
EDAF65
Processes and Threads

Per Andersson

Lund University
http://cs.lth.se/per_andersson/

January 24, 2018

Per Andersson EDAF65 Processes and Threads January 24, 2018 1 / 65

http://cs.lth.se/per_andersson/

Time-Sharing Operating Systems

Processes are programs in execution
Most operating systems can run multiple processes in parallel
OSes allocate a small quantum of CPU time to each process

T

Kernel

P1

P2

t1 t2 t3 t4

Task switching is very fast and gives the impression of simultaneous
processing

Per Andersson EDAF65 Processes and Threads January 24, 2018 2 / 65

Process Creation

On Unix, a command interpreter – a shell – launches the user processes.
A process can then launch other processes
The creating process is the “parent” and the created processes are the
“children”

P 1

P 2 P 3

P 4 P 6P 5

An initial process started at boot time is the ancestor of all the processes:
system processes and user processes

Per Andersson EDAF65 Processes and Threads January 24, 2018 3 / 65

The Content of a Process

Running processes are located in the computer memory.
They contain the program code – resulting from the compiling
A data area that stores the dynamic data is allocated by the program at
run-time using new

When the program calls functions or methods, a stack stores their
parameters

	

Execution Stack

Data

Code

Per Andersson EDAF65 Processes and Threads January 24, 2018 4 / 65

The Process States

The model of process execution is a finite-state machine
Processes waiting for the CPU are “ready”
The scheduler “elects” one process and runs it.
On an I/O, the elected process is moved to a “blocked” state until the I/O
is completed.

Elected Ready

Blocked

Per Andersson EDAF65 Processes and Threads January 24, 2018 5 / 65

The Unix System

The Unix states are slightly more complex

Running
Kernel mode

Preempted

Defunct

Blocked in
memory

Created

System call

Interrupt

Exit

Running
User mode

Ready in
memory

Blocked not
in memory

Ready not in
memory

Per Andersson EDAF65 Processes and Threads January 24, 2018 6 / 65

The Scheduler

The scheduler selects one process from the queue of ready processes.
A scheduler runs every 10 ms or so and chooses a new process

Running Waiting Waiting Waiting

There are many scheduling algorithms available.
Scheduling must be very fast and use relatively simple algorithms:
first-come, first-served, round robin, priority.

Per Andersson EDAF65 Processes and Threads January 24, 2018 7 / 65

The Process Control Block

The operating system uses additional data to run a process: the process
context or process control block. It contains the process state, program
counter, CPU registers, etc.

P2

P1

Kernel
t1
t3

t4

t2

When switching tasks, the OS saves the current context and restores the
context of the process that it will execute.

Per Andersson EDAF65 Processes and Threads January 24, 2018 8 / 65

The Operating System Operations on Processes

The operating system creates, schedules, and terminates the processes.
Processes must sometimes cooperate and share data.
The operating system offers communication means between processes,
interprocess communications (IPC) and naming facilities:

Pipes

Shared memory

Messages

The operating system also offers means to coordinate and synchronize
processes: semaphores on Unix

Per Andersson EDAF65 Processes and Threads January 24, 2018 9 / 65

Threads

Traditional processes are sequential: They have one execution path—one
thread of control
Concurrent processes have multiple threads of control i.e. processes within
a process.
Imagine a word processor application. The process must read the
keystrokes, display the text, check spelling, and so on, at the same time
Difficult to manage with a single thread
The idea is to allocate one thread to each task.

Per Andersson EDAF65 Processes and Threads January 24, 2018 10 / 65

Benefits

Easier to implement parallelism within the application
Input/output does not block the process, only one thread
More responsive programs using high-priority threads to manage user
interaction.
Threads are more economical: creating a process is 10 to 100 longer than
creating a thread.
But:
Threads are more difficult to coordinate and prone to nasty bugs.

Per Andersson EDAF65 Processes and Threads January 24, 2018 11 / 65

Java Threads

Threads are a feature of Java: a Java program and virtual machine can
run multiple threads.
Java provides constructs to create, manage, synchronize, and terminate
threads through:

the Thread class
http://docs.oracle.com/javase/8/docs/api/java/lang/

Thread.html or

the Runnable interface
http://docs.oracle.com/javase/8/docs/api/java/lang/

Runnable.html.

Threads can communicate using shared objects, pipes, or through
messages (sockets)

Per Andersson EDAF65 Processes and Threads January 24, 2018 12 / 65

http://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html

Java Threads

Creating Threads: The Thread class
Threads can be created using the Thread class in two steps.

1 Create a new class:

Derive a new class from Thread using extends

Override the run() method

2 Create and run a thread object:

Create a thread object using new.
Start it using the start() method

Per Andersson EDAF65 Processes and Threads January 24, 2018 13 / 65

A First Program using the Thread Class

public class MyThread extends Thread {

MyThread() {}

public void run() {

System.out.println("My first thread");

}

public static void main(String args[]) {

MyThread firstThread = new MyThread();

firstThread.start();

}

}

Per Andersson EDAF65 Processes and Threads January 24, 2018 14 / 65

Creating Threads: The Runnable Interface

The Runnable interface is another option to create threads.
1 Add the Runnable properties to a class:

Implement the Runnable interface using implements

Add a run() method

2 Create and run a thread object:

Create a Runnable object using new.
Create a thread that takes the runnable object as an argument
Start the thread using the start() method

Per Andersson EDAF65 Processes and Threads January 24, 2018 15 / 65

A First Program using the Runnable Interface

public class MyRunnable implements Runnable {

MyRunnable() {}

public void run() {

System.out.println("My second thread");

}

public static void main(String args[]) {

MyRunnable firstRunnable = new MyRunnable();

Thread myThread = new Thread(firstRunnable);

myThread.start();

}

}

Per Andersson EDAF65 Processes and Threads January 24, 2018 16 / 65

Passing Data to a Thread

You can pass data at creation time. Thread(String name) is a useful
constructor.

public class MyThread2 extends Thread {

private int myInt;

MyThread2(String name, int myInt) {

super(name);

this.myInt = myInt;

}

public void run() {

for (int i = 0; i < myInt; i++) {

System.out.println(getName() + ": " + i);

}

System.out.println(getName() + " terminated");

}

Per Andersson EDAF65 Processes and Threads January 24, 2018 17 / 65

Passing Data to a Thread, Continued

public static void main(String args[]) {
MyThread2 secondThread = new MyThread2("Thread#2", 123);
secondThread.start();

}
}

Per Andersson EDAF65 Processes and Threads January 24, 2018 18 / 65

Returning Data from a Thread

Does this work?

class MyThread {

result;

MyThread() {}

getResult() {

return result;

}

run() {

result = produceResult();

}

}

class Main {

thread.start();

thread.getResult();

}

Per Andersson EDAF65 Processes and Threads January 24, 2018 19 / 65

Returning Data from a Thread

class MyThread {

result;

MyThread() {}

getResult() {

return result;

}

run() {

result = produceResult();

Main.callback(result);

}

}

class Main {

static callback(result) {

useResult(result);

}

main() {

thread.start();

}

}

(Launcher2.java and Thread2.java)

Per Andersson EDAF65 Processes and Threads January 24, 2018 20 / 65

Working with Multiple Threads

The Java Virtual Machine manages the scheduling.

public static void main(String args[]) {
int loopCount;
loopCount = Integer.parseInt(args[0]);
MyThread3 thirdThread = new MyThread3("Thread3", loopCount);
MyThread3 fourthThread = new MyThread3("Thread4", loopCount);
thirdThread.start();
fourthThread.start();

}

Per Andersson EDAF65 Processes and Threads January 24, 2018 21 / 65

The Thread API

The thread API consists of 8 constructors and ˜40 methods, some of them
deprecated.
Constructors
Thread()

Thread(Runnable target)

Thread(Runnable target, String name)

Thread(String name)

Thread(ThreadGroup group, Runnable target)

Thread(ThreadGroup group, Runnable target, String name)

Thread(ThreadGroup group, Runnable target, String name, long stackSize)

Thread(ThreadGroup group, String name)

Per Andersson EDAF65 Processes and Threads January 24, 2018 22 / 65

Thread Methods

static int activeCount() void join()

void checkAccess() void join(long millis)

static Thread currentThread() void join(long millis, int nanos)

static void dumpStack() void run()

static int enumerate(Thread[] tarray) void setContextClassLoader(ClassLoader cl)

ClassLoader getContextClassLoader() void setDaemon(boolean on)

String getName() void setName(String name)

int getPriority() void setPriority(int newPriority)

ThreadGroup getThreadGroup() static void sleep(long millis)

static boolean holdsLock(Object obj) static void sleep(long millis, int nanos)

void interrupt() void start()

static boolean interrupted() String toString()

boolean isAlive() static void yield()

boolean isDaemon() public long getId()

boolean isInterrupted() public Thread.State getState()

Per Andersson EDAF65 Processes and Threads January 24, 2018 23 / 65

Deprecated Methods

int countStackFrames() void stop()

void resume() void stop(Throwable obj)

void destroy() void suspend()
A frequent question is: Why can’t I stop a thread?
Read:
http://docs.oracle.com/javase/8/docs/technotes/guides/

concurrency/threadPrimitiveDeprecation.html

Per Andersson EDAF65 Processes and Threads January 24, 2018 24 / 65

http://docs.oracle.com/javase/8/docs/technotes/guides/concurrency/threadPrimitiveDeprecation.html
http://docs.oracle.com/javase/8/docs/technotes/guides/concurrency/threadPrimitiveDeprecation.html

The Thread States

From Java 1.5.0: Thread.State enables to know the state.
http://docs.oracle.com/javase/8/docs/api/java/lang/Thread.

State.html
Per Andersson EDAF65 Processes and Threads January 24, 2018 25 / 65

http://docs.oracle.com/javase/8/docs/api/java/lang/Thread.State.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Thread.State.html

Java Threads Scheduling

The JVM schedules threads using priorities.
Priorities are adjustable and range from 1 to 10:

Thread.MAX PRIORITY = 10

Thread.NORM PRIORITY = 5

Thread.MIN PRIORITY = 1

The Java specifications do not describe the scheduling algorithm. They
are left to the implementer.

Per Andersson EDAF65 Processes and Threads January 24, 2018 26 / 65

Scheduling Algorithms

Scheduling can be preemptive or cooperative:

A cooperative scheduler selects the highest priority thread and runs it
until it is completed unless the thread carries out an I/O or yields
control using yield()

A preemptive scheduler allocates time quanta to threads so that they
all can run. High priority tasks should have more time than lower
priority ones.

Be aware of the implementation differences that are not documented.
On older Java implementations, a thread cannot be taken away from the
processor if it does not complete an I/O operation

Per Andersson EDAF65 Processes and Threads January 24, 2018 27 / 65

Adjusting Priorities

public static void main(String args[]) {
int firstPriority, secondPriority;
int loopCount;
firstPriority = Integer.parseInt(args[0]);
secondPriority = Integer.parseInt(args[1]);
loopCount = Integer.parseInt(args[2]);
MyThread4 fifthThread = new MyThread4("Thread#5", loopCount);
MyThread4 sixthThread = new MyThread4("Thread#6", loopCount);
fifthThread.setPriority(firstPriority);
sixthThread.setPriority(secondPriority);
fifthThread.start();
sixthThread.start();

}

Per Andersson EDAF65 Processes and Threads January 24, 2018 28 / 65

Thread Implementation

The Java Virtual Machines do not implement threads the same way.
Result of a program execution depends on the Java version,
implementation, and OS variant.
Compare the execution of:

$ java Launcher5 1 10 1000000

on your Linux machines and on a Mac

Per Andersson EDAF65 Processes and Threads January 24, 2018 29 / 65

Sharing the Work Between Multiple Threads

Task pipeline Multiple tasks

	
Task

	
Tasks

The task is split into subtasks
and assigned to threads orga-
nized as a pipeline.

The tasks are marshaled and
assigned to a pool of threads:
Java Executors.

Per Andersson EDAF65 Processes and Threads January 24, 2018 30 / 65

A Client-Server Organization

Server

Client requests

Control
threads

Dispatcher

Per Andersson EDAF65 Processes and Threads January 24, 2018 31 / 65

Java Executors

Executors are a very simple and handy way to manage threads
They are part of the concurrent package.
To create a thread pool for a RunnableClass class implementing the
Runnable interface, the launcher:

creates the pool with:

ExecutorService service = Executors.newFixedThreadPool(2);

creates the Runnable tasks: Runnable task = new

RunnableClass()

submits the tasks using service.submit(task) and

shuts down the pool using service.shutdown().

(MyExecutors.java)

Per Andersson EDAF65 Processes and Threads January 24, 2018 32 / 65

Java Executors with Future

If the runnable object is to return a value, you have to modify:

The task: Instead of implementing Runnable, the class implements
Callable<ReturnValue>

The running code: Instead of run(), you have a call() method that
returns a result.

The launcher program creates a pool of threads:

ExecutorService service = Executors.newFixedThreadPool(2);

It submits the tasks using submit(), receives the results in the form of a
Future, and shuts down the pool using shutdown().
(MultithreadedMaxFinder.java)

Per Andersson EDAF65 Processes and Threads January 24, 2018 33 / 65

Thread Coordination: A Simple Problem

Let us suppose that we want to reverse a list of numbers (countdown). A
simple and inefficient algorithm would put all the items on a stack and
once it is finished, remove them from the stack.

1 2 3 1

2

3

3 2 1

In the real world, we would divide this task into two subtasks: pile the
boxes and then take them from the stack.
Let us try to implement it with two threads.

Per Andersson EDAF65 Processes and Threads January 24, 2018 34 / 65

The Stack Class

Stacks are a very common LIFO data structure.
Java has a built-in Stack class.
Stack has two main methods:

Object push(Object item) puts one item onto the top of the
stack and

Object pop() removes one item at the top of the stack and returns
it.

The empty() method is a Boolean to test the stack state.

Per Andersson EDAF65 Processes and Threads January 24, 2018 35 / 65

Wrapper Types

The Stack class as List, Vector, and other collections manipulates
Objects

It cannot store primitive types like boolean, int, float, or double that
are not objects
To store an integer variable, the program must associate it to an object –
a wrapper
Each primitive type has an object counterpart: char and Char, int and
Integer, etc.
From Java 1.5, moving an int to an Integer and the reverse are
automatic and are called “boxing” and “autoboxing.”

Per Andersson EDAF65 Processes and Threads January 24, 2018 36 / 65

A Class to Create and Read a Stack

class MyStack extends Stack<Integer> {

int stackSize;

MyStack(int stackSize) { this.stackSize = stackSize; }

void buildStack() {

for (int count = 0; count < stackSize; count++) {

this.push(count);

}

System.out.println("Stack complete");

}

void printStack() {

while (!this.empty()) {

System.out.println(this.pop());

}

System.out.println("Stack printed");

}

}

Per Andersson EDAF65 Processes and Threads January 24, 2018 37 / 65

A Single Threaded Program

public class Launcher9 {

public static void main(String args[]) {

int loopCount = 0;

loopCount = Integer.parseInt(args[0]);

MyStack myStack = new MyStack(loopCount);

myStack.buildStack();

myStack.printStack();

}

}

Per Andersson EDAF65 Processes and Threads January 24, 2018 38 / 65

A Multi-Threaded Program Sharing a Stack

Now let us create two threads to share the work:

BuildingThread buildingThread = new BuildingThread(myStack);
PrintingThread printingThread = new PrintingThread(myStack);
buildingThread.start();
printingThread.start();

class BuildingThread extends Thread {
MyStack myStack;
BuildingThread(MyStack myStack) {

this.myStack = myStack;
}
public void run() {

myStack.buildStack();
}

}

Per Andersson EDAF65 Processes and Threads January 24, 2018 39 / 65

A Multi-Threaded Program (Continued)

class PrintingThread extends Thread {

MyStack myStack;

PrintingThread(MyStack myStack) {

this.myStack = myStack;

}

public void run() {

myStack.printStack();

}

}

(Launcher10.java)
Better design? What do you think?

Per Andersson EDAF65 Processes and Threads January 24, 2018 40 / 65

The Execution Flow

The scheduler shares the time between the two threads

	

T

Main

Building Thread

Printing Thread

Stack complete

The lack of coordination produces a garbled output

Per Andersson EDAF65 Processes and Threads January 24, 2018 41 / 65

What Should the Execution be

The scheduler must run the printStack() method after the
buildStack() method is complete

	

T

Main

buildStack()

printStack()

Stack complete

The code sections where the stack is being accessed – built and read – are
critical sections
Their access must be exclusive: one thread at a time

Per Andersson EDAF65 Processes and Threads January 24, 2018 42 / 65

Busy Waiting

A first solution is to test continuously a condition before entering the
critical section
The condition is set when the task is complete

class BuildingThread extends Thread {

MyStack myStack;

volatile boolean complete = false;

BuildingThread(MyStack myStack) {

this.myStack = myStack;

}

public void run() {

myStack.buildStack();

complete = true;

}

boolean getStatus() {

return complete;

}

}
Per Andersson EDAF65 Processes and Threads January 24, 2018 43 / 65

Busy Waiting (Continued)

The condition is tested before starting the 2nd thread (Launcher11.java)
It is called busy waiting

while (buildingThread.getStatus() == false) {

;

}

Busy waiting requires an atomic access to the condition variable
This is implemented using the volatile keyword
Busy waiting is generally not a good solution
An improved program would test the condition in the 2nd thread and use
yield() if it is not met
yield() moves the executing thread to runnable and allows the
scheduler to select and run another thread
It is a poor design too.

Per Andersson EDAF65 Processes and Threads January 24, 2018 44 / 65

Monitors

Monitors are constructs that guarantee the mutual exclusion of methods
Per Brinch Hansen developed this concept of monitor in 1973
Any Java object is a potential monitor
The synchronized keyword declares the object methods that are part of
a monitor

class MyClass {

synchronized void m1() {}

void m2() {}

synchronized void m3() {}

}

Per Andersson EDAF65 Processes and Threads January 24, 2018 45 / 65

Monitors (Continued)

The methods m1() and m3() are part of the monitor: myObject.m1()

and myObject.m3() won’t run concurrently
The first method started must be finished before another one is started
Similarly, two threads can’t run myObject.m1() concurrently
The method myObject.m2() is not part of the monitor. It can be run at
any time
The set of threads competing to acquire a monitor is called the entry set
The Boolean method holdsLock(Object) returns true if the thread holds
the monitor lock

Per Andersson EDAF65 Processes and Threads January 24, 2018 46 / 65

The Entry Set

	

Owning Thread

Thread

Thread

Thread

The monitor

The entry set

Per Andersson EDAF65 Processes and Threads January 24, 2018 47 / 65

The New Class

class MyStack extends Stack {

int stackSize;

MyStack(int stackSize) { this.stackSize = stackSize; }

synchronized void buildStack() {

for (int count = 0; count < stackSize; count++) {

this.push(count);

}

System.out.println("Stack complete");

}

synchronized void printStack() {

while (!this.empty()) {

System.out.println(this.pop());

}

System.out.println("Stack printed");

}

} //Launcher12.java

Per Andersson EDAF65 Processes and Threads January 24, 2018 48 / 65

Race Conditions

What happens if threads are started the other way around?

printingThread.start();

buildingThread.start(); // Launcher13.java

instead of

buildingThread.start();

printingThread.start(); // Launcher12.java

The result depends on the particular order of the instructions
This is called a race condition
Can we improve the monitor to avoid it?

Per Andersson EDAF65 Processes and Threads January 24, 2018 49 / 65

Introducing the wait() Method

When a thread runs a synchronized method, it owns the object exclusively.
The others are in the blocked state.
Sometimes the object is not ready as when the stack is empty. The thread
is unable to start or continue.
It must wait then. . .
The wait() method moves the thread from running to the waiting

state and places it in a waiting list – the wait set.
All objects inherits the wait() method as potential monitors
(this.wait())

Per Andersson EDAF65 Processes and Threads January 24, 2018 50 / 65

The Wait Set

	

Owning Thread

Thread

Thread

Thread

The monitor

The entry set

Thread

Thread

The wait set

wait()

Per Andersson EDAF65 Processes and Threads January 24, 2018 51 / 65

The wait()Method (Continued)

The new code is:

synchronized void printStack() {

while (this.empty()) { // do not use if!

try {

wait();

} catch (InterruptedException e) {}

}

while (!this.empty()) {

System.out.println(this.pop());

}

System.out.println("Stack printed");

} // Launcher14.java

The stack is not printed! Why?

Per Andersson EDAF65 Processes and Threads January 24, 2018 52 / 65

The notify() Method

After a wait() call, the thread is stuck in the wait set
The notify() method selects arbitrarily one thread from the wait set and
moves it to the entry set and the runnable state
The notifyAll() method moves all the threads in the wait set to the
entry set and to the runnable state

synchronized void buildStack() {

for (int count = 0; count < stackSize; count++) {

this.push(count);

}

System.out.println("Stack complete");

notifyAll();

} // Launcher15.java

Per Andersson EDAF65 Processes and Threads January 24, 2018 53 / 65

The notifyAll() Method

	

Per Andersson EDAF65 Processes and Threads January 24, 2018 54 / 65

Exiting the Wait Set

A thread exits the wait set when it is “notified”
It is also possible to set a time limit to wait() using
public final void wait (long milliseconds)

or
public final void wait (long milliseconds, int nanos)

The nanos value is not reliable however
This moves the thread in the timed waiting state, similar to waiting.
Finally, the interrupt() method of the Thread class enables a thread to
exit the wait set

Per Andersson EDAF65 Processes and Threads January 24, 2018 55 / 65

The interrupt() Method

Under normal running conditions, interrupt() sets the interrupt status
and has not other effects
When the thread is in the waiting state because of wait(), sleep(), or
join(), it receives an InterruptedException

Input/output blocks a running thread until the I/O is completed. With the
nio package, interrupt() wakes up a thread in an I/O method.
The Boolean method isInterrupted()returns the status value and
interrupted() returns and clears it

printingThread.start();

printingThread.interrupt();

buildingThread.start(); //(Launcher16.java)

Per Andersson EDAF65 Processes and Threads January 24, 2018 56 / 65

Deadlocks

Threads programming is difficult to master well
Deadlocks are a major source of bugs
A deadlock occurs when these conditions are met:

1 A thread has an exclusive resource that another thread is waiting for
and

2 The other thread has a resource that the first thread is waiting for

It is a hopeless circular wait

Per Andersson EDAF65 Processes and Threads January 24, 2018 57 / 65

Deadlocks (Continued)

Thread 1 Thread 2

Request

Allocated

R 1 R 2

Per Andersson EDAF65 Processes and Threads January 24, 2018 58 / 65

A Deadlock Example

In addition to methods, blocks of code can be synchronized as:

synchronized (Object) {

...

}

Objects can wait and notify using Object.wait() and Object.notify()

Let us program a deadlock: A first thread acquires two synchronized
objects, lock1 and lock2 and a second thread acquires the same objects
the other way around

Per Andersson EDAF65 Processes and Threads January 24, 2018 59 / 65

A Deadlock Example

class Stuck1 extends Thread {
Integer lock1, lock2;
Stuck1(String name, Integer lock1, Integer lock2) {

super(name);
this.lock1 = lock1;
this.lock2 = lock2;

}
public void run() {

synchronized (lock1) {
System.out.println(getName() + " acquired lock1");
synchronized (lock2) {

System.out.println(getName() + " acquired lock2");
}

}
}

}

Per Andersson EDAF65 Processes and Threads January 24, 2018 60 / 65

A Deadlock Example

class Stuck2 extends Thread {
Integer lock1, lock2;
Stuck2(String name, Integer lock1, Integer lock2) {

super(name);
this.lock1 = lock1;
this.lock2 = lock2;

}
public void run() {

synchronized (lock2) {
System.out.println(getName() + " acquired lock2");
synchronized (lock1) {

System.out.println(getName() + " acquired lock1");
}

}
}

}

Per Andersson EDAF65 Processes and Threads January 24, 2018 61 / 65

A Deadlock Example

public class Launcher17 {
public static void main(String args[]) {

Integer lock1 = new Integer(1), lock2 = new Integer(2);
Stuck1 stuck1 = new Stuck1("Stuck1", lock1, lock2);
Stuck2 stuck2 = new Stuck2("Stuck2", lock1, lock2);
stuck1.start();
stuck2.start();

}
}

The deadlock is not systematic. It depends on the completion speed of stuck1

Per Andersson EDAF65 Processes and Threads January 24, 2018 62 / 65

Reentrance

A single thread can’t deadlock itself however because Java monitors are
reentrant

public class Reentrant {

public synchronized void a() {

b();

System.out.println("Running a()");

}

public synchronized void b() {

System.out.println("Running b()");

}

} // Launcher18.java

Per Andersson EDAF65 Processes and Threads January 24, 2018 63 / 65

Thread Death

A thread terminates when it returns from the run() method.
Do not use stop()

Instead of using synchronized methods, we could simply have waited the
end the building thread.
This is possible using join() that waits for a thread to finish.
isAlive() tests if a thread is alive. It returns false if it is dead or not
started.
(Launcher19.java)

Per Andersson EDAF65 Processes and Threads January 24, 2018 64 / 65

Semaphores

Semaphores are another type of coordination device
They are widely used although more difficult than monitors
They are available on Unix in the IPC library and from version 1.5.0 of
Java in the java.util.concurrent package
A semaphore is a positive integer that is decremented and incremented
atomically using the P and V operations
A mutex is a semaphore initialized to one
It enables to protect a critical section as in

mutex = 1

P(mutex)

criticalSection()

V(mutex)

Per Andersson EDAF65 Processes and Threads January 24, 2018 65 / 65

