Learning, February 2017, San Francisco, CA, USA)



Does skill re-use help?
Can non-experts program the robot!?

Professional background /

Robot programming
gender . . . -
Average programming experience, technical experience
20 B Fascarchoriemals experience, comfort level ”0
M Student female 5,0
1 M avggroupA M avggroup B
8 - Oth?" male . avggroupC M avgALL 18
16 M Engineer male 16 # NO
«. PhD Student male B YES
14 M Researcher male 14
12 M Student male 12
10 10
8 8
T LLE e
4 4
2 2
0 0
Y\\ Q?. QQ QQ Programming Exp Technical Exp Comfort Level
£ & &
Two phases: |: Step | (create “pick up and insert a 2x2 Duplo on another one” - skill) and

ll: Steps 2-4 “repeat” Step | (different conditions) with a 2x4 Duplo
Three Conditions: ~ A:re-use your step | skill

B: re-use a provided, expert-made skill
C: build everything from scratch
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Yes! and Yes!

Research video, user study

Kindergarden teacher programs YuMi

Maj Stenmark, Mathias Haage, and Elin A. Topp,
“Simplified Programming of Re-usable Skills on a Safe Industrial Robot - Prototype and Evaluation”,
ACM / IEEE Conference on Human-Robot Interaction, March 2017,Vienna, Austria
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Robotics and Semantic Systems

@CS

® Master’s projects (Ex-jobb)
® |nternal (research oriented) or external (industry related)
® International

® Lab visit to the Robotlab in M-huset

® Contact us: Jacek, Pierre, Elin or other members of the group:

Klas Nilsson, Mathias Haage, Sven Gestegard Robertz
® Course EDANYO, Project in Computer Science,VT2
® Course MMKN30, Service Robotics (through IKDC)
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