
AI in
Robot(ic)s

Applied artificial intelligence (EDA132)
Lecture 12
2017-02-24
Elin A. Topp

Course book (chapter 25), images & movies from various sources, and original material
(Some images and all movies removed for the uploaded PDF)

1

What is a “Robot”?

2

✓
✓ ✓

✓

✓
✓

?

?

...✓

✓

Honda Asimov

Keepon

Leonardo

iCub

How far have we come?

Robots, and what they can do…

3

ABB robots and their precision... 2009 (Youtube “ABB robots / Fanta cans”)

Frida “feels” when work’s done... 2013 (Youtube “Magnus Linderoth, sensorless force sensing”)

YuMi wraps gifts… 2015 (https://youtu.be/FHGC9mSGpKI)

https://youtu.be/FHGC9mSGpKI

Types of robots
Industrial robots vs. service robots vs. personal robots / robot toys

Static manipulators vs. mobile platforms (vs. mobile manipulators)

Mechanistic vs. humanoid / bio-inspired / creature-like

For all in common:  
A robot is a physical agent in the physical world
(with all the consequences that might have... ;-)

4

(Darpa Urban Challenge 2007,  
Georgia Tech “Sting Racing” crash)

(Darpa Rescue Challenge 2015,  
Robots falling - MIT DRC, foot tremble)

Ethics detour

5

Robots as embodiment of artificially intelligent systems -  
but even reasoning mechanisms can only build upon a given baseline.

So far, systems will take instructions literally, and only reason within given limits.

AI-systems must be capable of explaining themselves, and we should not expect
them to be more than they are!

Excerpt from Robot & Frank, “stealing”

Robot actuators - joints and wheels

6 DOF (6 “joint”) arm:

2x7 DOF (“humanoid” torso “YuMi” / Frida):

2 (3 effective) DOF synchro drive (car):

2 (3 effective) DOF differential drive (Pioneer p3dx):

3 DOF holonomic drive (“shopping cart”, DLR’s Justin):

6

R

RRP

R R

θ

(x, y)

Kinematics - controlling the DOFs

Direct (forward) kinematics (relatively simple):

Where do I get with a certain configuration of parts / wheel movement?

Inverse kinematics (less simple, but more interesting):

How do I have to control joints and wheels to reach a certain point?

7

Dynamics - controlling consequences of movement
Dynamics:

Make the robot move (and move stuff) without falling apart, or crashing into
things

How much payload is possible?

How fast can I move without tipping over?

What is my braking distance?

How do I move smoothly? (ask the automatic control people ;-)

8

Weight: ca 1300 kg

Payload: ca 150 kg

Dynamics in practice

Dynamics also gets you into two problems: direct and inverse dynamics.

Direct dynamics:

Given masses, external forces, position, velocities and acceleration in the joints /
wheels, what forces / moments are put to the depending joints and the tool
centre point (TCP)? “Rather” simply solvable, at least more or less straight
forward.

Inverse dynamics (again, more interesting than direct dynamics):

While solving the inverse kinematics problem is nasty, but still “only” a bunch of
linear equations, solving the inverse dynamics problem leaves you with a bunch of
more or less complex differential equations.

9

Supporting parts: Sensors

In a predictable world, we do not need perception, but good planning and
programming

As the world is somewhat unpredictable, some perception is useful, i.e., robots /
robot installations need sensors.

Passive / active sensors.

Range / colour / intensity / force / direction ...

Optical / sound / radar / smell / touch ...

Most common for mobile robots: position (encoders / GPS), range (ultrasound or
laser range finder), image (colour/intensity), sound

Most common for manipulators: position (encoders), force / torque, images, (range
- infrared, laser RF)

10

Sensors on a mobile robot

11

Microphones (sound)

Ultrasound (24 emitters / receivers) (range)

Camera (image - colour / intensity)

Laser range finder (SICK LMS 200) (range)

Infrared (range / interruption)

Bumpers (touch)

Wheel encoders (position / pose)

System integration

12

Make sensors, actuators and algorithms work together

Architectures, “operating systems”, controllers, programming tools ...

True Offline Programming
RobotStudio 5 is the leading product for offline
programming on the market. With its new program-
ming methods, ABB is setting the standard for robot
programming worldwide. Offline programming redu-Offline programming redu-
ces the risk by visualizing and confirming solutions
and layouts before the actual robot is installed, and
generates higher part quality through the creation of
more accurate paths.

Virtual Robot Technology
To achieve true offline programming,
RobotStudio utilizes ABB VirtualRobot™
Technology. ABB invented VirtualRobot™ Techno-
logy more than ten years ago.

MultiMove
With RobotStudio 5, ABB takes its Virtual Robot
Technology to the next level. It is now possible to run
several virtual robots at the same time, and there is
support for MultiMove, the new IRC5 technology for
running several robots from one controller.

CAD Import
RobotStudio can easily import data in major
CADformats, including IGES, STEP, VRML, VDAFS,
ACIS and CATIA. By working with this very exact
data the robot programmer is able to generate more
accurate robot programs, giving higher product
quality.

AutoPath
This is one of the most timesaving features of
RobotStudio. By using a CAD model of the part to be
processed it is possible to automatically generate the
robot positions needed to follow the curve in just a
few minutes, a task that would otherwise take hours
or days.

AutoReach
AutoReach automatically analyses reachability and is a
handy feature that lets you simply move the robot or
the work piece around until all positions are reachable.
This allows you to verify and optimize the work cell
layout in just a few minutes.

RobotStudio™ 5

Q
2

/2
0

0
7Industrial Software Products

RobotStudio™ for IRC5

System integration - system is bigger than
the sum of its components

13

Research video from user study

“Flur / Tuer” - “Corridor / Door”

Outline

AI in Robotics - integrating the “brain” into the “body” (just SOME examples!)

• Probabilistic methods for Mapping & Localisation

• Deliberation & High level decision making and planning 

• SJPDAFs for person tracking

• Identifying interaction patterns in  
Human Augmented Mapping with BNs

• Knowledge representation, reasoning, and NLP to support HRI and high-level
robot programming

14

Mapping

15

Geometrical approaches

Topological approaches

Occupancy grid approaches (e.g., Sebastian Thrun)

(Hybrid approaches)

Where have
I been?

112 Thrun

Figure 1. A set of noise-free sonar measurements that a robot may
receive while passing an open door. While the measurements are
perfectly consistent, existing occupancy grid maps induce a conflict
in the door region, where short and long sensor cones overlap. This
article presents a method that overcomes this problem.

the doorway—which often leads to the doorway being
closed in the final map.

Figure 2 illustrates the problem graphically. In dia-
gram (a), a passing robot might receive the (noise-free)

Figure 2. The problem with current occupancy grid mapping algorithms: For the environment shown in (a), a passing robot might receive the
(noise-free) measurement shown in (b). Inverse sensor models map these beams into probabilistic maps. This is done separately for each grid
cell and each beam, as shown in (c) and (d). Combining both interpretations may yield a map as shown in (e). Obviously, there is a conflict in
the overlap region, indicated by the circles in (e). The interesting insight is: There exist maps, such as the one in diagram (f), which perfectly
explain the sensor measurement without any such conflict. For a sensor reading to be explained, it suffices to assume an obstacle somewhere in
the cone of a measurement, and not everywhere. This effect is captured by the forward models described in this article.

range measurements shown in diagram (b). Inverse sen-
sor models map these beams into probabilistic maps.
This is done separately for each grid cell and each beam,
as shown in diagrams (c) and (d). Combining both in-
terpretations may yield a map as shown in diagram (e).
Obviously, there is a conflict in the overlap region, indi-
cated by the circles in this diagram. Such conflicts are
usually accommodated by averaging. The interesting
insight is: There exist maps, such as the one in diagram
(f), which perfectly explains the sensor measurements
without any such conflict. This is because for a sensor
reading to be explained, it suffices to assume an ob-
stacle somewhere in its measurement cone. Put differ-
ently, the fact that cones sweep over multiple grid cells
induces important dependencies between neighboring
grid cells. A decomposition of the mapping problem
into thousands of binary estimation problems—as is
common practice in the literature—does not consider
these dependencies and therefore may yield suboptimal
results.

While this consideration uses sonar sensors as mo-
tivating example, it is easily extended to certain other
sensor types that may be used for building occupancy
maps, such as stereo vision (Murray and Little, 2001);

112 Thrun

Figure 1. A set of noise-free sonar measurements that a robot may
receive while passing an open door. While the measurements are
perfectly consistent, existing occupancy grid maps induce a conflict
in the door region, where short and long sensor cones overlap. This
article presents a method that overcomes this problem.

the doorway—which often leads to the doorway being
closed in the final map.

Figure 2 illustrates the problem graphically. In dia-
gram (a), a passing robot might receive the (noise-free)

Figure 2. The problem with current occupancy grid mapping algorithms: For the environment shown in (a), a passing robot might receive the
(noise-free) measurement shown in (b). Inverse sensor models map these beams into probabilistic maps. This is done separately for each grid
cell and each beam, as shown in (c) and (d). Combining both interpretations may yield a map as shown in (e). Obviously, there is a conflict in
the overlap region, indicated by the circles in (e). The interesting insight is: There exist maps, such as the one in diagram (f), which perfectly
explain the sensor measurement without any such conflict. For a sensor reading to be explained, it suffices to assume an obstacle somewhere in
the cone of a measurement, and not everywhere. This effect is captured by the forward models described in this article.

range measurements shown in diagram (b). Inverse sen-
sor models map these beams into probabilistic maps.
This is done separately for each grid cell and each beam,
as shown in diagrams (c) and (d). Combining both in-
terpretations may yield a map as shown in diagram (e).
Obviously, there is a conflict in the overlap region, indi-
cated by the circles in this diagram. Such conflicts are
usually accommodated by averaging. The interesting
insight is: There exist maps, such as the one in diagram
(f), which perfectly explains the sensor measurements
without any such conflict. This is because for a sensor
reading to be explained, it suffices to assume an ob-
stacle somewhere in its measurement cone. Put differ-
ently, the fact that cones sweep over multiple grid cells
induces important dependencies between neighboring
grid cells. A decomposition of the mapping problem
into thousands of binary estimation problems—as is
common practice in the literature—does not consider
these dependencies and therefore may yield suboptimal
results.

While this consideration uses sonar sensors as mo-
tivating example, it is easily extended to certain other
sensor types that may be used for building occupancy
maps, such as stereo vision (Murray and Little, 2001);

Localisation

16

HMM in a grid world

Where am
I now?

159

(a) Posterior distribution over robot location after E1 = NSW

(b) Posterior distribution over robot location after E1 = NSW, E2 = NS

Figure 15.7 FILES: figures/localization-figures-b.eps (Tue Nov 3 16:23:07 2009). Posterior dis-
tribution over robot location: (a) one observation E1 =NSW ; (b) after a second observation E2 =NS.
The size of each disk corresponds to the probability that the robot is at that location. The sensor error
rate is ϵ =0.2.

Localisation

17

E.g., Monte Carlo Localisation (D. Fox, S. Thrun, et al.)

Where am
I now?

Data filters for state estimation

18

0. Represent state, identify system function

1. Estimate / predict state from model applying the function

2. Take a measurement

3. Update state according to model and observation (measurement)

Used for position tracking, detection of significant changes in a data stream,
localisation ...

E.g., particle filters (Monte Carlo), Kalman filters

Particle filter

19

1. Represent possible positions by samples (uniform distribution) x = (x, y, θ)

2. Estimate movement / update samples according to assumed robot movement +
noise

3. Take a measurement z

4. Assign weights to samples according to posterior probabilities (Bayes!) P(xi | z)

5. Resample (pick “good” samples, use those as new “seeds”, redistribute in position
space and add some noise), continue at 2.

Kalman filter

20

Represent posterior with a Gaussian.

Assume linear dynamical system
(F, G, H system matrices, u measurement, v, w, gaussian noise)

x(k+1) = F(k) x(k) + G(k) u(k) + v(k) (state estimate)

y(k+1) = H(k) x(k) + w(k) (output)

1. Predict based on last estimate:

x’(k+1 | k) = F(k) x’(k | k) + G(k) u(k) + v(k)

y’(k+1 | k) = H(k) x’(k+1 | k) + w(k)

2. Calculate correction based on prediction and current measurement:

Δx = f(y(k+1), x’(k+1 | k))

3. Update prediction:

x’(k+1 | k+1) = x’(k+1 | k) + Δx

Mapping & Localisation: Chicken & Egg?

21

Simultaneous localisation and mapping (SLAM)

While building the map, stay localised!

Use filters to “sort” landmarks:

Known? Update your pose estimation!

Unknown? Extend the map!

Deliberation in, e.g., a navigation system

22

A robotic system might have several goals to pursue, e.g.,

• Explore the environment (i.e., visit as many areas as possible and gather data) and
build a map

• Use a certain strategy (e.g., follow the wall to the right)

• Do not bump into things or people on the way

• Go “home” for recharging in time

Behaviours (e.g., as used by Arkin) can take care of each of the goals separately

Particular perception results can be fed into a control unit for decision making

This decision making unit (deliberation process) can assign weights (priorities) to the
behaviours depending on the sensor data.

E.g., when battery level sensor reports a certain level, only the “going home” behaviour and
immediate obstacle avoidance are allowed to produce control output, exploring and wall
following are ignored.

More complex decisions / plans

23

If the system does not only involve one robot with several “competencies”, but several
robots with partly overlapping, partly complementary abilities, the decisions are to be
taken to another dimension:

• Given a task, what do I need to know to fulfill it?

• Do I know these things?

• Given I know what to do, do I have the means (robot) to do it?

• If yes, which one?

• Given different steps and parts of a task, can things be done in parallel?

• By which robot?

• What if something goes wrong with one part of the plan? Does this affect the whole
task execution, or only one of the robots?

Human-Robot Interaction is quite new as a research field of its own

Like AI and Robotics themselves it is quite multidisciplinary

HRI - going beyond pressing buttons

24

Robotics
HCI / HMI

Psychology

Biology

Cognitive
Science

Neuro-
science

Computer
Science

Sociology

Human-
Robot

Interaction

Human augmented mapping -
an example for work in HRI

25

• Integrate robotic and human
environment representations

• Home tour / guided tour as
initial scenario

“Kitchen”

not “Kitchen”

Human augmented mapping -
overview

26

Tracker “live” demo

What if…

27

say: "This is my office"

know: "office" is a "region"

understand: THIS "region" is
"the user's office"

mean: the room behind
this door is my office

Can we repeatedly, with several subjects, in a clearly
designed set-up, observe any structure, frequent
strategies, “interaction patterns”, that correspond to the
spatial categories Region, Workspace, and Object when
people present an indoor environment to a mobile
robot?

Interaction patterns?

28

37 Participants

Guide the robot  
(three rooms/regions, at least  
three small objects and  
three locations/workspaces  
according to suggestion list)

Video (one external camera and
one on the robot) and robot sensor
data were stored for later analysis.

Interaction patterns!

29

Annotation of videos with ELAN (tiers  
according to results from previous studies)

Manual summary of annotations into  
potentially system observable features

January 7, 2017 Advanced Robotics Topp˙InteractionPatternsInHAM

Prediction Region Region link Workspace Object
Definition

Region 62 0 4 0
Region link 16 3 5 0
Workspace 5 0 197 40
Object 0 0 23 189

Table 1. The confusion matrix for item category predictions against our definition based assumptions

Otherwise, the main influence on the predicted category stems from the evaluation of behaviour
observations, where only the three basic categories were relevant, hence no further predictions
of Region links were given, however, another five of the expected 16 Region links were predicted
as Workspace, which corresponds to the originally formulated hypothesis that a link to a region
might be presented like a large object or workplace rather than like a region from inside. Overall,
about 83% of the predictions correspond directly to our assumptions which is quite satisfying.
Looking at the remaining confusions there are comparably few confusions between regions and
workspaces, while workspaces and objects are confused more frequently. This can be explained
with several of the items occurring in the trials being di�cult to clearly place in either category,
e.g., co↵ee-makers or projectors (mobile). The fact that 16 of 24 expected Region links are
predicted as Region seems somewhat unsatisfying.
Still, we noted that in many cases the room for which we expected our subjects to do the

presentation from the outside due to its size, was actually presented with the subject being
inside and the robot outside – which rendered the user behaviour more like that observable
when both were inside a room than that observable when both were outside. This is, however,
a rather unusual configuration for which other cues would be needed to fully understand the
situation, e.g., a door-way detector or other geometrical analysis of the surroundings, as suggested
in previous work [2].
However, all these analysis steps were performed manually, hence the results are quite error-
prone due to subjective interpretation of timelines and observations. Approaches to automating
also the identification of the features in the first place are subject to current investigations.
To avoid at least the last layer of subjectivity we implemented a prototype interaction monitor
system, that was able to parse the annotations of the video material and feed specific annotations
as “observed features” into the respective core part of the Bayesian Network, which is shown in
Figure 2. We explain our implementation in the following section.

4.2 Automated identification of Interaction Patterns

Our implementation [20, 21] was based on ROS (www.ros.org, as of 2015-10-30), both for com-
patibility reasons with other research e↵orts in symbiotic HRI, but also to benefit from the
improvements and further development of ROS in comparison to the tools and hardware ab-
straction previously used for implementing the Human-Augmented Mapping software.
For the manual annotation of the video footprint from the user study we had used ELAN

(https://tla.mpi.nl/tools/tla-tools/elan, as of 2015-10-30), a for research purposes freely available
tool that produces XML-files from which it is possible to reconstruct the original timeline and
organise the annotations accordingly. Hence, one part of the prototype was a parser for the
ELAN-generated annotation files, that provides the core part of the system, the interaction
monitor, with the stream of annotations. As indicated above, we assume here, that it would be
possible to exchange the parser with online recognition tools for di↵erent types of perceptions
(i.e., tools for multi-modal interaction). We already tested an approach that would not rely
on the manually provided annotations but on actual trajectory data produced by a previously
proposed person tracking approach [20, 22].

8

Elin A. Topp, “Interaction Patterns in Human Augmented Mapping” 
Special Issue on Spatial Interaction and Reasoning for Real-World Robotics, RSJ Advanced Robotics, vol 5, issue 31, March 2017

Automated detection and identification

30

�. A�������

3.1 Interaction Patterns Manager
The implementation of this part of the prototype is based on annotation files generated with
the respective tool ELAN [1], from videos recorded during the study case "Understanding
Spatial Concepts from User Actions" [31]. Those annotation patterns were identified and
confirmed in a manual analysis e�ort.

Figure 3.1 shows all nodes and topics of this prototype. It consists of a parser to obtain
all the annotations from ELAN files; an ELAN translation module to translate Interaction
Patterns from annotations (Strings) to variables adapted for the Machine Learning algo-
rithm (Integers); an interaction monitor that store all the immediate around Interaction
Patterns and send it to the interaction learner in the case that we want to train the algo-
rithm; or to the interaction recognition in the case that we want to recognise the category
of the item that the user is presenting.

Figure 3.1: Interaction Patterns Manager prototype nodes and
topics structure

3.1.1 Machine Learning Algorithm
In section 2.2.3 we have presented five di�erent machine learning algorithms that could
be used for our approach. However, we are going to use only one, and we have to choose
the most suitable one.

Algorithms that work with a tree structure such as Decision Tree Learning and Ran-
dom Forests have the inconvenience of the tree design, a tree structure has to be designed
beforehand. We have a bunch of data that was previously studied, but not at the level of
designing a decision tree. Furthermore, taking into account all the di�erent variables, the
design of the tree would require a big e�ort.

Gaussian Mixure Models work fine in the classification for reduced dimensions. High
dimensionality cause problems since the amount of training data may become insu�cient,
or computation time increases too much [22]. One option is to reduce the number of
features preprocessing the data, for example using the Principal component analysis (PCA)

20

�. A�������

Figure 3.2: GeNIe Bayesian network

3.1.6 Interaction Recognition
With the help of the SMILE library this node performs inference in the Bayesian network
generated by the interaction_learner package.

First of all, the interaction_recognition node opens a GeNIe/SMILE file
with a trained Bayesian Network (Figure 3.2). Then, this node subscribes to the /BN_vars
topic and for each message that arrives performs inference in the network to obtain the
Category by behaviour posterior probabilities.

For each classification (Object, Workspace, Region and Unknown) the pos-
terior probability is computed and printed. If the highest posterior probability has a di�er-
ence less than a 10% with the second highest one, we consider that they are too similar and
there is an ambiguity. For example, in figure 3.3 region and workspace categories have the
higher posterior probability values with a di�erence less than 10%.

P("category" = object) = 0.009547
P("category" = region) = 0.420887
P("category" = workspace) = 0.495601
P("category" = unknown) = 0.073965

Figure 3.3: Output of the node when we perform inference in the
Bayesian network. Region and Workspace posterior probabilities
are very similar.

The usr_present annotation is not used to perform inference in the network when
we are recognising the Category by behaviour. However, this annotation is com-
pared among the highest posterior probabilities to check the performance of the network.

Output statistics
When no more annotations are being published, a statistical overview is printed to check
the results of the Bayesian network. The table 3.2 contains the description of the statistical
data.

26

�. E���������

Training set
Number of files 37

Number of presentations 548
Subject files 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32, 33, 34, 35, 36, 37

Test set
Number of files 37

Number of presentations 548
Subject files 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32, 33, 34, 35, 36, 37

Table 4.1: Datasets in test 1

that were classified previously as unknown. And then, we have two big categories such
as mismatches and similar between two that are of great interest to be analysed in more
detail.

Matches

226
Mismatches

71

Similar between two

165

Similar among three

29 Unknown category classified

40
Similar between two and mismatch

17

Figure 4.1: Results of test 1

Analysing more deeply the results of the two biggest groups that are not matches we
can see that the results are not bad at all, in the case of mismatches we have got the fol-
lowing:

• Mismatches 71

– 40 objects are classified as a workspace. Mainly the object "chair" is classified
as a workspace. Other objects misclassified are "phone", "dustbin", "printer"
and "paper".

30

71 clear mismatches:

40 objects -> workspace  
(mostly chairs)

17 workspaces -> region

6 regions -> workspace

(Felip Martí Carillo and Elin A. Topp,  
“Interaction and Task Patterns in Symbiotic, Mixed-Initiative Human-Robot Interaction”,  
AAAI-WS on Symbiotic Cognitive Systems, February 2017, Phoenix, AZ, USA)

NLP-based programming

31
(Maj Stenmark, 2013)

The AI-bits behind…

32
(Maj Stenmark, 2014)

NLP-based programming

33

Predicate-argument structures

Map to existing
commands or
programs

Skills and knowledge

34

 Devices Skill types

However …

35

Even though the robot has lead-through built in, and  
even though we could use NLP and high-level instructions to  
make use of our skill representation -

… we must get the skills into the system!

36

(Maj Stenmark, Mathias Haage, Elin A. Topp, and Jacek Malec,  
“Supporting Semantic Capture during Kinesthetic Teaching of Collaborative Industrial Robots”,  
ICSC-IW on Semantics in Engineering and Robotics, January 2017, San Diego, CA, USA)  
(Maj Stenmark, Mathias Haage, Elin A. Topp, and Jacek Malec,  
“Making Robotic Sense of Incomplete Human Instructions in High-Level Programming for Industrial Robotic Assembly”,  
AAAI-WS on Human-Machine Collaborative Learning, February 2017, San Francisco, CA, USA)

From Demonstrations to Skills for High-level
Programming of Industrial Robots

 Maj Stenmark and Elin Anna Topp
Department of Computer Science, Lund University, Sweden

Maj Stenmark, maj.stenmark@cs.lth.se
Elin Anna Topp, elin_anna.topp@cs.lth.se
Department of Computer Science, Faculty of Engineering
Lund University, Lund, Sweden

Skill reuse

The user can create program abstrac-
tions from scratch, so-called skills e.g.

Pick and Place
Parameterization, e.g., positions relative to

objects can be modified easily

Yes, robot programming is for (almost) everyone!
Yes, parametrization bootstraps the programming process!

Preliminary results
• 19 out of 21 could program the first step.
• 14 out of 21 managed to steps.
• Reusing expert-made skill had best results, but the group was

more experienced with machines.
• Difficult: finding a good insertion strategy for robust attachment.
• Understanding and using different reference systems.
• Very limited time to learn the tool and how the robot moved.
• Pose vs. trajectory recording.
• Robot should suggest actions based on previous skills!

In a user study with 21 subjects divided into 3 groups we tested different weather a parameterized skill representation
was 1) understandable by a non-expert and 2) helpful when programming a similar task. One group reused their own

skill, one group used an expert-made skill and one group reprogrammed every step from scratch.

Can we link behavioural patterns to communicative intentions?
Would they help us to resolve ambiguities and improve mutual understanding?Can non-experts create reusable robot programs from scratch?

Can parameterized skills simplify and speed up robot programming?

Prototype programming tool

The initial design specification was made
from analysis of two case studies

The tool has object and skill abstractions
and simple debugging and execution

The tool is intended to work together
with lead-through to provide rapid online

programming and testing

Action representation

Motion

Free Motion

AbsJoint, Linear
Circular, Joint

Points

Trajectories

Contact Motion Guarded search
Force-controlled motion

Gripper
Action

Open
Close

Finger commands
Suction ON/OFF

Locating
Action Vision

DMP

Study
21 Participants

30 minutes each with the robot

ABB YuMi — an inherently safe robot

Program a LEGO building task using lead-
through and GUI

Step 1: insert small LEGO on tower

Step 2: reuse skill to insert large piece

Video for later analysis

Programming task: pick LEGO pieces
and insert them on a tower

Understand robot motion, use gripper
cameras to locate LEGO (predefined robot
action) and contact force estimation to in-

Switch from the LEGO’s reference coordi-
nate system and tower coordinates

Reuse own or expert made skill to repeat the
task with a large LEGO in three positions

Does skill re-use help?  
Can non-experts program the robot?

37

Two phases:

Three Conditions:

I: Step 1 (create “pick up and insert a 2x2 Duplo on another one” - skill) and
II: Steps 2-4 “repeat” Step 1 (different conditions) with a 2x4 Duplo

A: re-use your step 1 skill
B: re-use a provided, expert-made skill
C: build everything from scratch

Yes! and Yes!

38

Maj Stenmark, Mathias Haage, and Elin A. Topp,  
“Simplified Programming of Re-usable Skills on a Safe Industrial Robot - Prototype and Evaluation”,  
ACM / IEEE Conference on Human-Robot Interaction, March 2017, Vienna, Austria

Research video, user study

Kindergarden teacher programs YuMi

Robotics and Semantic Systems
@CS

39

• Master’s projects (Ex-jobb)

• Internal (research oriented) or external (industry related)

• International

• Lab visit to the Robotlab in M-huset

• Contact us: Jacek, Pierre, Elin or other members of the group:  
Klas Nilsson, Mathias Haage, Sven Gestegård Robertz

• Course EDAN70, Project in Computer Science, VT2

• Course MMKN30, Service Robotics (through IKDC)

